1 //===-- Process.cpp -------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include <atomic>
10 #include <memory>
11 #include <mutex>
12 
13 #include "llvm/Support/ScopedPrinter.h"
14 #include "llvm/Support/Threading.h"
15 
16 #include "lldb/Breakpoint/BreakpointLocation.h"
17 #include "lldb/Breakpoint/StoppointCallbackContext.h"
18 #include "lldb/Core/Debugger.h"
19 #include "lldb/Core/Module.h"
20 #include "lldb/Core/ModuleSpec.h"
21 #include "lldb/Core/PluginManager.h"
22 #include "lldb/Core/StreamFile.h"
23 #include "lldb/Expression/DiagnosticManager.h"
24 #include "lldb/Expression/DynamicCheckerFunctions.h"
25 #include "lldb/Expression/UserExpression.h"
26 #include "lldb/Expression/UtilityFunction.h"
27 #include "lldb/Host/ConnectionFileDescriptor.h"
28 #include "lldb/Host/FileSystem.h"
29 #include "lldb/Host/Host.h"
30 #include "lldb/Host/HostInfo.h"
31 #include "lldb/Host/OptionParser.h"
32 #include "lldb/Host/Pipe.h"
33 #include "lldb/Host/Terminal.h"
34 #include "lldb/Host/ThreadLauncher.h"
35 #include "lldb/Interpreter/CommandInterpreter.h"
36 #include "lldb/Interpreter/OptionArgParser.h"
37 #include "lldb/Interpreter/OptionValueProperties.h"
38 #include "lldb/Symbol/Function.h"
39 #include "lldb/Symbol/Symbol.h"
40 #include "lldb/Target/ABI.h"
41 #include "lldb/Target/AssertFrameRecognizer.h"
42 #include "lldb/Target/DynamicLoader.h"
43 #include "lldb/Target/InstrumentationRuntime.h"
44 #include "lldb/Target/JITLoader.h"
45 #include "lldb/Target/JITLoaderList.h"
46 #include "lldb/Target/Language.h"
47 #include "lldb/Target/LanguageRuntime.h"
48 #include "lldb/Target/MemoryHistory.h"
49 #include "lldb/Target/MemoryRegionInfo.h"
50 #include "lldb/Target/OperatingSystem.h"
51 #include "lldb/Target/Platform.h"
52 #include "lldb/Target/Process.h"
53 #include "lldb/Target/RegisterContext.h"
54 #include "lldb/Target/StopInfo.h"
55 #include "lldb/Target/StructuredDataPlugin.h"
56 #include "lldb/Target/SystemRuntime.h"
57 #include "lldb/Target/Target.h"
58 #include "lldb/Target/TargetList.h"
59 #include "lldb/Target/Thread.h"
60 #include "lldb/Target/ThreadPlan.h"
61 #include "lldb/Target/ThreadPlanBase.h"
62 #include "lldb/Target/ThreadPlanCallFunction.h"
63 #include "lldb/Target/ThreadPlanStack.h"
64 #include "lldb/Target/UnixSignals.h"
65 #include "lldb/Utility/Event.h"
66 #include "lldb/Utility/Log.h"
67 #include "lldb/Utility/NameMatches.h"
68 #include "lldb/Utility/ProcessInfo.h"
69 #include "lldb/Utility/SelectHelper.h"
70 #include "lldb/Utility/State.h"
71 
72 using namespace lldb;
73 using namespace lldb_private;
74 using namespace std::chrono;
75 
76 // Comment out line below to disable memory caching, overriding the process
77 // setting target.process.disable-memory-cache
78 #define ENABLE_MEMORY_CACHING
79 
80 #ifdef ENABLE_MEMORY_CACHING
81 #define DISABLE_MEM_CACHE_DEFAULT false
82 #else
83 #define DISABLE_MEM_CACHE_DEFAULT true
84 #endif
85 
86 class ProcessOptionValueProperties : public OptionValueProperties {
87 public:
88   ProcessOptionValueProperties(ConstString name)
89       : OptionValueProperties(name) {}
90 
91   // This constructor is used when creating ProcessOptionValueProperties when
92   // it is part of a new lldb_private::Process instance. It will copy all
93   // current global property values as needed
94   ProcessOptionValueProperties(ProcessProperties *global_properties)
95       : OptionValueProperties(*global_properties->GetValueProperties()) {}
96 
97   const Property *GetPropertyAtIndex(const ExecutionContext *exe_ctx,
98                                      bool will_modify,
99                                      uint32_t idx) const override {
100     // When getting the value for a key from the process options, we will
101     // always try and grab the setting from the current process if there is
102     // one. Else we just use the one from this instance.
103     if (exe_ctx) {
104       Process *process = exe_ctx->GetProcessPtr();
105       if (process) {
106         ProcessOptionValueProperties *instance_properties =
107             static_cast<ProcessOptionValueProperties *>(
108                 process->GetValueProperties().get());
109         if (this != instance_properties)
110           return instance_properties->ProtectedGetPropertyAtIndex(idx);
111       }
112     }
113     return ProtectedGetPropertyAtIndex(idx);
114   }
115 };
116 
117 #define LLDB_PROPERTIES_process
118 #include "TargetProperties.inc"
119 
120 enum {
121 #define LLDB_PROPERTIES_process
122 #include "TargetPropertiesEnum.inc"
123   ePropertyExperimental,
124 };
125 
126 #define LLDB_PROPERTIES_process_experimental
127 #include "TargetProperties.inc"
128 
129 enum {
130 #define LLDB_PROPERTIES_process_experimental
131 #include "TargetPropertiesEnum.inc"
132 };
133 
134 class ProcessExperimentalOptionValueProperties : public OptionValueProperties {
135 public:
136   ProcessExperimentalOptionValueProperties()
137       : OptionValueProperties(
138             ConstString(Properties::GetExperimentalSettingsName())) {}
139 };
140 
141 ProcessExperimentalProperties::ProcessExperimentalProperties()
142     : Properties(OptionValuePropertiesSP(
143           new ProcessExperimentalOptionValueProperties())) {
144   m_collection_sp->Initialize(g_process_experimental_properties);
145 }
146 
147 ProcessProperties::ProcessProperties(lldb_private::Process *process)
148     : Properties(),
149       m_process(process) // Can be nullptr for global ProcessProperties
150 {
151   if (process == nullptr) {
152     // Global process properties, set them up one time
153     m_collection_sp =
154         std::make_shared<ProcessOptionValueProperties>(ConstString("process"));
155     m_collection_sp->Initialize(g_process_properties);
156     m_collection_sp->AppendProperty(
157         ConstString("thread"), ConstString("Settings specific to threads."),
158         true, Thread::GetGlobalProperties()->GetValueProperties());
159   } else {
160     m_collection_sp = std::make_shared<ProcessOptionValueProperties>(
161         Process::GetGlobalProperties().get());
162     m_collection_sp->SetValueChangedCallback(
163         ePropertyPythonOSPluginPath,
164         [this] { m_process->LoadOperatingSystemPlugin(true); });
165   }
166 
167   m_experimental_properties_up =
168       std::make_unique<ProcessExperimentalProperties>();
169   m_collection_sp->AppendProperty(
170       ConstString(Properties::GetExperimentalSettingsName()),
171       ConstString("Experimental settings - setting these won't produce "
172                   "errors if the setting is not present."),
173       true, m_experimental_properties_up->GetValueProperties());
174 }
175 
176 ProcessProperties::~ProcessProperties() = default;
177 
178 bool ProcessProperties::GetDisableMemoryCache() const {
179   const uint32_t idx = ePropertyDisableMemCache;
180   return m_collection_sp->GetPropertyAtIndexAsBoolean(
181       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
182 }
183 
184 uint64_t ProcessProperties::GetMemoryCacheLineSize() const {
185   const uint32_t idx = ePropertyMemCacheLineSize;
186   return m_collection_sp->GetPropertyAtIndexAsUInt64(
187       nullptr, idx, g_process_properties[idx].default_uint_value);
188 }
189 
190 Args ProcessProperties::GetExtraStartupCommands() const {
191   Args args;
192   const uint32_t idx = ePropertyExtraStartCommand;
193   m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, args);
194   return args;
195 }
196 
197 void ProcessProperties::SetExtraStartupCommands(const Args &args) {
198   const uint32_t idx = ePropertyExtraStartCommand;
199   m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, args);
200 }
201 
202 FileSpec ProcessProperties::GetPythonOSPluginPath() const {
203   const uint32_t idx = ePropertyPythonOSPluginPath;
204   return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx);
205 }
206 
207 void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) {
208   const uint32_t idx = ePropertyPythonOSPluginPath;
209   m_collection_sp->SetPropertyAtIndexAsFileSpec(nullptr, idx, file);
210 }
211 
212 bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const {
213   const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions;
214   return m_collection_sp->GetPropertyAtIndexAsBoolean(
215       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
216 }
217 
218 void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) {
219   const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions;
220   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore);
221 }
222 
223 bool ProcessProperties::GetUnwindOnErrorInExpressions() const {
224   const uint32_t idx = ePropertyUnwindOnErrorInExpressions;
225   return m_collection_sp->GetPropertyAtIndexAsBoolean(
226       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
227 }
228 
229 void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) {
230   const uint32_t idx = ePropertyUnwindOnErrorInExpressions;
231   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore);
232 }
233 
234 bool ProcessProperties::GetStopOnSharedLibraryEvents() const {
235   const uint32_t idx = ePropertyStopOnSharedLibraryEvents;
236   return m_collection_sp->GetPropertyAtIndexAsBoolean(
237       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
238 }
239 
240 void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) {
241   const uint32_t idx = ePropertyStopOnSharedLibraryEvents;
242   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop);
243 }
244 
245 bool ProcessProperties::GetDetachKeepsStopped() const {
246   const uint32_t idx = ePropertyDetachKeepsStopped;
247   return m_collection_sp->GetPropertyAtIndexAsBoolean(
248       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
249 }
250 
251 void ProcessProperties::SetDetachKeepsStopped(bool stop) {
252   const uint32_t idx = ePropertyDetachKeepsStopped;
253   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop);
254 }
255 
256 bool ProcessProperties::GetWarningsOptimization() const {
257   const uint32_t idx = ePropertyWarningOptimization;
258   return m_collection_sp->GetPropertyAtIndexAsBoolean(
259       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
260 }
261 
262 bool ProcessProperties::GetWarningsUnsupportedLanguage() const {
263   const uint32_t idx = ePropertyWarningUnsupportedLanguage;
264   return m_collection_sp->GetPropertyAtIndexAsBoolean(
265       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
266 }
267 
268 bool ProcessProperties::GetStopOnExec() const {
269   const uint32_t idx = ePropertyStopOnExec;
270   return m_collection_sp->GetPropertyAtIndexAsBoolean(
271       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
272 }
273 
274 std::chrono::seconds ProcessProperties::GetUtilityExpressionTimeout() const {
275   const uint32_t idx = ePropertyUtilityExpressionTimeout;
276   uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64(
277       nullptr, idx, g_process_properties[idx].default_uint_value);
278   return std::chrono::seconds(value);
279 }
280 
281 bool ProcessProperties::GetSteppingRunsAllThreads() const {
282   const uint32_t idx = ePropertySteppingRunsAllThreads;
283   return m_collection_sp->GetPropertyAtIndexAsBoolean(
284       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
285 }
286 
287 bool ProcessProperties::GetOSPluginReportsAllThreads() const {
288   const bool fail_value = true;
289   const Property *exp_property =
290       m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental);
291   OptionValueProperties *exp_values =
292       exp_property->GetValue()->GetAsProperties();
293   if (!exp_values)
294     return fail_value;
295 
296   return exp_values->GetPropertyAtIndexAsBoolean(
297       nullptr, ePropertyOSPluginReportsAllThreads, fail_value);
298 }
299 
300 void ProcessProperties::SetOSPluginReportsAllThreads(bool does_report) {
301   const Property *exp_property =
302       m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental);
303   OptionValueProperties *exp_values =
304       exp_property->GetValue()->GetAsProperties();
305   if (exp_values)
306     exp_values->SetPropertyAtIndexAsBoolean(
307         nullptr, ePropertyOSPluginReportsAllThreads, does_report);
308 }
309 
310 ProcessSP Process::FindPlugin(lldb::TargetSP target_sp,
311                               llvm::StringRef plugin_name,
312                               ListenerSP listener_sp,
313                               const FileSpec *crash_file_path,
314                               bool can_connect) {
315   static uint32_t g_process_unique_id = 0;
316 
317   ProcessSP process_sp;
318   ProcessCreateInstance create_callback = nullptr;
319   if (!plugin_name.empty()) {
320     ConstString const_plugin_name(plugin_name);
321     create_callback =
322         PluginManager::GetProcessCreateCallbackForPluginName(const_plugin_name);
323     if (create_callback) {
324       process_sp = create_callback(target_sp, listener_sp, crash_file_path,
325                                    can_connect);
326       if (process_sp) {
327         if (process_sp->CanDebug(target_sp, true)) {
328           process_sp->m_process_unique_id = ++g_process_unique_id;
329         } else
330           process_sp.reset();
331       }
332     }
333   } else {
334     for (uint32_t idx = 0;
335          (create_callback =
336               PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr;
337          ++idx) {
338       process_sp = create_callback(target_sp, listener_sp, crash_file_path,
339                                    can_connect);
340       if (process_sp) {
341         if (process_sp->CanDebug(target_sp, false)) {
342           process_sp->m_process_unique_id = ++g_process_unique_id;
343           break;
344         } else
345           process_sp.reset();
346       }
347     }
348   }
349   return process_sp;
350 }
351 
352 ConstString &Process::GetStaticBroadcasterClass() {
353   static ConstString class_name("lldb.process");
354   return class_name;
355 }
356 
357 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp)
358     : Process(target_sp, listener_sp,
359               UnixSignals::Create(HostInfo::GetArchitecture())) {
360   // This constructor just delegates to the full Process constructor,
361   // defaulting to using the Host's UnixSignals.
362 }
363 
364 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp,
365                  const UnixSignalsSP &unix_signals_sp)
366     : ProcessProperties(this),
367       Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()),
368                   Process::GetStaticBroadcasterClass().AsCString()),
369       m_target_wp(target_sp), m_public_state(eStateUnloaded),
370       m_private_state(eStateUnloaded),
371       m_private_state_broadcaster(nullptr,
372                                   "lldb.process.internal_state_broadcaster"),
373       m_private_state_control_broadcaster(
374           nullptr, "lldb.process.internal_state_control_broadcaster"),
375       m_private_state_listener_sp(
376           Listener::MakeListener("lldb.process.internal_state_listener")),
377       m_mod_id(), m_process_unique_id(0), m_thread_index_id(0),
378       m_thread_id_to_index_id_map(), m_exit_status(-1), m_exit_string(),
379       m_exit_status_mutex(), m_thread_mutex(), m_thread_list_real(this),
380       m_thread_list(this), m_thread_plans(*this), m_extended_thread_list(this),
381       m_extended_thread_stop_id(0), m_queue_list(this), m_queue_list_stop_id(0),
382       m_notifications(), m_image_tokens(), m_listener_sp(listener_sp),
383       m_breakpoint_site_list(), m_dynamic_checkers_up(),
384       m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(),
385       m_stdio_communication("process.stdio"), m_stdio_communication_mutex(),
386       m_stdin_forward(false), m_stdout_data(), m_stderr_data(),
387       m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0),
388       m_memory_cache(*this), m_allocated_memory_cache(*this),
389       m_should_detach(false), m_next_event_action_up(), m_public_run_lock(),
390       m_private_run_lock(), m_finalizing(false),
391       m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false),
392       m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false),
393       m_can_interpret_function_calls(false), m_warnings_issued(),
394       m_run_thread_plan_lock(), m_can_jit(eCanJITDontKnow) {
395   CheckInWithManager();
396 
397   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT));
398   LLDB_LOGF(log, "%p Process::Process()", static_cast<void *>(this));
399 
400   if (!m_unix_signals_sp)
401     m_unix_signals_sp = std::make_shared<UnixSignals>();
402 
403   SetEventName(eBroadcastBitStateChanged, "state-changed");
404   SetEventName(eBroadcastBitInterrupt, "interrupt");
405   SetEventName(eBroadcastBitSTDOUT, "stdout-available");
406   SetEventName(eBroadcastBitSTDERR, "stderr-available");
407   SetEventName(eBroadcastBitProfileData, "profile-data-available");
408   SetEventName(eBroadcastBitStructuredData, "structured-data-available");
409 
410   m_private_state_control_broadcaster.SetEventName(
411       eBroadcastInternalStateControlStop, "control-stop");
412   m_private_state_control_broadcaster.SetEventName(
413       eBroadcastInternalStateControlPause, "control-pause");
414   m_private_state_control_broadcaster.SetEventName(
415       eBroadcastInternalStateControlResume, "control-resume");
416 
417   m_listener_sp->StartListeningForEvents(
418       this, eBroadcastBitStateChanged | eBroadcastBitInterrupt |
419                 eBroadcastBitSTDOUT | eBroadcastBitSTDERR |
420                 eBroadcastBitProfileData | eBroadcastBitStructuredData);
421 
422   m_private_state_listener_sp->StartListeningForEvents(
423       &m_private_state_broadcaster,
424       eBroadcastBitStateChanged | eBroadcastBitInterrupt);
425 
426   m_private_state_listener_sp->StartListeningForEvents(
427       &m_private_state_control_broadcaster,
428       eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause |
429           eBroadcastInternalStateControlResume);
430   // We need something valid here, even if just the default UnixSignalsSP.
431   assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization");
432 
433   // Allow the platform to override the default cache line size
434   OptionValueSP value_sp =
435       m_collection_sp
436           ->GetPropertyAtIndex(nullptr, true, ePropertyMemCacheLineSize)
437           ->GetValue();
438   uint32_t platform_cache_line_size =
439       target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize();
440   if (!value_sp->OptionWasSet() && platform_cache_line_size != 0)
441     value_sp->SetUInt64Value(platform_cache_line_size);
442 
443   RegisterAssertFrameRecognizer(this);
444 }
445 
446 Process::~Process() {
447   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT));
448   LLDB_LOGF(log, "%p Process::~Process()", static_cast<void *>(this));
449   StopPrivateStateThread();
450 
451   // ThreadList::Clear() will try to acquire this process's mutex, so
452   // explicitly clear the thread list here to ensure that the mutex is not
453   // destroyed before the thread list.
454   m_thread_list.Clear();
455 }
456 
457 const ProcessPropertiesSP &Process::GetGlobalProperties() {
458   // NOTE: intentional leak so we don't crash if global destructor chain gets
459   // called as other threads still use the result of this function
460   static ProcessPropertiesSP *g_settings_sp_ptr =
461       new ProcessPropertiesSP(new ProcessProperties(nullptr));
462   return *g_settings_sp_ptr;
463 }
464 
465 void Process::Finalize() {
466   if (m_finalizing.exchange(true))
467     return;
468 
469   // Destroy this process if needed
470   switch (GetPrivateState()) {
471   case eStateConnected:
472   case eStateAttaching:
473   case eStateLaunching:
474   case eStateStopped:
475   case eStateRunning:
476   case eStateStepping:
477   case eStateCrashed:
478   case eStateSuspended:
479     DestroyImpl(false);
480     break;
481 
482   case eStateInvalid:
483   case eStateUnloaded:
484   case eStateDetached:
485   case eStateExited:
486     break;
487   }
488 
489   // Clear our broadcaster before we proceed with destroying
490   Broadcaster::Clear();
491 
492   // Do any cleanup needed prior to being destructed... Subclasses that
493   // override this method should call this superclass method as well.
494 
495   // We need to destroy the loader before the derived Process class gets
496   // destroyed since it is very likely that undoing the loader will require
497   // access to the real process.
498   m_dynamic_checkers_up.reset();
499   m_abi_sp.reset();
500   m_os_up.reset();
501   m_system_runtime_up.reset();
502   m_dyld_up.reset();
503   m_jit_loaders_up.reset();
504   m_thread_plans.Clear();
505   m_thread_list_real.Destroy();
506   m_thread_list.Destroy();
507   m_extended_thread_list.Destroy();
508   m_queue_list.Clear();
509   m_queue_list_stop_id = 0;
510   std::vector<Notifications> empty_notifications;
511   m_notifications.swap(empty_notifications);
512   m_image_tokens.clear();
513   m_memory_cache.Clear();
514   m_allocated_memory_cache.Clear();
515   {
516     std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
517     m_language_runtimes.clear();
518   }
519   m_instrumentation_runtimes.clear();
520   m_next_event_action_up.reset();
521   // Clear the last natural stop ID since it has a strong reference to this
522   // process
523   m_mod_id.SetStopEventForLastNaturalStopID(EventSP());
524   //#ifdef LLDB_CONFIGURATION_DEBUG
525   //    StreamFile s(stdout, false);
526   //    EventSP event_sp;
527   //    while (m_private_state_listener_sp->GetNextEvent(event_sp))
528   //    {
529   //        event_sp->Dump (&s);
530   //        s.EOL();
531   //    }
532   //#endif
533   // We have to be very careful here as the m_private_state_listener might
534   // contain events that have ProcessSP values in them which can keep this
535   // process around forever. These events need to be cleared out.
536   m_private_state_listener_sp->Clear();
537   m_public_run_lock.TrySetRunning(); // This will do nothing if already locked
538   m_public_run_lock.SetStopped();
539   m_private_run_lock.TrySetRunning(); // This will do nothing if already locked
540   m_private_run_lock.SetStopped();
541   m_structured_data_plugin_map.clear();
542 }
543 
544 void Process::RegisterNotificationCallbacks(const Notifications &callbacks) {
545   m_notifications.push_back(callbacks);
546   if (callbacks.initialize != nullptr)
547     callbacks.initialize(callbacks.baton, this);
548 }
549 
550 bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) {
551   std::vector<Notifications>::iterator pos, end = m_notifications.end();
552   for (pos = m_notifications.begin(); pos != end; ++pos) {
553     if (pos->baton == callbacks.baton &&
554         pos->initialize == callbacks.initialize &&
555         pos->process_state_changed == callbacks.process_state_changed) {
556       m_notifications.erase(pos);
557       return true;
558     }
559   }
560   return false;
561 }
562 
563 void Process::SynchronouslyNotifyStateChanged(StateType state) {
564   std::vector<Notifications>::iterator notification_pos,
565       notification_end = m_notifications.end();
566   for (notification_pos = m_notifications.begin();
567        notification_pos != notification_end; ++notification_pos) {
568     if (notification_pos->process_state_changed)
569       notification_pos->process_state_changed(notification_pos->baton, this,
570                                               state);
571   }
572 }
573 
574 // FIXME: We need to do some work on events before the general Listener sees
575 // them.
576 // For instance if we are continuing from a breakpoint, we need to ensure that
577 // we do the little "insert real insn, step & stop" trick.  But we can't do
578 // that when the event is delivered by the broadcaster - since that is done on
579 // the thread that is waiting for new events, so if we needed more than one
580 // event for our handling, we would stall.  So instead we do it when we fetch
581 // the event off of the queue.
582 //
583 
584 StateType Process::GetNextEvent(EventSP &event_sp) {
585   StateType state = eStateInvalid;
586 
587   if (m_listener_sp->GetEventForBroadcaster(this, event_sp,
588                                             std::chrono::seconds(0)) &&
589       event_sp)
590     state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
591 
592   return state;
593 }
594 
595 void Process::SyncIOHandler(uint32_t iohandler_id,
596                             const Timeout<std::micro> &timeout) {
597   // don't sync (potentially context switch) in case where there is no process
598   // IO
599   if (!m_process_input_reader)
600     return;
601 
602   auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout);
603 
604   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
605   if (Result) {
606     LLDB_LOG(
607         log,
608         "waited from m_iohandler_sync to change from {0}. New value is {1}.",
609         iohandler_id, *Result);
610   } else {
611     LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.",
612              iohandler_id);
613   }
614 }
615 
616 StateType Process::WaitForProcessToStop(const Timeout<std::micro> &timeout,
617                                         EventSP *event_sp_ptr, bool wait_always,
618                                         ListenerSP hijack_listener_sp,
619                                         Stream *stream, bool use_run_lock) {
620   // We can't just wait for a "stopped" event, because the stopped event may
621   // have restarted the target. We have to actually check each event, and in
622   // the case of a stopped event check the restarted flag on the event.
623   if (event_sp_ptr)
624     event_sp_ptr->reset();
625   StateType state = GetState();
626   // If we are exited or detached, we won't ever get back to any other valid
627   // state...
628   if (state == eStateDetached || state == eStateExited)
629     return state;
630 
631   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
632   LLDB_LOG(log, "timeout = {0}", timeout);
633 
634   if (!wait_always && StateIsStoppedState(state, true) &&
635       StateIsStoppedState(GetPrivateState(), true)) {
636     LLDB_LOGF(log,
637               "Process::%s returning without waiting for events; process "
638               "private and public states are already 'stopped'.",
639               __FUNCTION__);
640     // We need to toggle the run lock as this won't get done in
641     // SetPublicState() if the process is hijacked.
642     if (hijack_listener_sp && use_run_lock)
643       m_public_run_lock.SetStopped();
644     return state;
645   }
646 
647   while (state != eStateInvalid) {
648     EventSP event_sp;
649     state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp);
650     if (event_sp_ptr && event_sp)
651       *event_sp_ptr = event_sp;
652 
653     bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr);
654     Process::HandleProcessStateChangedEvent(event_sp, stream,
655                                             pop_process_io_handler);
656 
657     switch (state) {
658     case eStateCrashed:
659     case eStateDetached:
660     case eStateExited:
661     case eStateUnloaded:
662       // We need to toggle the run lock as this won't get done in
663       // SetPublicState() if the process is hijacked.
664       if (hijack_listener_sp && use_run_lock)
665         m_public_run_lock.SetStopped();
666       return state;
667     case eStateStopped:
668       if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get()))
669         continue;
670       else {
671         // We need to toggle the run lock as this won't get done in
672         // SetPublicState() if the process is hijacked.
673         if (hijack_listener_sp && use_run_lock)
674           m_public_run_lock.SetStopped();
675         return state;
676       }
677     default:
678       continue;
679     }
680   }
681   return state;
682 }
683 
684 bool Process::HandleProcessStateChangedEvent(const EventSP &event_sp,
685                                              Stream *stream,
686                                              bool &pop_process_io_handler) {
687   const bool handle_pop = pop_process_io_handler;
688 
689   pop_process_io_handler = false;
690   ProcessSP process_sp =
691       Process::ProcessEventData::GetProcessFromEvent(event_sp.get());
692 
693   if (!process_sp)
694     return false;
695 
696   StateType event_state =
697       Process::ProcessEventData::GetStateFromEvent(event_sp.get());
698   if (event_state == eStateInvalid)
699     return false;
700 
701   switch (event_state) {
702   case eStateInvalid:
703   case eStateUnloaded:
704   case eStateAttaching:
705   case eStateLaunching:
706   case eStateStepping:
707   case eStateDetached:
708     if (stream)
709       stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(),
710                      StateAsCString(event_state));
711     if (event_state == eStateDetached)
712       pop_process_io_handler = true;
713     break;
714 
715   case eStateConnected:
716   case eStateRunning:
717     // Don't be chatty when we run...
718     break;
719 
720   case eStateExited:
721     if (stream)
722       process_sp->GetStatus(*stream);
723     pop_process_io_handler = true;
724     break;
725 
726   case eStateStopped:
727   case eStateCrashed:
728   case eStateSuspended:
729     // Make sure the program hasn't been auto-restarted:
730     if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) {
731       if (stream) {
732         size_t num_reasons =
733             Process::ProcessEventData::GetNumRestartedReasons(event_sp.get());
734         if (num_reasons > 0) {
735           // FIXME: Do we want to report this, or would that just be annoyingly
736           // chatty?
737           if (num_reasons == 1) {
738             const char *reason =
739                 Process::ProcessEventData::GetRestartedReasonAtIndex(
740                     event_sp.get(), 0);
741             stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n",
742                            process_sp->GetID(),
743                            reason ? reason : "<UNKNOWN REASON>");
744           } else {
745             stream->Printf("Process %" PRIu64
746                            " stopped and restarted, reasons:\n",
747                            process_sp->GetID());
748 
749             for (size_t i = 0; i < num_reasons; i++) {
750               const char *reason =
751                   Process::ProcessEventData::GetRestartedReasonAtIndex(
752                       event_sp.get(), i);
753               stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>");
754             }
755           }
756         }
757       }
758     } else {
759       StopInfoSP curr_thread_stop_info_sp;
760       // Lock the thread list so it doesn't change on us, this is the scope for
761       // the locker:
762       {
763         ThreadList &thread_list = process_sp->GetThreadList();
764         std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex());
765 
766         ThreadSP curr_thread(thread_list.GetSelectedThread());
767         ThreadSP thread;
768         StopReason curr_thread_stop_reason = eStopReasonInvalid;
769         if (curr_thread) {
770           curr_thread_stop_reason = curr_thread->GetStopReason();
771           curr_thread_stop_info_sp = curr_thread->GetStopInfo();
772         }
773         if (!curr_thread || !curr_thread->IsValid() ||
774             curr_thread_stop_reason == eStopReasonInvalid ||
775             curr_thread_stop_reason == eStopReasonNone) {
776           // Prefer a thread that has just completed its plan over another
777           // thread as current thread.
778           ThreadSP plan_thread;
779           ThreadSP other_thread;
780 
781           const size_t num_threads = thread_list.GetSize();
782           size_t i;
783           for (i = 0; i < num_threads; ++i) {
784             thread = thread_list.GetThreadAtIndex(i);
785             StopReason thread_stop_reason = thread->GetStopReason();
786             switch (thread_stop_reason) {
787             case eStopReasonInvalid:
788             case eStopReasonNone:
789               break;
790 
791             case eStopReasonSignal: {
792               // Don't select a signal thread if we weren't going to stop at
793               // that signal.  We have to have had another reason for stopping
794               // here, and the user doesn't want to see this thread.
795               uint64_t signo = thread->GetStopInfo()->GetValue();
796               if (process_sp->GetUnixSignals()->GetShouldStop(signo)) {
797                 if (!other_thread)
798                   other_thread = thread;
799               }
800               break;
801             }
802             case eStopReasonTrace:
803             case eStopReasonBreakpoint:
804             case eStopReasonWatchpoint:
805             case eStopReasonException:
806             case eStopReasonExec:
807             case eStopReasonThreadExiting:
808             case eStopReasonInstrumentation:
809               if (!other_thread)
810                 other_thread = thread;
811               break;
812             case eStopReasonPlanComplete:
813               if (!plan_thread)
814                 plan_thread = thread;
815               break;
816             }
817           }
818           if (plan_thread)
819             thread_list.SetSelectedThreadByID(plan_thread->GetID());
820           else if (other_thread)
821             thread_list.SetSelectedThreadByID(other_thread->GetID());
822           else {
823             if (curr_thread && curr_thread->IsValid())
824               thread = curr_thread;
825             else
826               thread = thread_list.GetThreadAtIndex(0);
827 
828             if (thread)
829               thread_list.SetSelectedThreadByID(thread->GetID());
830           }
831         }
832       }
833       // Drop the ThreadList mutex by here, since GetThreadStatus below might
834       // have to run code, e.g. for Data formatters, and if we hold the
835       // ThreadList mutex, then the process is going to have a hard time
836       // restarting the process.
837       if (stream) {
838         Debugger &debugger = process_sp->GetTarget().GetDebugger();
839         if (debugger.GetTargetList().GetSelectedTarget().get() ==
840             &process_sp->GetTarget()) {
841           ThreadSP thread_sp = process_sp->GetThreadList().GetSelectedThread();
842 
843           if (!thread_sp || !thread_sp->IsValid())
844             return false;
845 
846           const bool only_threads_with_stop_reason = true;
847           const uint32_t start_frame = thread_sp->GetSelectedFrameIndex();
848           const uint32_t num_frames = 1;
849           const uint32_t num_frames_with_source = 1;
850           const bool stop_format = true;
851 
852           process_sp->GetStatus(*stream);
853           process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason,
854                                       start_frame, num_frames,
855                                       num_frames_with_source,
856                                       stop_format);
857           if (curr_thread_stop_info_sp) {
858             lldb::addr_t crashing_address;
859             ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference(
860                 curr_thread_stop_info_sp, &crashing_address);
861             if (valobj_sp) {
862               const ValueObject::GetExpressionPathFormat format =
863                   ValueObject::GetExpressionPathFormat::
864                       eGetExpressionPathFormatHonorPointers;
865               stream->PutCString("Likely cause: ");
866               valobj_sp->GetExpressionPath(*stream, format);
867               stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address);
868             }
869           }
870         } else {
871           uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget(
872               process_sp->GetTarget().shared_from_this());
873           if (target_idx != UINT32_MAX)
874             stream->Printf("Target %d: (", target_idx);
875           else
876             stream->Printf("Target <unknown index>: (");
877           process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief);
878           stream->Printf(") stopped.\n");
879         }
880       }
881 
882       // Pop the process IO handler
883       pop_process_io_handler = true;
884     }
885     break;
886   }
887 
888   if (handle_pop && pop_process_io_handler)
889     process_sp->PopProcessIOHandler();
890 
891   return true;
892 }
893 
894 bool Process::HijackProcessEvents(ListenerSP listener_sp) {
895   if (listener_sp) {
896     return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged |
897                                               eBroadcastBitInterrupt);
898   } else
899     return false;
900 }
901 
902 void Process::RestoreProcessEvents() { RestoreBroadcaster(); }
903 
904 StateType Process::GetStateChangedEvents(EventSP &event_sp,
905                                          const Timeout<std::micro> &timeout,
906                                          ListenerSP hijack_listener_sp) {
907   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
908   LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
909 
910   ListenerSP listener_sp = hijack_listener_sp;
911   if (!listener_sp)
912     listener_sp = m_listener_sp;
913 
914   StateType state = eStateInvalid;
915   if (listener_sp->GetEventForBroadcasterWithType(
916           this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp,
917           timeout)) {
918     if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged)
919       state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
920     else
921       LLDB_LOG(log, "got no event or was interrupted.");
922   }
923 
924   LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state);
925   return state;
926 }
927 
928 Event *Process::PeekAtStateChangedEvents() {
929   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
930 
931   LLDB_LOGF(log, "Process::%s...", __FUNCTION__);
932 
933   Event *event_ptr;
934   event_ptr = m_listener_sp->PeekAtNextEventForBroadcasterWithType(
935       this, eBroadcastBitStateChanged);
936   if (log) {
937     if (event_ptr) {
938       LLDB_LOGF(log, "Process::%s (event_ptr) => %s", __FUNCTION__,
939                 StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr)));
940     } else {
941       LLDB_LOGF(log, "Process::%s no events found", __FUNCTION__);
942     }
943   }
944   return event_ptr;
945 }
946 
947 StateType
948 Process::GetStateChangedEventsPrivate(EventSP &event_sp,
949                                       const Timeout<std::micro> &timeout) {
950   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
951   LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
952 
953   StateType state = eStateInvalid;
954   if (m_private_state_listener_sp->GetEventForBroadcasterWithType(
955           &m_private_state_broadcaster,
956           eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp,
957           timeout))
958     if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged)
959       state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
960 
961   LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout,
962            state == eStateInvalid ? "TIMEOUT" : StateAsCString(state));
963   return state;
964 }
965 
966 bool Process::GetEventsPrivate(EventSP &event_sp,
967                                const Timeout<std::micro> &timeout,
968                                bool control_only) {
969   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
970   LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
971 
972   if (control_only)
973     return m_private_state_listener_sp->GetEventForBroadcaster(
974         &m_private_state_control_broadcaster, event_sp, timeout);
975   else
976     return m_private_state_listener_sp->GetEvent(event_sp, timeout);
977 }
978 
979 bool Process::IsRunning() const {
980   return StateIsRunningState(m_public_state.GetValue());
981 }
982 
983 int Process::GetExitStatus() {
984   std::lock_guard<std::mutex> guard(m_exit_status_mutex);
985 
986   if (m_public_state.GetValue() == eStateExited)
987     return m_exit_status;
988   return -1;
989 }
990 
991 const char *Process::GetExitDescription() {
992   std::lock_guard<std::mutex> guard(m_exit_status_mutex);
993 
994   if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty())
995     return m_exit_string.c_str();
996   return nullptr;
997 }
998 
999 bool Process::SetExitStatus(int status, const char *cstr) {
1000   // Use a mutex to protect setting the exit status.
1001   std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1002 
1003   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE |
1004                                                   LIBLLDB_LOG_PROCESS));
1005   LLDB_LOGF(
1006       log, "Process::SetExitStatus (status=%i (0x%8.8x), description=%s%s%s)",
1007       status, status, cstr ? "\"" : "", cstr ? cstr : "NULL", cstr ? "\"" : "");
1008 
1009   // We were already in the exited state
1010   if (m_private_state.GetValue() == eStateExited) {
1011     LLDB_LOGF(log, "Process::SetExitStatus () ignoring exit status because "
1012                    "state was already set to eStateExited");
1013     return false;
1014   }
1015 
1016   m_exit_status = status;
1017   if (cstr)
1018     m_exit_string = cstr;
1019   else
1020     m_exit_string.clear();
1021 
1022   // Clear the last natural stop ID since it has a strong reference to this
1023   // process
1024   m_mod_id.SetStopEventForLastNaturalStopID(EventSP());
1025 
1026   SetPrivateState(eStateExited);
1027 
1028   // Allow subclasses to do some cleanup
1029   DidExit();
1030 
1031   return true;
1032 }
1033 
1034 bool Process::IsAlive() {
1035   switch (m_private_state.GetValue()) {
1036   case eStateConnected:
1037   case eStateAttaching:
1038   case eStateLaunching:
1039   case eStateStopped:
1040   case eStateRunning:
1041   case eStateStepping:
1042   case eStateCrashed:
1043   case eStateSuspended:
1044     return true;
1045   default:
1046     return false;
1047   }
1048 }
1049 
1050 // This static callback can be used to watch for local child processes on the
1051 // current host. The child process exits, the process will be found in the
1052 // global target list (we want to be completely sure that the
1053 // lldb_private::Process doesn't go away before we can deliver the signal.
1054 bool Process::SetProcessExitStatus(
1055     lldb::pid_t pid, bool exited,
1056     int signo,      // Zero for no signal
1057     int exit_status // Exit value of process if signal is zero
1058     ) {
1059   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS));
1060   LLDB_LOGF(log,
1061             "Process::SetProcessExitStatus (pid=%" PRIu64
1062             ", exited=%i, signal=%i, exit_status=%i)\n",
1063             pid, exited, signo, exit_status);
1064 
1065   if (exited) {
1066     TargetSP target_sp(Debugger::FindTargetWithProcessID(pid));
1067     if (target_sp) {
1068       ProcessSP process_sp(target_sp->GetProcessSP());
1069       if (process_sp) {
1070         const char *signal_cstr = nullptr;
1071         if (signo)
1072           signal_cstr = process_sp->GetUnixSignals()->GetSignalAsCString(signo);
1073 
1074         process_sp->SetExitStatus(exit_status, signal_cstr);
1075       }
1076     }
1077     return true;
1078   }
1079   return false;
1080 }
1081 
1082 bool Process::UpdateThreadList(ThreadList &old_thread_list,
1083                                ThreadList &new_thread_list) {
1084   m_thread_plans.ClearThreadCache();
1085   return DoUpdateThreadList(old_thread_list, new_thread_list);
1086 }
1087 
1088 void Process::UpdateThreadListIfNeeded() {
1089   const uint32_t stop_id = GetStopID();
1090   if (m_thread_list.GetSize(false) == 0 ||
1091       stop_id != m_thread_list.GetStopID()) {
1092     bool clear_unused_threads = true;
1093     const StateType state = GetPrivateState();
1094     if (StateIsStoppedState(state, true)) {
1095       std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex());
1096       m_thread_list.SetStopID(stop_id);
1097 
1098       // m_thread_list does have its own mutex, but we need to hold onto the
1099       // mutex between the call to UpdateThreadList(...) and the
1100       // os->UpdateThreadList(...) so it doesn't change on us
1101       ThreadList &old_thread_list = m_thread_list;
1102       ThreadList real_thread_list(this);
1103       ThreadList new_thread_list(this);
1104       // Always update the thread list with the protocol specific thread list,
1105       // but only update if "true" is returned
1106       if (UpdateThreadList(m_thread_list_real, real_thread_list)) {
1107         // Don't call into the OperatingSystem to update the thread list if we
1108         // are shutting down, since that may call back into the SBAPI's,
1109         // requiring the API lock which is already held by whoever is shutting
1110         // us down, causing a deadlock.
1111         OperatingSystem *os = GetOperatingSystem();
1112         if (os && !m_destroy_in_process) {
1113           // Clear any old backing threads where memory threads might have been
1114           // backed by actual threads from the lldb_private::Process subclass
1115           size_t num_old_threads = old_thread_list.GetSize(false);
1116           for (size_t i = 0; i < num_old_threads; ++i)
1117             old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread();
1118           // See if the OS plugin reports all threads.  If it does, then
1119           // it is safe to clear unseen thread's plans here.  Otherwise we
1120           // should preserve them in case they show up again:
1121           clear_unused_threads = GetOSPluginReportsAllThreads();
1122 
1123           // Turn off dynamic types to ensure we don't run any expressions.
1124           // Objective-C can run an expression to determine if a SBValue is a
1125           // dynamic type or not and we need to avoid this. OperatingSystem
1126           // plug-ins can't run expressions that require running code...
1127 
1128           Target &target = GetTarget();
1129           const lldb::DynamicValueType saved_prefer_dynamic =
1130               target.GetPreferDynamicValue();
1131           if (saved_prefer_dynamic != lldb::eNoDynamicValues)
1132             target.SetPreferDynamicValue(lldb::eNoDynamicValues);
1133 
1134           // Now let the OperatingSystem plug-in update the thread list
1135 
1136           os->UpdateThreadList(
1137               old_thread_list, // Old list full of threads created by OS plug-in
1138               real_thread_list, // The actual thread list full of threads
1139                                 // created by each lldb_private::Process
1140                                 // subclass
1141               new_thread_list); // The new thread list that we will show to the
1142                                 // user that gets filled in
1143 
1144           if (saved_prefer_dynamic != lldb::eNoDynamicValues)
1145             target.SetPreferDynamicValue(saved_prefer_dynamic);
1146         } else {
1147           // No OS plug-in, the new thread list is the same as the real thread
1148           // list.
1149           new_thread_list = real_thread_list;
1150         }
1151 
1152         m_thread_list_real.Update(real_thread_list);
1153         m_thread_list.Update(new_thread_list);
1154         m_thread_list.SetStopID(stop_id);
1155 
1156         if (GetLastNaturalStopID() != m_extended_thread_stop_id) {
1157           // Clear any extended threads that we may have accumulated previously
1158           m_extended_thread_list.Clear();
1159           m_extended_thread_stop_id = GetLastNaturalStopID();
1160 
1161           m_queue_list.Clear();
1162           m_queue_list_stop_id = GetLastNaturalStopID();
1163         }
1164       }
1165       // Now update the plan stack map.
1166       // If we do have an OS plugin, any absent real threads in the
1167       // m_thread_list have already been removed from the ThreadPlanStackMap.
1168       // So any remaining threads are OS Plugin threads, and those we want to
1169       // preserve in case they show up again.
1170       m_thread_plans.Update(m_thread_list, clear_unused_threads);
1171     }
1172   }
1173 }
1174 
1175 ThreadPlanStack *Process::FindThreadPlans(lldb::tid_t tid) {
1176   return m_thread_plans.Find(tid);
1177 }
1178 
1179 bool Process::PruneThreadPlansForTID(lldb::tid_t tid) {
1180   return m_thread_plans.PrunePlansForTID(tid);
1181 }
1182 
1183 void Process::PruneThreadPlans() {
1184   m_thread_plans.Update(GetThreadList(), true, false);
1185 }
1186 
1187 bool Process::DumpThreadPlansForTID(Stream &strm, lldb::tid_t tid,
1188                                     lldb::DescriptionLevel desc_level,
1189                                     bool internal, bool condense_trivial,
1190                                     bool skip_unreported_plans) {
1191   return m_thread_plans.DumpPlansForTID(
1192       strm, tid, desc_level, internal, condense_trivial, skip_unreported_plans);
1193 }
1194 void Process::DumpThreadPlans(Stream &strm, lldb::DescriptionLevel desc_level,
1195                               bool internal, bool condense_trivial,
1196                               bool skip_unreported_plans) {
1197   m_thread_plans.DumpPlans(strm, desc_level, internal, condense_trivial,
1198                            skip_unreported_plans);
1199 }
1200 
1201 void Process::UpdateQueueListIfNeeded() {
1202   if (m_system_runtime_up) {
1203     if (m_queue_list.GetSize() == 0 ||
1204         m_queue_list_stop_id != GetLastNaturalStopID()) {
1205       const StateType state = GetPrivateState();
1206       if (StateIsStoppedState(state, true)) {
1207         m_system_runtime_up->PopulateQueueList(m_queue_list);
1208         m_queue_list_stop_id = GetLastNaturalStopID();
1209       }
1210     }
1211   }
1212 }
1213 
1214 ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) {
1215   OperatingSystem *os = GetOperatingSystem();
1216   if (os)
1217     return os->CreateThread(tid, context);
1218   return ThreadSP();
1219 }
1220 
1221 uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) {
1222   return AssignIndexIDToThread(thread_id);
1223 }
1224 
1225 bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) {
1226   return (m_thread_id_to_index_id_map.find(thread_id) !=
1227           m_thread_id_to_index_id_map.end());
1228 }
1229 
1230 uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) {
1231   uint32_t result = 0;
1232   std::map<uint64_t, uint32_t>::iterator iterator =
1233       m_thread_id_to_index_id_map.find(thread_id);
1234   if (iterator == m_thread_id_to_index_id_map.end()) {
1235     result = ++m_thread_index_id;
1236     m_thread_id_to_index_id_map[thread_id] = result;
1237   } else {
1238     result = iterator->second;
1239   }
1240 
1241   return result;
1242 }
1243 
1244 StateType Process::GetState() {
1245   return m_public_state.GetValue();
1246 }
1247 
1248 void Process::SetPublicState(StateType new_state, bool restarted) {
1249   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE |
1250                                                   LIBLLDB_LOG_PROCESS));
1251   LLDB_LOGF(log, "Process::SetPublicState (state = %s, restarted = %i)",
1252             StateAsCString(new_state), restarted);
1253   const StateType old_state = m_public_state.GetValue();
1254   m_public_state.SetValue(new_state);
1255 
1256   // On the transition from Run to Stopped, we unlock the writer end of the run
1257   // lock.  The lock gets locked in Resume, which is the public API to tell the
1258   // program to run.
1259   if (!StateChangedIsExternallyHijacked()) {
1260     if (new_state == eStateDetached) {
1261       LLDB_LOGF(log,
1262                 "Process::SetPublicState (%s) -- unlocking run lock for detach",
1263                 StateAsCString(new_state));
1264       m_public_run_lock.SetStopped();
1265     } else {
1266       const bool old_state_is_stopped = StateIsStoppedState(old_state, false);
1267       const bool new_state_is_stopped = StateIsStoppedState(new_state, false);
1268       if ((old_state_is_stopped != new_state_is_stopped)) {
1269         if (new_state_is_stopped && !restarted) {
1270           LLDB_LOGF(log, "Process::SetPublicState (%s) -- unlocking run lock",
1271                     StateAsCString(new_state));
1272           m_public_run_lock.SetStopped();
1273         }
1274       }
1275     }
1276   }
1277 }
1278 
1279 Status Process::Resume() {
1280   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE |
1281                                                   LIBLLDB_LOG_PROCESS));
1282   LLDB_LOGF(log, "Process::Resume -- locking run lock");
1283   if (!m_public_run_lock.TrySetRunning()) {
1284     Status error("Resume request failed - process still running.");
1285     LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming.");
1286     return error;
1287   }
1288   Status error = PrivateResume();
1289   if (!error.Success()) {
1290     // Undo running state change
1291     m_public_run_lock.SetStopped();
1292   }
1293   return error;
1294 }
1295 
1296 static const char *g_resume_sync_name = "lldb.Process.ResumeSynchronous.hijack";
1297 
1298 Status Process::ResumeSynchronous(Stream *stream) {
1299   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE |
1300                                                   LIBLLDB_LOG_PROCESS));
1301   LLDB_LOGF(log, "Process::ResumeSynchronous -- locking run lock");
1302   if (!m_public_run_lock.TrySetRunning()) {
1303     Status error("Resume request failed - process still running.");
1304     LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming.");
1305     return error;
1306   }
1307 
1308   ListenerSP listener_sp(
1309       Listener::MakeListener(g_resume_sync_name));
1310   HijackProcessEvents(listener_sp);
1311 
1312   Status error = PrivateResume();
1313   if (error.Success()) {
1314     StateType state =
1315         WaitForProcessToStop(llvm::None, nullptr, true, listener_sp, stream);
1316     const bool must_be_alive =
1317         false; // eStateExited is ok, so this must be false
1318     if (!StateIsStoppedState(state, must_be_alive))
1319       error.SetErrorStringWithFormat(
1320           "process not in stopped state after synchronous resume: %s",
1321           StateAsCString(state));
1322   } else {
1323     // Undo running state change
1324     m_public_run_lock.SetStopped();
1325   }
1326 
1327   // Undo the hijacking of process events...
1328   RestoreProcessEvents();
1329 
1330   return error;
1331 }
1332 
1333 bool Process::StateChangedIsExternallyHijacked() {
1334   if (IsHijackedForEvent(eBroadcastBitStateChanged)) {
1335     const char *hijacking_name = GetHijackingListenerName();
1336     if (hijacking_name &&
1337         strcmp(hijacking_name, g_resume_sync_name))
1338       return true;
1339   }
1340   return false;
1341 }
1342 
1343 bool Process::StateChangedIsHijackedForSynchronousResume() {
1344   if (IsHijackedForEvent(eBroadcastBitStateChanged)) {
1345     const char *hijacking_name = GetHijackingListenerName();
1346     if (hijacking_name &&
1347         strcmp(hijacking_name, g_resume_sync_name) == 0)
1348       return true;
1349   }
1350   return false;
1351 }
1352 
1353 StateType Process::GetPrivateState() { return m_private_state.GetValue(); }
1354 
1355 void Process::SetPrivateState(StateType new_state) {
1356   if (m_finalizing)
1357     return;
1358 
1359   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE |
1360                                                   LIBLLDB_LOG_PROCESS));
1361   bool state_changed = false;
1362 
1363   LLDB_LOGF(log, "Process::SetPrivateState (%s)", StateAsCString(new_state));
1364 
1365   std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex());
1366   std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex());
1367 
1368   const StateType old_state = m_private_state.GetValueNoLock();
1369   state_changed = old_state != new_state;
1370 
1371   const bool old_state_is_stopped = StateIsStoppedState(old_state, false);
1372   const bool new_state_is_stopped = StateIsStoppedState(new_state, false);
1373   if (old_state_is_stopped != new_state_is_stopped) {
1374     if (new_state_is_stopped)
1375       m_private_run_lock.SetStopped();
1376     else
1377       m_private_run_lock.SetRunning();
1378   }
1379 
1380   if (state_changed) {
1381     m_private_state.SetValueNoLock(new_state);
1382     EventSP event_sp(
1383         new Event(eBroadcastBitStateChanged,
1384                   new ProcessEventData(shared_from_this(), new_state)));
1385     if (StateIsStoppedState(new_state, false)) {
1386       // Note, this currently assumes that all threads in the list stop when
1387       // the process stops.  In the future we will want to support a debugging
1388       // model where some threads continue to run while others are stopped.
1389       // When that happens we will either need a way for the thread list to
1390       // identify which threads are stopping or create a special thread list
1391       // containing only threads which actually stopped.
1392       //
1393       // The process plugin is responsible for managing the actual behavior of
1394       // the threads and should have stopped any threads that are going to stop
1395       // before we get here.
1396       m_thread_list.DidStop();
1397 
1398       m_mod_id.BumpStopID();
1399       if (!m_mod_id.IsLastResumeForUserExpression())
1400         m_mod_id.SetStopEventForLastNaturalStopID(event_sp);
1401       m_memory_cache.Clear();
1402       LLDB_LOGF(log, "Process::SetPrivateState (%s) stop_id = %u",
1403                 StateAsCString(new_state), m_mod_id.GetStopID());
1404     }
1405 
1406     m_private_state_broadcaster.BroadcastEvent(event_sp);
1407   } else {
1408     LLDB_LOGF(log,
1409               "Process::SetPrivateState (%s) state didn't change. Ignoring...",
1410               StateAsCString(new_state));
1411   }
1412 }
1413 
1414 void Process::SetRunningUserExpression(bool on) {
1415   m_mod_id.SetRunningUserExpression(on);
1416 }
1417 
1418 void Process::SetRunningUtilityFunction(bool on) {
1419   m_mod_id.SetRunningUtilityFunction(on);
1420 }
1421 
1422 addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; }
1423 
1424 const lldb::ABISP &Process::GetABI() {
1425   if (!m_abi_sp)
1426     m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture());
1427   return m_abi_sp;
1428 }
1429 
1430 std::vector<LanguageRuntime *> Process::GetLanguageRuntimes() {
1431   std::vector<LanguageRuntime *> language_runtimes;
1432 
1433   if (m_finalizing)
1434     return language_runtimes;
1435 
1436   std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
1437   // Before we pass off a copy of the language runtimes, we must make sure that
1438   // our collection is properly populated. It's possible that some of the
1439   // language runtimes were not loaded yet, either because nobody requested it
1440   // yet or the proper condition for loading wasn't yet met (e.g. libc++.so
1441   // hadn't been loaded).
1442   for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) {
1443     if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type))
1444       language_runtimes.emplace_back(runtime);
1445   }
1446 
1447   return language_runtimes;
1448 }
1449 
1450 LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language) {
1451   if (m_finalizing)
1452     return nullptr;
1453 
1454   LanguageRuntime *runtime = nullptr;
1455 
1456   std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
1457   LanguageRuntimeCollection::iterator pos;
1458   pos = m_language_runtimes.find(language);
1459   if (pos == m_language_runtimes.end() || !pos->second) {
1460     lldb::LanguageRuntimeSP runtime_sp(
1461         LanguageRuntime::FindPlugin(this, language));
1462 
1463     m_language_runtimes[language] = runtime_sp;
1464     runtime = runtime_sp.get();
1465   } else
1466     runtime = pos->second.get();
1467 
1468   if (runtime)
1469     // It's possible that a language runtime can support multiple LanguageTypes,
1470     // for example, CPPLanguageRuntime will support eLanguageTypeC_plus_plus,
1471     // eLanguageTypeC_plus_plus_03, etc. Because of this, we should get the
1472     // primary language type and make sure that our runtime supports it.
1473     assert(runtime->GetLanguageType() == Language::GetPrimaryLanguage(language));
1474 
1475   return runtime;
1476 }
1477 
1478 bool Process::IsPossibleDynamicValue(ValueObject &in_value) {
1479   if (m_finalizing)
1480     return false;
1481 
1482   if (in_value.IsDynamic())
1483     return false;
1484   LanguageType known_type = in_value.GetObjectRuntimeLanguage();
1485 
1486   if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) {
1487     LanguageRuntime *runtime = GetLanguageRuntime(known_type);
1488     return runtime ? runtime->CouldHaveDynamicValue(in_value) : false;
1489   }
1490 
1491   for (LanguageRuntime *runtime : GetLanguageRuntimes()) {
1492     if (runtime->CouldHaveDynamicValue(in_value))
1493       return true;
1494   }
1495 
1496   return false;
1497 }
1498 
1499 void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) {
1500   m_dynamic_checkers_up.reset(dynamic_checkers);
1501 }
1502 
1503 BreakpointSiteList &Process::GetBreakpointSiteList() {
1504   return m_breakpoint_site_list;
1505 }
1506 
1507 const BreakpointSiteList &Process::GetBreakpointSiteList() const {
1508   return m_breakpoint_site_list;
1509 }
1510 
1511 void Process::DisableAllBreakpointSites() {
1512   m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void {
1513     //        bp_site->SetEnabled(true);
1514     DisableBreakpointSite(bp_site);
1515   });
1516 }
1517 
1518 Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) {
1519   Status error(DisableBreakpointSiteByID(break_id));
1520 
1521   if (error.Success())
1522     m_breakpoint_site_list.Remove(break_id);
1523 
1524   return error;
1525 }
1526 
1527 Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) {
1528   Status error;
1529   BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id);
1530   if (bp_site_sp) {
1531     if (bp_site_sp->IsEnabled())
1532       error = DisableBreakpointSite(bp_site_sp.get());
1533   } else {
1534     error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64,
1535                                    break_id);
1536   }
1537 
1538   return error;
1539 }
1540 
1541 Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) {
1542   Status error;
1543   BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id);
1544   if (bp_site_sp) {
1545     if (!bp_site_sp->IsEnabled())
1546       error = EnableBreakpointSite(bp_site_sp.get());
1547   } else {
1548     error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64,
1549                                    break_id);
1550   }
1551   return error;
1552 }
1553 
1554 lldb::break_id_t
1555 Process::CreateBreakpointSite(const BreakpointLocationSP &owner,
1556                               bool use_hardware) {
1557   addr_t load_addr = LLDB_INVALID_ADDRESS;
1558 
1559   bool show_error = true;
1560   switch (GetState()) {
1561   case eStateInvalid:
1562   case eStateUnloaded:
1563   case eStateConnected:
1564   case eStateAttaching:
1565   case eStateLaunching:
1566   case eStateDetached:
1567   case eStateExited:
1568     show_error = false;
1569     break;
1570 
1571   case eStateStopped:
1572   case eStateRunning:
1573   case eStateStepping:
1574   case eStateCrashed:
1575   case eStateSuspended:
1576     show_error = IsAlive();
1577     break;
1578   }
1579 
1580   // Reset the IsIndirect flag here, in case the location changes from pointing
1581   // to a indirect symbol to a regular symbol.
1582   owner->SetIsIndirect(false);
1583 
1584   if (owner->ShouldResolveIndirectFunctions()) {
1585     Symbol *symbol = owner->GetAddress().CalculateSymbolContextSymbol();
1586     if (symbol && symbol->IsIndirect()) {
1587       Status error;
1588       Address symbol_address = symbol->GetAddress();
1589       load_addr = ResolveIndirectFunction(&symbol_address, error);
1590       if (!error.Success() && show_error) {
1591         GetTarget().GetDebugger().GetErrorStream().Printf(
1592             "warning: failed to resolve indirect function at 0x%" PRIx64
1593             " for breakpoint %i.%i: %s\n",
1594             symbol->GetLoadAddress(&GetTarget()),
1595             owner->GetBreakpoint().GetID(), owner->GetID(),
1596             error.AsCString() ? error.AsCString() : "unknown error");
1597         return LLDB_INVALID_BREAK_ID;
1598       }
1599       Address resolved_address(load_addr);
1600       load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget());
1601       owner->SetIsIndirect(true);
1602     } else
1603       load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget());
1604   } else
1605     load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget());
1606 
1607   if (load_addr != LLDB_INVALID_ADDRESS) {
1608     BreakpointSiteSP bp_site_sp;
1609 
1610     // Look up this breakpoint site.  If it exists, then add this new owner,
1611     // otherwise create a new breakpoint site and add it.
1612 
1613     bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr);
1614 
1615     if (bp_site_sp) {
1616       bp_site_sp->AddOwner(owner);
1617       owner->SetBreakpointSite(bp_site_sp);
1618       return bp_site_sp->GetID();
1619     } else {
1620       bp_site_sp.reset(new BreakpointSite(&m_breakpoint_site_list, owner,
1621                                           load_addr, use_hardware));
1622       if (bp_site_sp) {
1623         Status error = EnableBreakpointSite(bp_site_sp.get());
1624         if (error.Success()) {
1625           owner->SetBreakpointSite(bp_site_sp);
1626           return m_breakpoint_site_list.Add(bp_site_sp);
1627         } else {
1628           if (show_error || use_hardware) {
1629             // Report error for setting breakpoint...
1630             GetTarget().GetDebugger().GetErrorStream().Printf(
1631                 "warning: failed to set breakpoint site at 0x%" PRIx64
1632                 " for breakpoint %i.%i: %s\n",
1633                 load_addr, owner->GetBreakpoint().GetID(), owner->GetID(),
1634                 error.AsCString() ? error.AsCString() : "unknown error");
1635           }
1636         }
1637       }
1638     }
1639   }
1640   // We failed to enable the breakpoint
1641   return LLDB_INVALID_BREAK_ID;
1642 }
1643 
1644 void Process::RemoveOwnerFromBreakpointSite(lldb::user_id_t owner_id,
1645                                             lldb::user_id_t owner_loc_id,
1646                                             BreakpointSiteSP &bp_site_sp) {
1647   uint32_t num_owners = bp_site_sp->RemoveOwner(owner_id, owner_loc_id);
1648   if (num_owners == 0) {
1649     // Don't try to disable the site if we don't have a live process anymore.
1650     if (IsAlive())
1651       DisableBreakpointSite(bp_site_sp.get());
1652     m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress());
1653   }
1654 }
1655 
1656 size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size,
1657                                                   uint8_t *buf) const {
1658   size_t bytes_removed = 0;
1659   BreakpointSiteList bp_sites_in_range;
1660 
1661   if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size,
1662                                          bp_sites_in_range)) {
1663     bp_sites_in_range.ForEach([bp_addr, size,
1664                                buf](BreakpointSite *bp_site) -> void {
1665       if (bp_site->GetType() == BreakpointSite::eSoftware) {
1666         addr_t intersect_addr;
1667         size_t intersect_size;
1668         size_t opcode_offset;
1669         if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr,
1670                                      &intersect_size, &opcode_offset)) {
1671           assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size);
1672           assert(bp_addr < intersect_addr + intersect_size &&
1673                  intersect_addr + intersect_size <= bp_addr + size);
1674           assert(opcode_offset + intersect_size <= bp_site->GetByteSize());
1675           size_t buf_offset = intersect_addr - bp_addr;
1676           ::memcpy(buf + buf_offset,
1677                    bp_site->GetSavedOpcodeBytes() + opcode_offset,
1678                    intersect_size);
1679         }
1680       }
1681     });
1682   }
1683   return bytes_removed;
1684 }
1685 
1686 size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) {
1687   PlatformSP platform_sp(GetTarget().GetPlatform());
1688   if (platform_sp)
1689     return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site);
1690   return 0;
1691 }
1692 
1693 Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) {
1694   Status error;
1695   assert(bp_site != nullptr);
1696   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS));
1697   const addr_t bp_addr = bp_site->GetLoadAddress();
1698   LLDB_LOGF(
1699       log, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64,
1700       bp_site->GetID(), (uint64_t)bp_addr);
1701   if (bp_site->IsEnabled()) {
1702     LLDB_LOGF(
1703         log,
1704         "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1705         " -- already enabled",
1706         bp_site->GetID(), (uint64_t)bp_addr);
1707     return error;
1708   }
1709 
1710   if (bp_addr == LLDB_INVALID_ADDRESS) {
1711     error.SetErrorString("BreakpointSite contains an invalid load address.");
1712     return error;
1713   }
1714   // Ask the lldb::Process subclass to fill in the correct software breakpoint
1715   // trap for the breakpoint site
1716   const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site);
1717 
1718   if (bp_opcode_size == 0) {
1719     error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() "
1720                                    "returned zero, unable to get breakpoint "
1721                                    "trap for address 0x%" PRIx64,
1722                                    bp_addr);
1723   } else {
1724     const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes();
1725 
1726     if (bp_opcode_bytes == nullptr) {
1727       error.SetErrorString(
1728           "BreakpointSite doesn't contain a valid breakpoint trap opcode.");
1729       return error;
1730     }
1731 
1732     // Save the original opcode by reading it
1733     if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size,
1734                      error) == bp_opcode_size) {
1735       // Write a software breakpoint in place of the original opcode
1736       if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) ==
1737           bp_opcode_size) {
1738         uint8_t verify_bp_opcode_bytes[64];
1739         if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size,
1740                          error) == bp_opcode_size) {
1741           if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes,
1742                        bp_opcode_size) == 0) {
1743             bp_site->SetEnabled(true);
1744             bp_site->SetType(BreakpointSite::eSoftware);
1745             LLDB_LOGF(log,
1746                       "Process::EnableSoftwareBreakpoint (site_id = %d) "
1747                       "addr = 0x%" PRIx64 " -- SUCCESS",
1748                       bp_site->GetID(), (uint64_t)bp_addr);
1749           } else
1750             error.SetErrorString(
1751                 "failed to verify the breakpoint trap in memory.");
1752         } else
1753           error.SetErrorString(
1754               "Unable to read memory to verify breakpoint trap.");
1755       } else
1756         error.SetErrorString("Unable to write breakpoint trap to memory.");
1757     } else
1758       error.SetErrorString("Unable to read memory at breakpoint address.");
1759   }
1760   if (log && error.Fail())
1761     LLDB_LOGF(
1762         log,
1763         "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1764         " -- FAILED: %s",
1765         bp_site->GetID(), (uint64_t)bp_addr, error.AsCString());
1766   return error;
1767 }
1768 
1769 Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) {
1770   Status error;
1771   assert(bp_site != nullptr);
1772   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS));
1773   addr_t bp_addr = bp_site->GetLoadAddress();
1774   lldb::user_id_t breakID = bp_site->GetID();
1775   LLDB_LOGF(log,
1776             "Process::DisableSoftwareBreakpoint (breakID = %" PRIu64
1777             ") addr = 0x%" PRIx64,
1778             breakID, (uint64_t)bp_addr);
1779 
1780   if (bp_site->IsHardware()) {
1781     error.SetErrorString("Breakpoint site is a hardware breakpoint.");
1782   } else if (bp_site->IsEnabled()) {
1783     const size_t break_op_size = bp_site->GetByteSize();
1784     const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes();
1785     if (break_op_size > 0) {
1786       // Clear a software breakpoint instruction
1787       uint8_t curr_break_op[8];
1788       assert(break_op_size <= sizeof(curr_break_op));
1789       bool break_op_found = false;
1790 
1791       // Read the breakpoint opcode
1792       if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) ==
1793           break_op_size) {
1794         bool verify = false;
1795         // Make sure the breakpoint opcode exists at this address
1796         if (::memcmp(curr_break_op, break_op, break_op_size) == 0) {
1797           break_op_found = true;
1798           // We found a valid breakpoint opcode at this address, now restore
1799           // the saved opcode.
1800           if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(),
1801                             break_op_size, error) == break_op_size) {
1802             verify = true;
1803           } else
1804             error.SetErrorString(
1805                 "Memory write failed when restoring original opcode.");
1806         } else {
1807           error.SetErrorString(
1808               "Original breakpoint trap is no longer in memory.");
1809           // Set verify to true and so we can check if the original opcode has
1810           // already been restored
1811           verify = true;
1812         }
1813 
1814         if (verify) {
1815           uint8_t verify_opcode[8];
1816           assert(break_op_size < sizeof(verify_opcode));
1817           // Verify that our original opcode made it back to the inferior
1818           if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) ==
1819               break_op_size) {
1820             // compare the memory we just read with the original opcode
1821             if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode,
1822                          break_op_size) == 0) {
1823               // SUCCESS
1824               bp_site->SetEnabled(false);
1825               LLDB_LOGF(log,
1826                         "Process::DisableSoftwareBreakpoint (site_id = %d) "
1827                         "addr = 0x%" PRIx64 " -- SUCCESS",
1828                         bp_site->GetID(), (uint64_t)bp_addr);
1829               return error;
1830             } else {
1831               if (break_op_found)
1832                 error.SetErrorString("Failed to restore original opcode.");
1833             }
1834           } else
1835             error.SetErrorString("Failed to read memory to verify that "
1836                                  "breakpoint trap was restored.");
1837         }
1838       } else
1839         error.SetErrorString(
1840             "Unable to read memory that should contain the breakpoint trap.");
1841     }
1842   } else {
1843     LLDB_LOGF(
1844         log,
1845         "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1846         " -- already disabled",
1847         bp_site->GetID(), (uint64_t)bp_addr);
1848     return error;
1849   }
1850 
1851   LLDB_LOGF(
1852       log,
1853       "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1854       " -- FAILED: %s",
1855       bp_site->GetID(), (uint64_t)bp_addr, error.AsCString());
1856   return error;
1857 }
1858 
1859 // Uncomment to verify memory caching works after making changes to caching
1860 // code
1861 //#define VERIFY_MEMORY_READS
1862 
1863 size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) {
1864   error.Clear();
1865   if (!GetDisableMemoryCache()) {
1866 #if defined(VERIFY_MEMORY_READS)
1867     // Memory caching is enabled, with debug verification
1868 
1869     if (buf && size) {
1870       // Uncomment the line below to make sure memory caching is working.
1871       // I ran this through the test suite and got no assertions, so I am
1872       // pretty confident this is working well. If any changes are made to
1873       // memory caching, uncomment the line below and test your changes!
1874 
1875       // Verify all memory reads by using the cache first, then redundantly
1876       // reading the same memory from the inferior and comparing to make sure
1877       // everything is exactly the same.
1878       std::string verify_buf(size, '\0');
1879       assert(verify_buf.size() == size);
1880       const size_t cache_bytes_read =
1881           m_memory_cache.Read(this, addr, buf, size, error);
1882       Status verify_error;
1883       const size_t verify_bytes_read =
1884           ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()),
1885                                  verify_buf.size(), verify_error);
1886       assert(cache_bytes_read == verify_bytes_read);
1887       assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0);
1888       assert(verify_error.Success() == error.Success());
1889       return cache_bytes_read;
1890     }
1891     return 0;
1892 #else  // !defined(VERIFY_MEMORY_READS)
1893     // Memory caching is enabled, without debug verification
1894 
1895     return m_memory_cache.Read(addr, buf, size, error);
1896 #endif // defined (VERIFY_MEMORY_READS)
1897   } else {
1898     // Memory caching is disabled
1899 
1900     return ReadMemoryFromInferior(addr, buf, size, error);
1901   }
1902 }
1903 
1904 size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str,
1905                                       Status &error) {
1906   char buf[256];
1907   out_str.clear();
1908   addr_t curr_addr = addr;
1909   while (true) {
1910     size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error);
1911     if (length == 0)
1912       break;
1913     out_str.append(buf, length);
1914     // If we got "length - 1" bytes, we didn't get the whole C string, we need
1915     // to read some more characters
1916     if (length == sizeof(buf) - 1)
1917       curr_addr += length;
1918     else
1919       break;
1920   }
1921   return out_str.size();
1922 }
1923 
1924 size_t Process::ReadStringFromMemory(addr_t addr, char *dst, size_t max_bytes,
1925                                      Status &error, size_t type_width) {
1926   size_t total_bytes_read = 0;
1927   if (dst && max_bytes && type_width && max_bytes >= type_width) {
1928     // Ensure a null terminator independent of the number of bytes that is
1929     // read.
1930     memset(dst, 0, max_bytes);
1931     size_t bytes_left = max_bytes - type_width;
1932 
1933     const char terminator[4] = {'\0', '\0', '\0', '\0'};
1934     assert(sizeof(terminator) >= type_width && "Attempting to validate a "
1935                                                "string with more than 4 bytes "
1936                                                "per character!");
1937 
1938     addr_t curr_addr = addr;
1939     const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize();
1940     char *curr_dst = dst;
1941 
1942     error.Clear();
1943     while (bytes_left > 0 && error.Success()) {
1944       addr_t cache_line_bytes_left =
1945           cache_line_size - (curr_addr % cache_line_size);
1946       addr_t bytes_to_read =
1947           std::min<addr_t>(bytes_left, cache_line_bytes_left);
1948       size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error);
1949 
1950       if (bytes_read == 0)
1951         break;
1952 
1953       // Search for a null terminator of correct size and alignment in
1954       // bytes_read
1955       size_t aligned_start = total_bytes_read - total_bytes_read % type_width;
1956       for (size_t i = aligned_start;
1957            i + type_width <= total_bytes_read + bytes_read; i += type_width)
1958         if (::memcmp(&dst[i], terminator, type_width) == 0) {
1959           error.Clear();
1960           return i;
1961         }
1962 
1963       total_bytes_read += bytes_read;
1964       curr_dst += bytes_read;
1965       curr_addr += bytes_read;
1966       bytes_left -= bytes_read;
1967     }
1968   } else {
1969     if (max_bytes)
1970       error.SetErrorString("invalid arguments");
1971   }
1972   return total_bytes_read;
1973 }
1974 
1975 // Deprecated in favor of ReadStringFromMemory which has wchar support and
1976 // correct code to find null terminators.
1977 size_t Process::ReadCStringFromMemory(addr_t addr, char *dst,
1978                                       size_t dst_max_len,
1979                                       Status &result_error) {
1980   size_t total_cstr_len = 0;
1981   if (dst && dst_max_len) {
1982     result_error.Clear();
1983     // NULL out everything just to be safe
1984     memset(dst, 0, dst_max_len);
1985     Status error;
1986     addr_t curr_addr = addr;
1987     const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize();
1988     size_t bytes_left = dst_max_len - 1;
1989     char *curr_dst = dst;
1990 
1991     while (bytes_left > 0) {
1992       addr_t cache_line_bytes_left =
1993           cache_line_size - (curr_addr % cache_line_size);
1994       addr_t bytes_to_read =
1995           std::min<addr_t>(bytes_left, cache_line_bytes_left);
1996       size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error);
1997 
1998       if (bytes_read == 0) {
1999         result_error = error;
2000         dst[total_cstr_len] = '\0';
2001         break;
2002       }
2003       const size_t len = strlen(curr_dst);
2004 
2005       total_cstr_len += len;
2006 
2007       if (len < bytes_to_read)
2008         break;
2009 
2010       curr_dst += bytes_read;
2011       curr_addr += bytes_read;
2012       bytes_left -= bytes_read;
2013     }
2014   } else {
2015     if (dst == nullptr)
2016       result_error.SetErrorString("invalid arguments");
2017     else
2018       result_error.Clear();
2019   }
2020   return total_cstr_len;
2021 }
2022 
2023 size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size,
2024                                        Status &error) {
2025   if (buf == nullptr || size == 0)
2026     return 0;
2027 
2028   size_t bytes_read = 0;
2029   uint8_t *bytes = (uint8_t *)buf;
2030 
2031   while (bytes_read < size) {
2032     const size_t curr_size = size - bytes_read;
2033     const size_t curr_bytes_read =
2034         DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error);
2035     bytes_read += curr_bytes_read;
2036     if (curr_bytes_read == curr_size || curr_bytes_read == 0)
2037       break;
2038   }
2039 
2040   // Replace any software breakpoint opcodes that fall into this range back
2041   // into "buf" before we return
2042   if (bytes_read > 0)
2043     RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf);
2044   return bytes_read;
2045 }
2046 
2047 uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr,
2048                                                 size_t integer_byte_size,
2049                                                 uint64_t fail_value,
2050                                                 Status &error) {
2051   Scalar scalar;
2052   if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar,
2053                                   error))
2054     return scalar.ULongLong(fail_value);
2055   return fail_value;
2056 }
2057 
2058 int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr,
2059                                              size_t integer_byte_size,
2060                                              int64_t fail_value,
2061                                              Status &error) {
2062   Scalar scalar;
2063   if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar,
2064                                   error))
2065     return scalar.SLongLong(fail_value);
2066   return fail_value;
2067 }
2068 
2069 addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) {
2070   Scalar scalar;
2071   if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar,
2072                                   error))
2073     return scalar.ULongLong(LLDB_INVALID_ADDRESS);
2074   return LLDB_INVALID_ADDRESS;
2075 }
2076 
2077 bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value,
2078                                    Status &error) {
2079   Scalar scalar;
2080   const uint32_t addr_byte_size = GetAddressByteSize();
2081   if (addr_byte_size <= 4)
2082     scalar = (uint32_t)ptr_value;
2083   else
2084     scalar = ptr_value;
2085   return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) ==
2086          addr_byte_size;
2087 }
2088 
2089 size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size,
2090                                    Status &error) {
2091   size_t bytes_written = 0;
2092   const uint8_t *bytes = (const uint8_t *)buf;
2093 
2094   while (bytes_written < size) {
2095     const size_t curr_size = size - bytes_written;
2096     const size_t curr_bytes_written = DoWriteMemory(
2097         addr + bytes_written, bytes + bytes_written, curr_size, error);
2098     bytes_written += curr_bytes_written;
2099     if (curr_bytes_written == curr_size || curr_bytes_written == 0)
2100       break;
2101   }
2102   return bytes_written;
2103 }
2104 
2105 size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size,
2106                             Status &error) {
2107 #if defined(ENABLE_MEMORY_CACHING)
2108   m_memory_cache.Flush(addr, size);
2109 #endif
2110 
2111   if (buf == nullptr || size == 0)
2112     return 0;
2113 
2114   m_mod_id.BumpMemoryID();
2115 
2116   // We need to write any data that would go where any current software traps
2117   // (enabled software breakpoints) any software traps (breakpoints) that we
2118   // may have placed in our tasks memory.
2119 
2120   BreakpointSiteList bp_sites_in_range;
2121   if (!m_breakpoint_site_list.FindInRange(addr, addr + size, bp_sites_in_range))
2122     return WriteMemoryPrivate(addr, buf, size, error);
2123 
2124   // No breakpoint sites overlap
2125   if (bp_sites_in_range.IsEmpty())
2126     return WriteMemoryPrivate(addr, buf, size, error);
2127 
2128   const uint8_t *ubuf = (const uint8_t *)buf;
2129   uint64_t bytes_written = 0;
2130 
2131   bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf,
2132                              &error](BreakpointSite *bp) -> void {
2133     if (error.Fail())
2134       return;
2135 
2136     if (bp->GetType() != BreakpointSite::eSoftware)
2137       return;
2138 
2139     addr_t intersect_addr;
2140     size_t intersect_size;
2141     size_t opcode_offset;
2142     const bool intersects = bp->IntersectsRange(
2143         addr, size, &intersect_addr, &intersect_size, &opcode_offset);
2144     UNUSED_IF_ASSERT_DISABLED(intersects);
2145     assert(intersects);
2146     assert(addr <= intersect_addr && intersect_addr < addr + size);
2147     assert(addr < intersect_addr + intersect_size &&
2148            intersect_addr + intersect_size <= addr + size);
2149     assert(opcode_offset + intersect_size <= bp->GetByteSize());
2150 
2151     // Check for bytes before this breakpoint
2152     const addr_t curr_addr = addr + bytes_written;
2153     if (intersect_addr > curr_addr) {
2154       // There are some bytes before this breakpoint that we need to just
2155       // write to memory
2156       size_t curr_size = intersect_addr - curr_addr;
2157       size_t curr_bytes_written =
2158           WriteMemoryPrivate(curr_addr, ubuf + bytes_written, curr_size, error);
2159       bytes_written += curr_bytes_written;
2160       if (curr_bytes_written != curr_size) {
2161         // We weren't able to write all of the requested bytes, we are
2162         // done looping and will return the number of bytes that we have
2163         // written so far.
2164         if (error.Success())
2165           error.SetErrorToGenericError();
2166       }
2167     }
2168     // Now write any bytes that would cover up any software breakpoints
2169     // directly into the breakpoint opcode buffer
2170     ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written,
2171              intersect_size);
2172     bytes_written += intersect_size;
2173   });
2174 
2175   // Write any remaining bytes after the last breakpoint if we have any left
2176   if (bytes_written < size)
2177     bytes_written +=
2178         WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written,
2179                            size - bytes_written, error);
2180 
2181   return bytes_written;
2182 }
2183 
2184 size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar,
2185                                     size_t byte_size, Status &error) {
2186   if (byte_size == UINT32_MAX)
2187     byte_size = scalar.GetByteSize();
2188   if (byte_size > 0) {
2189     uint8_t buf[32];
2190     const size_t mem_size =
2191         scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error);
2192     if (mem_size > 0)
2193       return WriteMemory(addr, buf, mem_size, error);
2194     else
2195       error.SetErrorString("failed to get scalar as memory data");
2196   } else {
2197     error.SetErrorString("invalid scalar value");
2198   }
2199   return 0;
2200 }
2201 
2202 size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size,
2203                                             bool is_signed, Scalar &scalar,
2204                                             Status &error) {
2205   uint64_t uval = 0;
2206   if (byte_size == 0) {
2207     error.SetErrorString("byte size is zero");
2208   } else if (byte_size & (byte_size - 1)) {
2209     error.SetErrorStringWithFormat("byte size %u is not a power of 2",
2210                                    byte_size);
2211   } else if (byte_size <= sizeof(uval)) {
2212     const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error);
2213     if (bytes_read == byte_size) {
2214       DataExtractor data(&uval, sizeof(uval), GetByteOrder(),
2215                          GetAddressByteSize());
2216       lldb::offset_t offset = 0;
2217       if (byte_size <= 4)
2218         scalar = data.GetMaxU32(&offset, byte_size);
2219       else
2220         scalar = data.GetMaxU64(&offset, byte_size);
2221       if (is_signed)
2222         scalar.SignExtend(byte_size * 8);
2223       return bytes_read;
2224     }
2225   } else {
2226     error.SetErrorStringWithFormat(
2227         "byte size of %u is too large for integer scalar type", byte_size);
2228   }
2229   return 0;
2230 }
2231 
2232 Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) {
2233   Status error;
2234   for (const auto &Entry : entries) {
2235     WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(),
2236                 error);
2237     if (!error.Success())
2238       break;
2239   }
2240   return error;
2241 }
2242 
2243 #define USE_ALLOCATE_MEMORY_CACHE 1
2244 addr_t Process::AllocateMemory(size_t size, uint32_t permissions,
2245                                Status &error) {
2246   if (GetPrivateState() != eStateStopped) {
2247     error.SetErrorToGenericError();
2248     return LLDB_INVALID_ADDRESS;
2249   }
2250 
2251 #if defined(USE_ALLOCATE_MEMORY_CACHE)
2252   return m_allocated_memory_cache.AllocateMemory(size, permissions, error);
2253 #else
2254   addr_t allocated_addr = DoAllocateMemory(size, permissions, error);
2255   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2256   LLDB_LOGF(log,
2257             "Process::AllocateMemory(size=%" PRIu64
2258             ", permissions=%s) => 0x%16.16" PRIx64
2259             " (m_stop_id = %u m_memory_id = %u)",
2260             (uint64_t)size, GetPermissionsAsCString(permissions),
2261             (uint64_t)allocated_addr, m_mod_id.GetStopID(),
2262             m_mod_id.GetMemoryID());
2263   return allocated_addr;
2264 #endif
2265 }
2266 
2267 addr_t Process::CallocateMemory(size_t size, uint32_t permissions,
2268                                 Status &error) {
2269   addr_t return_addr = AllocateMemory(size, permissions, error);
2270   if (error.Success()) {
2271     std::string buffer(size, 0);
2272     WriteMemory(return_addr, buffer.c_str(), size, error);
2273   }
2274   return return_addr;
2275 }
2276 
2277 bool Process::CanJIT() {
2278   if (m_can_jit == eCanJITDontKnow) {
2279     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2280     Status err;
2281 
2282     uint64_t allocated_memory = AllocateMemory(
2283         8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable,
2284         err);
2285 
2286     if (err.Success()) {
2287       m_can_jit = eCanJITYes;
2288       LLDB_LOGF(log,
2289                 "Process::%s pid %" PRIu64
2290                 " allocation test passed, CanJIT () is true",
2291                 __FUNCTION__, GetID());
2292     } else {
2293       m_can_jit = eCanJITNo;
2294       LLDB_LOGF(log,
2295                 "Process::%s pid %" PRIu64
2296                 " allocation test failed, CanJIT () is false: %s",
2297                 __FUNCTION__, GetID(), err.AsCString());
2298     }
2299 
2300     DeallocateMemory(allocated_memory);
2301   }
2302 
2303   return m_can_jit == eCanJITYes;
2304 }
2305 
2306 void Process::SetCanJIT(bool can_jit) {
2307   m_can_jit = (can_jit ? eCanJITYes : eCanJITNo);
2308 }
2309 
2310 void Process::SetCanRunCode(bool can_run_code) {
2311   SetCanJIT(can_run_code);
2312   m_can_interpret_function_calls = can_run_code;
2313 }
2314 
2315 Status Process::DeallocateMemory(addr_t ptr) {
2316   Status error;
2317 #if defined(USE_ALLOCATE_MEMORY_CACHE)
2318   if (!m_allocated_memory_cache.DeallocateMemory(ptr)) {
2319     error.SetErrorStringWithFormat(
2320         "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr);
2321   }
2322 #else
2323   error = DoDeallocateMemory(ptr);
2324 
2325   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2326   LLDB_LOGF(log,
2327             "Process::DeallocateMemory(addr=0x%16.16" PRIx64
2328             ") => err = %s (m_stop_id = %u, m_memory_id = %u)",
2329             ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(),
2330             m_mod_id.GetMemoryID());
2331 #endif
2332   return error;
2333 }
2334 
2335 ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec,
2336                                        lldb::addr_t header_addr,
2337                                        size_t size_to_read) {
2338   Log *log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST);
2339   if (log) {
2340     LLDB_LOGF(log,
2341               "Process::ReadModuleFromMemory reading %s binary from memory",
2342               file_spec.GetPath().c_str());
2343   }
2344   ModuleSP module_sp(new Module(file_spec, ArchSpec()));
2345   if (module_sp) {
2346     Status error;
2347     ObjectFile *objfile = module_sp->GetMemoryObjectFile(
2348         shared_from_this(), header_addr, error, size_to_read);
2349     if (objfile)
2350       return module_sp;
2351   }
2352   return ModuleSP();
2353 }
2354 
2355 bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr,
2356                                         uint32_t &permissions) {
2357   MemoryRegionInfo range_info;
2358   permissions = 0;
2359   Status error(GetMemoryRegionInfo(load_addr, range_info));
2360   if (!error.Success())
2361     return false;
2362   if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow ||
2363       range_info.GetWritable() == MemoryRegionInfo::eDontKnow ||
2364       range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) {
2365     return false;
2366   }
2367 
2368   if (range_info.GetReadable() == MemoryRegionInfo::eYes)
2369     permissions |= lldb::ePermissionsReadable;
2370 
2371   if (range_info.GetWritable() == MemoryRegionInfo::eYes)
2372     permissions |= lldb::ePermissionsWritable;
2373 
2374   if (range_info.GetExecutable() == MemoryRegionInfo::eYes)
2375     permissions |= lldb::ePermissionsExecutable;
2376 
2377   return true;
2378 }
2379 
2380 Status Process::EnableWatchpoint(Watchpoint *watchpoint, bool notify) {
2381   Status error;
2382   error.SetErrorString("watchpoints are not supported");
2383   return error;
2384 }
2385 
2386 Status Process::DisableWatchpoint(Watchpoint *watchpoint, bool notify) {
2387   Status error;
2388   error.SetErrorString("watchpoints are not supported");
2389   return error;
2390 }
2391 
2392 StateType
2393 Process::WaitForProcessStopPrivate(EventSP &event_sp,
2394                                    const Timeout<std::micro> &timeout) {
2395   StateType state;
2396 
2397   while (true) {
2398     event_sp.reset();
2399     state = GetStateChangedEventsPrivate(event_sp, timeout);
2400 
2401     if (StateIsStoppedState(state, false))
2402       break;
2403 
2404     // If state is invalid, then we timed out
2405     if (state == eStateInvalid)
2406       break;
2407 
2408     if (event_sp)
2409       HandlePrivateEvent(event_sp);
2410   }
2411   return state;
2412 }
2413 
2414 void Process::LoadOperatingSystemPlugin(bool flush) {
2415   if (flush)
2416     m_thread_list.Clear();
2417   m_os_up.reset(OperatingSystem::FindPlugin(this, nullptr));
2418   if (flush)
2419     Flush();
2420 }
2421 
2422 Status Process::Launch(ProcessLaunchInfo &launch_info) {
2423   Status error;
2424   m_abi_sp.reset();
2425   m_dyld_up.reset();
2426   m_jit_loaders_up.reset();
2427   m_system_runtime_up.reset();
2428   m_os_up.reset();
2429   m_process_input_reader.reset();
2430 
2431   Module *exe_module = GetTarget().GetExecutableModulePointer();
2432   if (!exe_module) {
2433     error.SetErrorString("executable module does not exist");
2434     return error;
2435   }
2436 
2437   char local_exec_file_path[PATH_MAX];
2438   char platform_exec_file_path[PATH_MAX];
2439   exe_module->GetFileSpec().GetPath(local_exec_file_path,
2440                                     sizeof(local_exec_file_path));
2441   exe_module->GetPlatformFileSpec().GetPath(platform_exec_file_path,
2442                                             sizeof(platform_exec_file_path));
2443   if (FileSystem::Instance().Exists(exe_module->GetFileSpec())) {
2444     // Install anything that might need to be installed prior to launching.
2445     // For host systems, this will do nothing, but if we are connected to a
2446     // remote platform it will install any needed binaries
2447     error = GetTarget().Install(&launch_info);
2448     if (error.Fail())
2449       return error;
2450 
2451     if (PrivateStateThreadIsValid())
2452       PausePrivateStateThread();
2453 
2454     error = WillLaunch(exe_module);
2455     if (error.Success()) {
2456       const bool restarted = false;
2457       SetPublicState(eStateLaunching, restarted);
2458       m_should_detach = false;
2459 
2460       if (m_public_run_lock.TrySetRunning()) {
2461         // Now launch using these arguments.
2462         error = DoLaunch(exe_module, launch_info);
2463       } else {
2464         // This shouldn't happen
2465         error.SetErrorString("failed to acquire process run lock");
2466       }
2467 
2468       if (error.Fail()) {
2469         if (GetID() != LLDB_INVALID_PROCESS_ID) {
2470           SetID(LLDB_INVALID_PROCESS_ID);
2471           const char *error_string = error.AsCString();
2472           if (error_string == nullptr)
2473             error_string = "launch failed";
2474           SetExitStatus(-1, error_string);
2475         }
2476       } else {
2477         EventSP event_sp;
2478 
2479         // Now wait for the process to launch and return control to us, and then
2480         // call DidLaunch:
2481         StateType state = WaitForProcessStopPrivate(event_sp, seconds(10));
2482 
2483         if (state == eStateInvalid || !event_sp) {
2484           // We were able to launch the process, but we failed to catch the
2485           // initial stop.
2486           error.SetErrorString("failed to catch stop after launch");
2487           SetExitStatus(0, "failed to catch stop after launch");
2488           Destroy(false);
2489         } else if (state == eStateStopped || state == eStateCrashed) {
2490           DidLaunch();
2491 
2492           DynamicLoader *dyld = GetDynamicLoader();
2493           if (dyld)
2494             dyld->DidLaunch();
2495 
2496           GetJITLoaders().DidLaunch();
2497 
2498           SystemRuntime *system_runtime = GetSystemRuntime();
2499           if (system_runtime)
2500             system_runtime->DidLaunch();
2501 
2502           if (!m_os_up)
2503             LoadOperatingSystemPlugin(false);
2504 
2505           // We successfully launched the process and stopped, now it the
2506           // right time to set up signal filters before resuming.
2507           UpdateAutomaticSignalFiltering();
2508 
2509           // Note, the stop event was consumed above, but not handled. This
2510           // was done to give DidLaunch a chance to run. The target is either
2511           // stopped or crashed. Directly set the state.  This is done to
2512           // prevent a stop message with a bunch of spurious output on thread
2513           // status, as well as not pop a ProcessIOHandler.
2514           SetPublicState(state, false);
2515 
2516           if (PrivateStateThreadIsValid())
2517             ResumePrivateStateThread();
2518           else
2519             StartPrivateStateThread();
2520 
2521           // Target was stopped at entry as was intended. Need to notify the
2522           // listeners about it.
2523           if (state == eStateStopped &&
2524               launch_info.GetFlags().Test(eLaunchFlagStopAtEntry))
2525             HandlePrivateEvent(event_sp);
2526         } else if (state == eStateExited) {
2527           // We exited while trying to launch somehow.  Don't call DidLaunch
2528           // as that's not likely to work, and return an invalid pid.
2529           HandlePrivateEvent(event_sp);
2530         }
2531       }
2532     }
2533   } else {
2534     error.SetErrorStringWithFormat("file doesn't exist: '%s'",
2535                                    local_exec_file_path);
2536   }
2537 
2538   return error;
2539 }
2540 
2541 Status Process::LoadCore() {
2542   Status error = DoLoadCore();
2543   if (error.Success()) {
2544     ListenerSP listener_sp(
2545         Listener::MakeListener("lldb.process.load_core_listener"));
2546     HijackProcessEvents(listener_sp);
2547 
2548     if (PrivateStateThreadIsValid())
2549       ResumePrivateStateThread();
2550     else
2551       StartPrivateStateThread();
2552 
2553     DynamicLoader *dyld = GetDynamicLoader();
2554     if (dyld)
2555       dyld->DidAttach();
2556 
2557     GetJITLoaders().DidAttach();
2558 
2559     SystemRuntime *system_runtime = GetSystemRuntime();
2560     if (system_runtime)
2561       system_runtime->DidAttach();
2562 
2563     if (!m_os_up)
2564       LoadOperatingSystemPlugin(false);
2565 
2566     // We successfully loaded a core file, now pretend we stopped so we can
2567     // show all of the threads in the core file and explore the crashed state.
2568     SetPrivateState(eStateStopped);
2569 
2570     // Wait for a stopped event since we just posted one above...
2571     lldb::EventSP event_sp;
2572     StateType state =
2573         WaitForProcessToStop(llvm::None, &event_sp, true, listener_sp);
2574 
2575     if (!StateIsStoppedState(state, false)) {
2576       Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2577       LLDB_LOGF(log, "Process::Halt() failed to stop, state is: %s",
2578                 StateAsCString(state));
2579       error.SetErrorString(
2580           "Did not get stopped event after loading the core file.");
2581     }
2582     RestoreProcessEvents();
2583   }
2584   return error;
2585 }
2586 
2587 DynamicLoader *Process::GetDynamicLoader() {
2588   if (!m_dyld_up)
2589     m_dyld_up.reset(DynamicLoader::FindPlugin(this, nullptr));
2590   return m_dyld_up.get();
2591 }
2592 
2593 DataExtractor Process::GetAuxvData() { return DataExtractor(); }
2594 
2595 JITLoaderList &Process::GetJITLoaders() {
2596   if (!m_jit_loaders_up) {
2597     m_jit_loaders_up = std::make_unique<JITLoaderList>();
2598     JITLoader::LoadPlugins(this, *m_jit_loaders_up);
2599   }
2600   return *m_jit_loaders_up;
2601 }
2602 
2603 SystemRuntime *Process::GetSystemRuntime() {
2604   if (!m_system_runtime_up)
2605     m_system_runtime_up.reset(SystemRuntime::FindPlugin(this));
2606   return m_system_runtime_up.get();
2607 }
2608 
2609 Process::AttachCompletionHandler::AttachCompletionHandler(Process *process,
2610                                                           uint32_t exec_count)
2611     : NextEventAction(process), m_exec_count(exec_count) {
2612   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2613   LLDB_LOGF(
2614       log,
2615       "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32,
2616       __FUNCTION__, static_cast<void *>(process), exec_count);
2617 }
2618 
2619 Process::NextEventAction::EventActionResult
2620 Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) {
2621   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2622 
2623   StateType state = ProcessEventData::GetStateFromEvent(event_sp.get());
2624   LLDB_LOGF(log,
2625             "Process::AttachCompletionHandler::%s called with state %s (%d)",
2626             __FUNCTION__, StateAsCString(state), static_cast<int>(state));
2627 
2628   switch (state) {
2629   case eStateAttaching:
2630     return eEventActionSuccess;
2631 
2632   case eStateRunning:
2633   case eStateConnected:
2634     return eEventActionRetry;
2635 
2636   case eStateStopped:
2637   case eStateCrashed:
2638     // During attach, prior to sending the eStateStopped event,
2639     // lldb_private::Process subclasses must set the new process ID.
2640     assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID);
2641     // We don't want these events to be reported, so go set the
2642     // ShouldReportStop here:
2643     m_process->GetThreadList().SetShouldReportStop(eVoteNo);
2644 
2645     if (m_exec_count > 0) {
2646       --m_exec_count;
2647 
2648       LLDB_LOGF(log,
2649                 "Process::AttachCompletionHandler::%s state %s: reduced "
2650                 "remaining exec count to %" PRIu32 ", requesting resume",
2651                 __FUNCTION__, StateAsCString(state), m_exec_count);
2652 
2653       RequestResume();
2654       return eEventActionRetry;
2655     } else {
2656       LLDB_LOGF(log,
2657                 "Process::AttachCompletionHandler::%s state %s: no more "
2658                 "execs expected to start, continuing with attach",
2659                 __FUNCTION__, StateAsCString(state));
2660 
2661       m_process->CompleteAttach();
2662       return eEventActionSuccess;
2663     }
2664     break;
2665 
2666   default:
2667   case eStateExited:
2668   case eStateInvalid:
2669     break;
2670   }
2671 
2672   m_exit_string.assign("No valid Process");
2673   return eEventActionExit;
2674 }
2675 
2676 Process::NextEventAction::EventActionResult
2677 Process::AttachCompletionHandler::HandleBeingInterrupted() {
2678   return eEventActionSuccess;
2679 }
2680 
2681 const char *Process::AttachCompletionHandler::GetExitString() {
2682   return m_exit_string.c_str();
2683 }
2684 
2685 ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) {
2686   if (m_listener_sp)
2687     return m_listener_sp;
2688   else
2689     return debugger.GetListener();
2690 }
2691 
2692 Status Process::Attach(ProcessAttachInfo &attach_info) {
2693   m_abi_sp.reset();
2694   m_process_input_reader.reset();
2695   m_dyld_up.reset();
2696   m_jit_loaders_up.reset();
2697   m_system_runtime_up.reset();
2698   m_os_up.reset();
2699 
2700   lldb::pid_t attach_pid = attach_info.GetProcessID();
2701   Status error;
2702   if (attach_pid == LLDB_INVALID_PROCESS_ID) {
2703     char process_name[PATH_MAX];
2704 
2705     if (attach_info.GetExecutableFile().GetPath(process_name,
2706                                                 sizeof(process_name))) {
2707       const bool wait_for_launch = attach_info.GetWaitForLaunch();
2708 
2709       if (wait_for_launch) {
2710         error = WillAttachToProcessWithName(process_name, wait_for_launch);
2711         if (error.Success()) {
2712           if (m_public_run_lock.TrySetRunning()) {
2713             m_should_detach = true;
2714             const bool restarted = false;
2715             SetPublicState(eStateAttaching, restarted);
2716             // Now attach using these arguments.
2717             error = DoAttachToProcessWithName(process_name, attach_info);
2718           } else {
2719             // This shouldn't happen
2720             error.SetErrorString("failed to acquire process run lock");
2721           }
2722 
2723           if (error.Fail()) {
2724             if (GetID() != LLDB_INVALID_PROCESS_ID) {
2725               SetID(LLDB_INVALID_PROCESS_ID);
2726               if (error.AsCString() == nullptr)
2727                 error.SetErrorString("attach failed");
2728 
2729               SetExitStatus(-1, error.AsCString());
2730             }
2731           } else {
2732             SetNextEventAction(new Process::AttachCompletionHandler(
2733                 this, attach_info.GetResumeCount()));
2734             StartPrivateStateThread();
2735           }
2736           return error;
2737         }
2738       } else {
2739         ProcessInstanceInfoList process_infos;
2740         PlatformSP platform_sp(GetTarget().GetPlatform());
2741 
2742         if (platform_sp) {
2743           ProcessInstanceInfoMatch match_info;
2744           match_info.GetProcessInfo() = attach_info;
2745           match_info.SetNameMatchType(NameMatch::Equals);
2746           platform_sp->FindProcesses(match_info, process_infos);
2747           const uint32_t num_matches = process_infos.size();
2748           if (num_matches == 1) {
2749             attach_pid = process_infos[0].GetProcessID();
2750             // Fall through and attach using the above process ID
2751           } else {
2752             match_info.GetProcessInfo().GetExecutableFile().GetPath(
2753                 process_name, sizeof(process_name));
2754             if (num_matches > 1) {
2755               StreamString s;
2756               ProcessInstanceInfo::DumpTableHeader(s, true, false);
2757               for (size_t i = 0; i < num_matches; i++) {
2758                 process_infos[i].DumpAsTableRow(
2759                     s, platform_sp->GetUserIDResolver(), true, false);
2760               }
2761               error.SetErrorStringWithFormat(
2762                   "more than one process named %s:\n%s", process_name,
2763                   s.GetData());
2764             } else
2765               error.SetErrorStringWithFormat(
2766                   "could not find a process named %s", process_name);
2767           }
2768         } else {
2769           error.SetErrorString(
2770               "invalid platform, can't find processes by name");
2771           return error;
2772         }
2773       }
2774     } else {
2775       error.SetErrorString("invalid process name");
2776     }
2777   }
2778 
2779   if (attach_pid != LLDB_INVALID_PROCESS_ID) {
2780     error = WillAttachToProcessWithID(attach_pid);
2781     if (error.Success()) {
2782 
2783       if (m_public_run_lock.TrySetRunning()) {
2784         // Now attach using these arguments.
2785         m_should_detach = true;
2786         const bool restarted = false;
2787         SetPublicState(eStateAttaching, restarted);
2788         error = DoAttachToProcessWithID(attach_pid, attach_info);
2789       } else {
2790         // This shouldn't happen
2791         error.SetErrorString("failed to acquire process run lock");
2792       }
2793 
2794       if (error.Success()) {
2795         SetNextEventAction(new Process::AttachCompletionHandler(
2796             this, attach_info.GetResumeCount()));
2797         StartPrivateStateThread();
2798       } else {
2799         if (GetID() != LLDB_INVALID_PROCESS_ID)
2800           SetID(LLDB_INVALID_PROCESS_ID);
2801 
2802         const char *error_string = error.AsCString();
2803         if (error_string == nullptr)
2804           error_string = "attach failed";
2805 
2806         SetExitStatus(-1, error_string);
2807       }
2808     }
2809   }
2810   return error;
2811 }
2812 
2813 void Process::CompleteAttach() {
2814   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS |
2815                                                   LIBLLDB_LOG_TARGET));
2816   LLDB_LOGF(log, "Process::%s()", __FUNCTION__);
2817 
2818   // Let the process subclass figure out at much as it can about the process
2819   // before we go looking for a dynamic loader plug-in.
2820   ArchSpec process_arch;
2821   DidAttach(process_arch);
2822 
2823   if (process_arch.IsValid()) {
2824     GetTarget().SetArchitecture(process_arch);
2825     if (log) {
2826       const char *triple_str = process_arch.GetTriple().getTriple().c_str();
2827       LLDB_LOGF(log,
2828                 "Process::%s replacing process architecture with DidAttach() "
2829                 "architecture: %s",
2830                 __FUNCTION__, triple_str ? triple_str : "<null>");
2831     }
2832   }
2833 
2834   // We just attached.  If we have a platform, ask it for the process
2835   // architecture, and if it isn't the same as the one we've already set,
2836   // switch architectures.
2837   PlatformSP platform_sp(GetTarget().GetPlatform());
2838   assert(platform_sp);
2839   if (platform_sp) {
2840     const ArchSpec &target_arch = GetTarget().GetArchitecture();
2841     if (target_arch.IsValid() &&
2842         !platform_sp->IsCompatibleArchitecture(target_arch, false, nullptr)) {
2843       ArchSpec platform_arch;
2844       platform_sp =
2845           platform_sp->GetPlatformForArchitecture(target_arch, &platform_arch);
2846       if (platform_sp) {
2847         GetTarget().SetPlatform(platform_sp);
2848         GetTarget().SetArchitecture(platform_arch);
2849         LLDB_LOGF(log,
2850                   "Process::%s switching platform to %s and architecture "
2851                   "to %s based on info from attach",
2852                   __FUNCTION__, platform_sp->GetName().AsCString(""),
2853                   platform_arch.GetTriple().getTriple().c_str());
2854       }
2855     } else if (!process_arch.IsValid()) {
2856       ProcessInstanceInfo process_info;
2857       GetProcessInfo(process_info);
2858       const ArchSpec &process_arch = process_info.GetArchitecture();
2859       if (process_arch.IsValid() &&
2860           !GetTarget().GetArchitecture().IsExactMatch(process_arch)) {
2861         GetTarget().SetArchitecture(process_arch);
2862         LLDB_LOGF(log,
2863                   "Process::%s switching architecture to %s based on info "
2864                   "the platform retrieved for pid %" PRIu64,
2865                   __FUNCTION__, process_arch.GetTriple().getTriple().c_str(),
2866                   GetID());
2867       }
2868     }
2869   }
2870 
2871   // We have completed the attach, now it is time to find the dynamic loader
2872   // plug-in
2873   DynamicLoader *dyld = GetDynamicLoader();
2874   if (dyld) {
2875     dyld->DidAttach();
2876     if (log) {
2877       ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
2878       LLDB_LOGF(log,
2879                 "Process::%s after DynamicLoader::DidAttach(), target "
2880                 "executable is %s (using %s plugin)",
2881                 __FUNCTION__,
2882                 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str()
2883                               : "<none>",
2884                 dyld->GetPluginName().AsCString("<unnamed>"));
2885     }
2886   }
2887 
2888   GetJITLoaders().DidAttach();
2889 
2890   SystemRuntime *system_runtime = GetSystemRuntime();
2891   if (system_runtime) {
2892     system_runtime->DidAttach();
2893     if (log) {
2894       ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
2895       LLDB_LOGF(log,
2896                 "Process::%s after SystemRuntime::DidAttach(), target "
2897                 "executable is %s (using %s plugin)",
2898                 __FUNCTION__,
2899                 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str()
2900                               : "<none>",
2901                 system_runtime->GetPluginName().AsCString("<unnamed>"));
2902     }
2903   }
2904 
2905   if (!m_os_up) {
2906     LoadOperatingSystemPlugin(false);
2907     if (m_os_up) {
2908       // Somebody might have gotten threads before now, but we need to force the
2909       // update after we've loaded the OperatingSystem plugin or it won't get a
2910       // chance to process the threads.
2911       m_thread_list.Clear();
2912       UpdateThreadListIfNeeded();
2913     }
2914   }
2915   // Figure out which one is the executable, and set that in our target:
2916   ModuleSP new_executable_module_sp;
2917   for (ModuleSP module_sp : GetTarget().GetImages().Modules()) {
2918     if (module_sp && module_sp->IsExecutable()) {
2919       if (GetTarget().GetExecutableModulePointer() != module_sp.get())
2920         new_executable_module_sp = module_sp;
2921       break;
2922     }
2923   }
2924   if (new_executable_module_sp) {
2925     GetTarget().SetExecutableModule(new_executable_module_sp,
2926                                     eLoadDependentsNo);
2927     if (log) {
2928       ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
2929       LLDB_LOGF(
2930           log,
2931           "Process::%s after looping through modules, target executable is %s",
2932           __FUNCTION__,
2933           exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str()
2934                         : "<none>");
2935     }
2936   }
2937 }
2938 
2939 Status Process::ConnectRemote(llvm::StringRef remote_url) {
2940   m_abi_sp.reset();
2941   m_process_input_reader.reset();
2942 
2943   // Find the process and its architecture.  Make sure it matches the
2944   // architecture of the current Target, and if not adjust it.
2945 
2946   Status error(DoConnectRemote(remote_url));
2947   if (error.Success()) {
2948     if (GetID() != LLDB_INVALID_PROCESS_ID) {
2949       EventSP event_sp;
2950       StateType state = WaitForProcessStopPrivate(event_sp, llvm::None);
2951 
2952       if (state == eStateStopped || state == eStateCrashed) {
2953         // If we attached and actually have a process on the other end, then
2954         // this ended up being the equivalent of an attach.
2955         CompleteAttach();
2956 
2957         // This delays passing the stopped event to listeners till
2958         // CompleteAttach gets a chance to complete...
2959         HandlePrivateEvent(event_sp);
2960       }
2961     }
2962 
2963     if (PrivateStateThreadIsValid())
2964       ResumePrivateStateThread();
2965     else
2966       StartPrivateStateThread();
2967   }
2968   return error;
2969 }
2970 
2971 Status Process::PrivateResume() {
2972   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS |
2973                                                   LIBLLDB_LOG_STEP));
2974   LLDB_LOGF(log,
2975             "Process::PrivateResume() m_stop_id = %u, public state: %s "
2976             "private state: %s",
2977             m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()),
2978             StateAsCString(m_private_state.GetValue()));
2979 
2980   // If signals handing status changed we might want to update our signal
2981   // filters before resuming.
2982   UpdateAutomaticSignalFiltering();
2983 
2984   Status error(WillResume());
2985   // Tell the process it is about to resume before the thread list
2986   if (error.Success()) {
2987     // Now let the thread list know we are about to resume so it can let all of
2988     // our threads know that they are about to be resumed. Threads will each be
2989     // called with Thread::WillResume(StateType) where StateType contains the
2990     // state that they are supposed to have when the process is resumed
2991     // (suspended/running/stepping). Threads should also check their resume
2992     // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to
2993     // start back up with a signal.
2994     if (m_thread_list.WillResume()) {
2995       // Last thing, do the PreResumeActions.
2996       if (!RunPreResumeActions()) {
2997         error.SetErrorString(
2998             "Process::PrivateResume PreResumeActions failed, not resuming.");
2999       } else {
3000         m_mod_id.BumpResumeID();
3001         error = DoResume();
3002         if (error.Success()) {
3003           DidResume();
3004           m_thread_list.DidResume();
3005           LLDB_LOGF(log, "Process thinks the process has resumed.");
3006         } else {
3007           LLDB_LOGF(log, "Process::PrivateResume() DoResume failed.");
3008           return error;
3009         }
3010       }
3011     } else {
3012       // Somebody wanted to run without running (e.g. we were faking a step
3013       // from one frame of a set of inlined frames that share the same PC to
3014       // another.)  So generate a continue & a stopped event, and let the world
3015       // handle them.
3016       LLDB_LOGF(log,
3017                 "Process::PrivateResume() asked to simulate a start & stop.");
3018 
3019       SetPrivateState(eStateRunning);
3020       SetPrivateState(eStateStopped);
3021     }
3022   } else
3023     LLDB_LOGF(log, "Process::PrivateResume() got an error \"%s\".",
3024               error.AsCString("<unknown error>"));
3025   return error;
3026 }
3027 
3028 Status Process::Halt(bool clear_thread_plans, bool use_run_lock) {
3029   if (!StateIsRunningState(m_public_state.GetValue()))
3030     return Status("Process is not running.");
3031 
3032   // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in
3033   // case it was already set and some thread plan logic calls halt on its own.
3034   m_clear_thread_plans_on_stop |= clear_thread_plans;
3035 
3036   ListenerSP halt_listener_sp(
3037       Listener::MakeListener("lldb.process.halt_listener"));
3038   HijackProcessEvents(halt_listener_sp);
3039 
3040   EventSP event_sp;
3041 
3042   SendAsyncInterrupt();
3043 
3044   if (m_public_state.GetValue() == eStateAttaching) {
3045     // Don't hijack and eat the eStateExited as the code that was doing the
3046     // attach will be waiting for this event...
3047     RestoreProcessEvents();
3048     SetExitStatus(SIGKILL, "Cancelled async attach.");
3049     Destroy(false);
3050     return Status();
3051   }
3052 
3053   // Wait for 10 second for the process to stop.
3054   StateType state = WaitForProcessToStop(
3055       seconds(10), &event_sp, true, halt_listener_sp, nullptr, use_run_lock);
3056   RestoreProcessEvents();
3057 
3058   if (state == eStateInvalid || !event_sp) {
3059     // We timed out and didn't get a stop event...
3060     return Status("Halt timed out. State = %s", StateAsCString(GetState()));
3061   }
3062 
3063   BroadcastEvent(event_sp);
3064 
3065   return Status();
3066 }
3067 
3068 Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) {
3069   Status error;
3070 
3071   // Check both the public & private states here.  If we're hung evaluating an
3072   // expression, for instance, then the public state will be stopped, but we
3073   // still need to interrupt.
3074   if (m_public_state.GetValue() == eStateRunning ||
3075       m_private_state.GetValue() == eStateRunning) {
3076     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
3077     LLDB_LOGF(log, "Process::%s() About to stop.", __FUNCTION__);
3078 
3079     ListenerSP listener_sp(
3080         Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack"));
3081     HijackProcessEvents(listener_sp);
3082 
3083     SendAsyncInterrupt();
3084 
3085     // Consume the interrupt event.
3086     StateType state =
3087         WaitForProcessToStop(seconds(10), &exit_event_sp, true, listener_sp);
3088 
3089     RestoreProcessEvents();
3090 
3091     // If the process exited while we were waiting for it to stop, put the
3092     // exited event into the shared pointer passed in and return.  Our caller
3093     // doesn't need to do anything else, since they don't have a process
3094     // anymore...
3095 
3096     if (state == eStateExited || m_private_state.GetValue() == eStateExited) {
3097       LLDB_LOGF(log, "Process::%s() Process exited while waiting to stop.",
3098                 __FUNCTION__);
3099       return error;
3100     } else
3101       exit_event_sp.reset(); // It is ok to consume any non-exit stop events
3102 
3103     if (state != eStateStopped) {
3104       LLDB_LOGF(log, "Process::%s() failed to stop, state is: %s", __FUNCTION__,
3105                 StateAsCString(state));
3106       // If we really couldn't stop the process then we should just error out
3107       // here, but if the lower levels just bobbled sending the event and we
3108       // really are stopped, then continue on.
3109       StateType private_state = m_private_state.GetValue();
3110       if (private_state != eStateStopped) {
3111         return Status(
3112             "Attempt to stop the target in order to detach timed out. "
3113             "State = %s",
3114             StateAsCString(GetState()));
3115       }
3116     }
3117   }
3118   return error;
3119 }
3120 
3121 Status Process::Detach(bool keep_stopped) {
3122   EventSP exit_event_sp;
3123   Status error;
3124   m_destroy_in_process = true;
3125 
3126   error = WillDetach();
3127 
3128   if (error.Success()) {
3129     if (DetachRequiresHalt()) {
3130       error = StopForDestroyOrDetach(exit_event_sp);
3131       if (!error.Success()) {
3132         m_destroy_in_process = false;
3133         return error;
3134       } else if (exit_event_sp) {
3135         // We shouldn't need to do anything else here.  There's no process left
3136         // to detach from...
3137         StopPrivateStateThread();
3138         m_destroy_in_process = false;
3139         return error;
3140       }
3141     }
3142 
3143     m_thread_list.DiscardThreadPlans();
3144     DisableAllBreakpointSites();
3145 
3146     error = DoDetach(keep_stopped);
3147     if (error.Success()) {
3148       DidDetach();
3149       StopPrivateStateThread();
3150     } else {
3151       return error;
3152     }
3153   }
3154   m_destroy_in_process = false;
3155 
3156   // If we exited when we were waiting for a process to stop, then forward the
3157   // event here so we don't lose the event
3158   if (exit_event_sp) {
3159     // Directly broadcast our exited event because we shut down our private
3160     // state thread above
3161     BroadcastEvent(exit_event_sp);
3162   }
3163 
3164   // If we have been interrupted (to kill us) in the middle of running, we may
3165   // not end up propagating the last events through the event system, in which
3166   // case we might strand the write lock.  Unlock it here so when we do to tear
3167   // down the process we don't get an error destroying the lock.
3168 
3169   m_public_run_lock.SetStopped();
3170   return error;
3171 }
3172 
3173 Status Process::Destroy(bool force_kill) {
3174   // If we've already called Process::Finalize then there's nothing useful to
3175   // be done here.  Finalize has actually called Destroy already.
3176   if (m_finalizing)
3177     return {};
3178   return DestroyImpl(force_kill);
3179 }
3180 
3181 Status Process::DestroyImpl(bool force_kill) {
3182   // Tell ourselves we are in the process of destroying the process, so that we
3183   // don't do any unnecessary work that might hinder the destruction.  Remember
3184   // to set this back to false when we are done.  That way if the attempt
3185   // failed and the process stays around for some reason it won't be in a
3186   // confused state.
3187 
3188   if (force_kill)
3189     m_should_detach = false;
3190 
3191   if (GetShouldDetach()) {
3192     // FIXME: This will have to be a process setting:
3193     bool keep_stopped = false;
3194     Detach(keep_stopped);
3195   }
3196 
3197   m_destroy_in_process = true;
3198 
3199   Status error(WillDestroy());
3200   if (error.Success()) {
3201     EventSP exit_event_sp;
3202     if (DestroyRequiresHalt()) {
3203       error = StopForDestroyOrDetach(exit_event_sp);
3204     }
3205 
3206     if (m_public_state.GetValue() != eStateRunning) {
3207       // Ditch all thread plans, and remove all our breakpoints: in case we
3208       // have to restart the target to kill it, we don't want it hitting a
3209       // breakpoint... Only do this if we've stopped, however, since if we
3210       // didn't manage to halt it above, then we're not going to have much luck
3211       // doing this now.
3212       m_thread_list.DiscardThreadPlans();
3213       DisableAllBreakpointSites();
3214     }
3215 
3216     error = DoDestroy();
3217     if (error.Success()) {
3218       DidDestroy();
3219       StopPrivateStateThread();
3220     }
3221     m_stdio_communication.StopReadThread();
3222     m_stdio_communication.Disconnect();
3223     m_stdin_forward = false;
3224 
3225     if (m_process_input_reader) {
3226       m_process_input_reader->SetIsDone(true);
3227       m_process_input_reader->Cancel();
3228       m_process_input_reader.reset();
3229     }
3230 
3231     // If we exited when we were waiting for a process to stop, then forward
3232     // the event here so we don't lose the event
3233     if (exit_event_sp) {
3234       // Directly broadcast our exited event because we shut down our private
3235       // state thread above
3236       BroadcastEvent(exit_event_sp);
3237     }
3238 
3239     // If we have been interrupted (to kill us) in the middle of running, we
3240     // may not end up propagating the last events through the event system, in
3241     // which case we might strand the write lock.  Unlock it here so when we do
3242     // to tear down the process we don't get an error destroying the lock.
3243     m_public_run_lock.SetStopped();
3244   }
3245 
3246   m_destroy_in_process = false;
3247 
3248   return error;
3249 }
3250 
3251 Status Process::Signal(int signal) {
3252   Status error(WillSignal());
3253   if (error.Success()) {
3254     error = DoSignal(signal);
3255     if (error.Success())
3256       DidSignal();
3257   }
3258   return error;
3259 }
3260 
3261 void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) {
3262   assert(signals_sp && "null signals_sp");
3263   m_unix_signals_sp = signals_sp;
3264 }
3265 
3266 const lldb::UnixSignalsSP &Process::GetUnixSignals() {
3267   assert(m_unix_signals_sp && "null m_unix_signals_sp");
3268   return m_unix_signals_sp;
3269 }
3270 
3271 lldb::ByteOrder Process::GetByteOrder() const {
3272   return GetTarget().GetArchitecture().GetByteOrder();
3273 }
3274 
3275 uint32_t Process::GetAddressByteSize() const {
3276   return GetTarget().GetArchitecture().GetAddressByteSize();
3277 }
3278 
3279 bool Process::ShouldBroadcastEvent(Event *event_ptr) {
3280   const StateType state =
3281       Process::ProcessEventData::GetStateFromEvent(event_ptr);
3282   bool return_value = true;
3283   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_EVENTS |
3284                                                   LIBLLDB_LOG_PROCESS));
3285 
3286   switch (state) {
3287   case eStateDetached:
3288   case eStateExited:
3289   case eStateUnloaded:
3290     m_stdio_communication.SynchronizeWithReadThread();
3291     m_stdio_communication.StopReadThread();
3292     m_stdio_communication.Disconnect();
3293     m_stdin_forward = false;
3294 
3295     LLVM_FALLTHROUGH;
3296   case eStateConnected:
3297   case eStateAttaching:
3298   case eStateLaunching:
3299     // These events indicate changes in the state of the debugging session,
3300     // always report them.
3301     return_value = true;
3302     break;
3303   case eStateInvalid:
3304     // We stopped for no apparent reason, don't report it.
3305     return_value = false;
3306     break;
3307   case eStateRunning:
3308   case eStateStepping:
3309     // If we've started the target running, we handle the cases where we are
3310     // already running and where there is a transition from stopped to running
3311     // differently. running -> running: Automatically suppress extra running
3312     // events stopped -> running: Report except when there is one or more no
3313     // votes
3314     //     and no yes votes.
3315     SynchronouslyNotifyStateChanged(state);
3316     if (m_force_next_event_delivery)
3317       return_value = true;
3318     else {
3319       switch (m_last_broadcast_state) {
3320       case eStateRunning:
3321       case eStateStepping:
3322         // We always suppress multiple runnings with no PUBLIC stop in between.
3323         return_value = false;
3324         break;
3325       default:
3326         // TODO: make this work correctly. For now always report
3327         // run if we aren't running so we don't miss any running events. If I
3328         // run the lldb/test/thread/a.out file and break at main.cpp:58, run
3329         // and hit the breakpoints on multiple threads, then somehow during the
3330         // stepping over of all breakpoints no run gets reported.
3331 
3332         // This is a transition from stop to run.
3333         switch (m_thread_list.ShouldReportRun(event_ptr)) {
3334         case eVoteYes:
3335         case eVoteNoOpinion:
3336           return_value = true;
3337           break;
3338         case eVoteNo:
3339           return_value = false;
3340           break;
3341         }
3342         break;
3343       }
3344     }
3345     break;
3346   case eStateStopped:
3347   case eStateCrashed:
3348   case eStateSuspended:
3349     // We've stopped.  First see if we're going to restart the target. If we
3350     // are going to stop, then we always broadcast the event. If we aren't
3351     // going to stop, let the thread plans decide if we're going to report this
3352     // event. If no thread has an opinion, we don't report it.
3353 
3354     m_stdio_communication.SynchronizeWithReadThread();
3355     RefreshStateAfterStop();
3356     if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) {
3357       LLDB_LOGF(log,
3358                 "Process::ShouldBroadcastEvent (%p) stopped due to an "
3359                 "interrupt, state: %s",
3360                 static_cast<void *>(event_ptr), StateAsCString(state));
3361       // Even though we know we are going to stop, we should let the threads
3362       // have a look at the stop, so they can properly set their state.
3363       m_thread_list.ShouldStop(event_ptr);
3364       return_value = true;
3365     } else {
3366       bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr);
3367       bool should_resume = false;
3368 
3369       // It makes no sense to ask "ShouldStop" if we've already been
3370       // restarted... Asking the thread list is also not likely to go well,
3371       // since we are running again. So in that case just report the event.
3372 
3373       if (!was_restarted)
3374         should_resume = !m_thread_list.ShouldStop(event_ptr);
3375 
3376       if (was_restarted || should_resume || m_resume_requested) {
3377         Vote stop_vote = m_thread_list.ShouldReportStop(event_ptr);
3378         LLDB_LOGF(log,
3379                   "Process::ShouldBroadcastEvent: should_resume: %i state: "
3380                   "%s was_restarted: %i stop_vote: %d.",
3381                   should_resume, StateAsCString(state), was_restarted,
3382                   stop_vote);
3383 
3384         switch (stop_vote) {
3385         case eVoteYes:
3386           return_value = true;
3387           break;
3388         case eVoteNoOpinion:
3389         case eVoteNo:
3390           return_value = false;
3391           break;
3392         }
3393 
3394         if (!was_restarted) {
3395           LLDB_LOGF(log,
3396                     "Process::ShouldBroadcastEvent (%p) Restarting process "
3397                     "from state: %s",
3398                     static_cast<void *>(event_ptr), StateAsCString(state));
3399           ProcessEventData::SetRestartedInEvent(event_ptr, true);
3400           PrivateResume();
3401         }
3402       } else {
3403         return_value = true;
3404         SynchronouslyNotifyStateChanged(state);
3405       }
3406     }
3407     break;
3408   }
3409 
3410   // Forcing the next event delivery is a one shot deal.  So reset it here.
3411   m_force_next_event_delivery = false;
3412 
3413   // We do some coalescing of events (for instance two consecutive running
3414   // events get coalesced.) But we only coalesce against events we actually
3415   // broadcast.  So we use m_last_broadcast_state to track that.  NB - you
3416   // can't use "m_public_state.GetValue()" for that purpose, as was originally
3417   // done, because the PublicState reflects the last event pulled off the
3418   // queue, and there may be several events stacked up on the queue unserviced.
3419   // So the PublicState may not reflect the last broadcasted event yet.
3420   // m_last_broadcast_state gets updated here.
3421 
3422   if (return_value)
3423     m_last_broadcast_state = state;
3424 
3425   LLDB_LOGF(log,
3426             "Process::ShouldBroadcastEvent (%p) => new state: %s, last "
3427             "broadcast state: %s - %s",
3428             static_cast<void *>(event_ptr), StateAsCString(state),
3429             StateAsCString(m_last_broadcast_state),
3430             return_value ? "YES" : "NO");
3431   return return_value;
3432 }
3433 
3434 bool Process::StartPrivateStateThread(bool is_secondary_thread) {
3435   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EVENTS));
3436 
3437   bool already_running = PrivateStateThreadIsValid();
3438   LLDB_LOGF(log, "Process::%s()%s ", __FUNCTION__,
3439             already_running ? " already running"
3440                             : " starting private state thread");
3441 
3442   if (!is_secondary_thread && already_running)
3443     return true;
3444 
3445   // Create a thread that watches our internal state and controls which events
3446   // make it to clients (into the DCProcess event queue).
3447   char thread_name[1024];
3448   uint32_t max_len = llvm::get_max_thread_name_length();
3449   if (max_len > 0 && max_len <= 30) {
3450     // On platforms with abbreviated thread name lengths, choose thread names
3451     // that fit within the limit.
3452     if (already_running)
3453       snprintf(thread_name, sizeof(thread_name), "intern-state-OV");
3454     else
3455       snprintf(thread_name, sizeof(thread_name), "intern-state");
3456   } else {
3457     if (already_running)
3458       snprintf(thread_name, sizeof(thread_name),
3459                "<lldb.process.internal-state-override(pid=%" PRIu64 ")>",
3460                GetID());
3461     else
3462       snprintf(thread_name, sizeof(thread_name),
3463                "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID());
3464   }
3465 
3466   // Create the private state thread, and start it running.
3467   PrivateStateThreadArgs *args_ptr =
3468       new PrivateStateThreadArgs(this, is_secondary_thread);
3469   llvm::Expected<HostThread> private_state_thread =
3470       ThreadLauncher::LaunchThread(thread_name, Process::PrivateStateThread,
3471                                    (void *)args_ptr, 8 * 1024 * 1024);
3472   if (!private_state_thread) {
3473     LLDB_LOG(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST),
3474              "failed to launch host thread: {}",
3475              llvm::toString(private_state_thread.takeError()));
3476     return false;
3477   }
3478 
3479   assert(private_state_thread->IsJoinable());
3480   m_private_state_thread = *private_state_thread;
3481   ResumePrivateStateThread();
3482   return true;
3483 }
3484 
3485 void Process::PausePrivateStateThread() {
3486   ControlPrivateStateThread(eBroadcastInternalStateControlPause);
3487 }
3488 
3489 void Process::ResumePrivateStateThread() {
3490   ControlPrivateStateThread(eBroadcastInternalStateControlResume);
3491 }
3492 
3493 void Process::StopPrivateStateThread() {
3494   if (m_private_state_thread.IsJoinable())
3495     ControlPrivateStateThread(eBroadcastInternalStateControlStop);
3496   else {
3497     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
3498     LLDB_LOGF(
3499         log,
3500         "Went to stop the private state thread, but it was already invalid.");
3501   }
3502 }
3503 
3504 void Process::ControlPrivateStateThread(uint32_t signal) {
3505   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
3506 
3507   assert(signal == eBroadcastInternalStateControlStop ||
3508          signal == eBroadcastInternalStateControlPause ||
3509          signal == eBroadcastInternalStateControlResume);
3510 
3511   LLDB_LOGF(log, "Process::%s (signal = %d)", __FUNCTION__, signal);
3512 
3513   // Signal the private state thread
3514   if (m_private_state_thread.IsJoinable()) {
3515     // Broadcast the event.
3516     // It is important to do this outside of the if below, because it's
3517     // possible that the thread state is invalid but that the thread is waiting
3518     // on a control event instead of simply being on its way out (this should
3519     // not happen, but it apparently can).
3520     LLDB_LOGF(log, "Sending control event of type: %d.", signal);
3521     std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt());
3522     m_private_state_control_broadcaster.BroadcastEvent(signal,
3523                                                        event_receipt_sp);
3524 
3525     // Wait for the event receipt or for the private state thread to exit
3526     bool receipt_received = false;
3527     if (PrivateStateThreadIsValid()) {
3528       while (!receipt_received) {
3529         // Check for a receipt for n seconds and then check if the private
3530         // state thread is still around.
3531         receipt_received =
3532           event_receipt_sp->WaitForEventReceived(GetUtilityExpressionTimeout());
3533         if (!receipt_received) {
3534           // Check if the private state thread is still around. If it isn't
3535           // then we are done waiting
3536           if (!PrivateStateThreadIsValid())
3537             break; // Private state thread exited or is exiting, we are done
3538         }
3539       }
3540     }
3541 
3542     if (signal == eBroadcastInternalStateControlStop) {
3543       thread_result_t result = {};
3544       m_private_state_thread.Join(&result);
3545       m_private_state_thread.Reset();
3546     }
3547   } else {
3548     LLDB_LOGF(
3549         log,
3550         "Private state thread already dead, no need to signal it to stop.");
3551   }
3552 }
3553 
3554 void Process::SendAsyncInterrupt() {
3555   if (PrivateStateThreadIsValid())
3556     m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt,
3557                                                nullptr);
3558   else
3559     BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr);
3560 }
3561 
3562 void Process::HandlePrivateEvent(EventSP &event_sp) {
3563   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
3564   m_resume_requested = false;
3565 
3566   const StateType new_state =
3567       Process::ProcessEventData::GetStateFromEvent(event_sp.get());
3568 
3569   // First check to see if anybody wants a shot at this event:
3570   if (m_next_event_action_up) {
3571     NextEventAction::EventActionResult action_result =
3572         m_next_event_action_up->PerformAction(event_sp);
3573     LLDB_LOGF(log, "Ran next event action, result was %d.", action_result);
3574 
3575     switch (action_result) {
3576     case NextEventAction::eEventActionSuccess:
3577       SetNextEventAction(nullptr);
3578       break;
3579 
3580     case NextEventAction::eEventActionRetry:
3581       break;
3582 
3583     case NextEventAction::eEventActionExit:
3584       // Handle Exiting Here.  If we already got an exited event, we should
3585       // just propagate it.  Otherwise, swallow this event, and set our state
3586       // to exit so the next event will kill us.
3587       if (new_state != eStateExited) {
3588         // FIXME: should cons up an exited event, and discard this one.
3589         SetExitStatus(0, m_next_event_action_up->GetExitString());
3590         SetNextEventAction(nullptr);
3591         return;
3592       }
3593       SetNextEventAction(nullptr);
3594       break;
3595     }
3596   }
3597 
3598   // See if we should broadcast this state to external clients?
3599   const bool should_broadcast = ShouldBroadcastEvent(event_sp.get());
3600 
3601   if (should_broadcast) {
3602     const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged);
3603     if (log) {
3604       LLDB_LOGF(log,
3605                 "Process::%s (pid = %" PRIu64
3606                 ") broadcasting new state %s (old state %s) to %s",
3607                 __FUNCTION__, GetID(), StateAsCString(new_state),
3608                 StateAsCString(GetState()),
3609                 is_hijacked ? "hijacked" : "public");
3610     }
3611     Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get());
3612     if (StateIsRunningState(new_state)) {
3613       // Only push the input handler if we aren't fowarding events, as this
3614       // means the curses GUI is in use... Or don't push it if we are launching
3615       // since it will come up stopped.
3616       if (!GetTarget().GetDebugger().IsForwardingEvents() &&
3617           new_state != eStateLaunching && new_state != eStateAttaching) {
3618         PushProcessIOHandler();
3619         m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1,
3620                                   eBroadcastAlways);
3621         LLDB_LOGF(log, "Process::%s updated m_iohandler_sync to %d",
3622                   __FUNCTION__, m_iohandler_sync.GetValue());
3623       }
3624     } else if (StateIsStoppedState(new_state, false)) {
3625       if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) {
3626         // If the lldb_private::Debugger is handling the events, we don't want
3627         // to pop the process IOHandler here, we want to do it when we receive
3628         // the stopped event so we can carefully control when the process
3629         // IOHandler is popped because when we stop we want to display some
3630         // text stating how and why we stopped, then maybe some
3631         // process/thread/frame info, and then we want the "(lldb) " prompt to
3632         // show up. If we pop the process IOHandler here, then we will cause
3633         // the command interpreter to become the top IOHandler after the
3634         // process pops off and it will update its prompt right away... See the
3635         // Debugger.cpp file where it calls the function as
3636         // "process_sp->PopProcessIOHandler()" to see where I am talking about.
3637         // Otherwise we end up getting overlapping "(lldb) " prompts and
3638         // garbled output.
3639         //
3640         // If we aren't handling the events in the debugger (which is indicated
3641         // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or
3642         // we are hijacked, then we always pop the process IO handler manually.
3643         // Hijacking happens when the internal process state thread is running
3644         // thread plans, or when commands want to run in synchronous mode and
3645         // they call "process->WaitForProcessToStop()". An example of something
3646         // that will hijack the events is a simple expression:
3647         //
3648         //  (lldb) expr (int)puts("hello")
3649         //
3650         // This will cause the internal process state thread to resume and halt
3651         // the process (and _it_ will hijack the eBroadcastBitStateChanged
3652         // events) and we do need the IO handler to be pushed and popped
3653         // correctly.
3654 
3655         if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents())
3656           PopProcessIOHandler();
3657       }
3658     }
3659 
3660     BroadcastEvent(event_sp);
3661   } else {
3662     if (log) {
3663       LLDB_LOGF(
3664           log,
3665           "Process::%s (pid = %" PRIu64
3666           ") suppressing state %s (old state %s): should_broadcast == false",
3667           __FUNCTION__, GetID(), StateAsCString(new_state),
3668           StateAsCString(GetState()));
3669     }
3670   }
3671 }
3672 
3673 Status Process::HaltPrivate() {
3674   EventSP event_sp;
3675   Status error(WillHalt());
3676   if (error.Fail())
3677     return error;
3678 
3679   // Ask the process subclass to actually halt our process
3680   bool caused_stop;
3681   error = DoHalt(caused_stop);
3682 
3683   DidHalt();
3684   return error;
3685 }
3686 
3687 thread_result_t Process::PrivateStateThread(void *arg) {
3688   std::unique_ptr<PrivateStateThreadArgs> args_up(
3689       static_cast<PrivateStateThreadArgs *>(arg));
3690   thread_result_t result =
3691       args_up->process->RunPrivateStateThread(args_up->is_secondary_thread);
3692   return result;
3693 }
3694 
3695 thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) {
3696   bool control_only = true;
3697 
3698   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
3699   LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...",
3700             __FUNCTION__, static_cast<void *>(this), GetID());
3701 
3702   bool exit_now = false;
3703   bool interrupt_requested = false;
3704   while (!exit_now) {
3705     EventSP event_sp;
3706     GetEventsPrivate(event_sp, llvm::None, control_only);
3707     if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) {
3708       LLDB_LOGF(log,
3709                 "Process::%s (arg = %p, pid = %" PRIu64
3710                 ") got a control event: %d",
3711                 __FUNCTION__, static_cast<void *>(this), GetID(),
3712                 event_sp->GetType());
3713 
3714       switch (event_sp->GetType()) {
3715       case eBroadcastInternalStateControlStop:
3716         exit_now = true;
3717         break; // doing any internal state management below
3718 
3719       case eBroadcastInternalStateControlPause:
3720         control_only = true;
3721         break;
3722 
3723       case eBroadcastInternalStateControlResume:
3724         control_only = false;
3725         break;
3726       }
3727 
3728       continue;
3729     } else if (event_sp->GetType() == eBroadcastBitInterrupt) {
3730       if (m_public_state.GetValue() == eStateAttaching) {
3731         LLDB_LOGF(log,
3732                   "Process::%s (arg = %p, pid = %" PRIu64
3733                   ") woke up with an interrupt while attaching - "
3734                   "forwarding interrupt.",
3735                   __FUNCTION__, static_cast<void *>(this), GetID());
3736         BroadcastEvent(eBroadcastBitInterrupt, nullptr);
3737       } else if (StateIsRunningState(m_last_broadcast_state)) {
3738         LLDB_LOGF(log,
3739                   "Process::%s (arg = %p, pid = %" PRIu64
3740                   ") woke up with an interrupt - Halting.",
3741                   __FUNCTION__, static_cast<void *>(this), GetID());
3742         Status error = HaltPrivate();
3743         if (error.Fail() && log)
3744           LLDB_LOGF(log,
3745                     "Process::%s (arg = %p, pid = %" PRIu64
3746                     ") failed to halt the process: %s",
3747                     __FUNCTION__, static_cast<void *>(this), GetID(),
3748                     error.AsCString());
3749         // Halt should generate a stopped event. Make a note of the fact that
3750         // we were doing the interrupt, so we can set the interrupted flag
3751         // after we receive the event. We deliberately set this to true even if
3752         // HaltPrivate failed, so that we can interrupt on the next natural
3753         // stop.
3754         interrupt_requested = true;
3755       } else {
3756         // This can happen when someone (e.g. Process::Halt) sees that we are
3757         // running and sends an interrupt request, but the process actually
3758         // stops before we receive it. In that case, we can just ignore the
3759         // request. We use m_last_broadcast_state, because the Stopped event
3760         // may not have been popped of the event queue yet, which is when the
3761         // public state gets updated.
3762         LLDB_LOGF(log,
3763                   "Process::%s ignoring interrupt as we have already stopped.",
3764                   __FUNCTION__);
3765       }
3766       continue;
3767     }
3768 
3769     const StateType internal_state =
3770         Process::ProcessEventData::GetStateFromEvent(event_sp.get());
3771 
3772     if (internal_state != eStateInvalid) {
3773       if (m_clear_thread_plans_on_stop &&
3774           StateIsStoppedState(internal_state, true)) {
3775         m_clear_thread_plans_on_stop = false;
3776         m_thread_list.DiscardThreadPlans();
3777       }
3778 
3779       if (interrupt_requested) {
3780         if (StateIsStoppedState(internal_state, true)) {
3781           // We requested the interrupt, so mark this as such in the stop event
3782           // so clients can tell an interrupted process from a natural stop
3783           ProcessEventData::SetInterruptedInEvent(event_sp.get(), true);
3784           interrupt_requested = false;
3785         } else if (log) {
3786           LLDB_LOGF(log,
3787                     "Process::%s interrupt_requested, but a non-stopped "
3788                     "state '%s' received.",
3789                     __FUNCTION__, StateAsCString(internal_state));
3790         }
3791       }
3792 
3793       HandlePrivateEvent(event_sp);
3794     }
3795 
3796     if (internal_state == eStateInvalid || internal_state == eStateExited ||
3797         internal_state == eStateDetached) {
3798       LLDB_LOGF(log,
3799                 "Process::%s (arg = %p, pid = %" PRIu64
3800                 ") about to exit with internal state %s...",
3801                 __FUNCTION__, static_cast<void *>(this), GetID(),
3802                 StateAsCString(internal_state));
3803 
3804       break;
3805     }
3806   }
3807 
3808   // Verify log is still enabled before attempting to write to it...
3809   LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...",
3810             __FUNCTION__, static_cast<void *>(this), GetID());
3811 
3812   // If we are a secondary thread, then the primary thread we are working for
3813   // will have already acquired the public_run_lock, and isn't done with what
3814   // it was doing yet, so don't try to change it on the way out.
3815   if (!is_secondary_thread)
3816     m_public_run_lock.SetStopped();
3817   return {};
3818 }
3819 
3820 // Process Event Data
3821 
3822 Process::ProcessEventData::ProcessEventData()
3823     : EventData(), m_process_wp(), m_state(eStateInvalid), m_restarted(false),
3824       m_update_state(0), m_interrupted(false) {}
3825 
3826 Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp,
3827                                             StateType state)
3828     : EventData(), m_process_wp(), m_state(state), m_restarted(false),
3829       m_update_state(0), m_interrupted(false) {
3830   if (process_sp)
3831     m_process_wp = process_sp;
3832 }
3833 
3834 Process::ProcessEventData::~ProcessEventData() = default;
3835 
3836 ConstString Process::ProcessEventData::GetFlavorString() {
3837   static ConstString g_flavor("Process::ProcessEventData");
3838   return g_flavor;
3839 }
3840 
3841 ConstString Process::ProcessEventData::GetFlavor() const {
3842   return ProcessEventData::GetFlavorString();
3843 }
3844 
3845 bool Process::ProcessEventData::ShouldStop(Event *event_ptr,
3846                                            bool &found_valid_stopinfo) {
3847   found_valid_stopinfo = false;
3848 
3849   ProcessSP process_sp(m_process_wp.lock());
3850   if (!process_sp)
3851     return false;
3852 
3853   ThreadList &curr_thread_list = process_sp->GetThreadList();
3854   uint32_t num_threads = curr_thread_list.GetSize();
3855   uint32_t idx;
3856 
3857   // The actions might change one of the thread's stop_info's opinions about
3858   // whether we should stop the process, so we need to query that as we go.
3859 
3860   // One other complication here, is that we try to catch any case where the
3861   // target has run (except for expressions) and immediately exit, but if we
3862   // get that wrong (which is possible) then the thread list might have
3863   // changed, and that would cause our iteration here to crash.  We could
3864   // make a copy of the thread list, but we'd really like to also know if it
3865   // has changed at all, so we make up a vector of the thread ID's and check
3866   // what we get back against this list & bag out if anything differs.
3867   ThreadList not_suspended_thread_list(process_sp.get());
3868   std::vector<uint32_t> thread_index_array(num_threads);
3869   uint32_t not_suspended_idx = 0;
3870   for (idx = 0; idx < num_threads; ++idx) {
3871     lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx);
3872 
3873     /*
3874      Filter out all suspended threads, they could not be the reason
3875      of stop and no need to perform any actions on them.
3876      */
3877     if (thread_sp->GetResumeState() != eStateSuspended) {
3878       not_suspended_thread_list.AddThread(thread_sp);
3879       thread_index_array[not_suspended_idx] = thread_sp->GetIndexID();
3880       not_suspended_idx++;
3881     }
3882   }
3883 
3884   // Use this to track whether we should continue from here.  We will only
3885   // continue the target running if no thread says we should stop.  Of course
3886   // if some thread's PerformAction actually sets the target running, then it
3887   // doesn't matter what the other threads say...
3888 
3889   bool still_should_stop = false;
3890 
3891   // Sometimes - for instance if we have a bug in the stub we are talking to,
3892   // we stop but no thread has a valid stop reason.  In that case we should
3893   // just stop, because we have no way of telling what the right thing to do
3894   // is, and it's better to let the user decide than continue behind their
3895   // backs.
3896 
3897   for (idx = 0; idx < not_suspended_thread_list.GetSize(); ++idx) {
3898     curr_thread_list = process_sp->GetThreadList();
3899     if (curr_thread_list.GetSize() != num_threads) {
3900       Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP |
3901                                                       LIBLLDB_LOG_PROCESS));
3902       LLDB_LOGF(
3903           log,
3904           "Number of threads changed from %u to %u while processing event.",
3905           num_threads, curr_thread_list.GetSize());
3906       break;
3907     }
3908 
3909     lldb::ThreadSP thread_sp = not_suspended_thread_list.GetThreadAtIndex(idx);
3910 
3911     if (thread_sp->GetIndexID() != thread_index_array[idx]) {
3912       Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP |
3913                                                       LIBLLDB_LOG_PROCESS));
3914       LLDB_LOGF(log,
3915                 "The thread at position %u changed from %u to %u while "
3916                 "processing event.",
3917                 idx, thread_index_array[idx], thread_sp->GetIndexID());
3918       break;
3919     }
3920 
3921     StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
3922     if (stop_info_sp && stop_info_sp->IsValid()) {
3923       found_valid_stopinfo = true;
3924       bool this_thread_wants_to_stop;
3925       if (stop_info_sp->GetOverrideShouldStop()) {
3926         this_thread_wants_to_stop =
3927             stop_info_sp->GetOverriddenShouldStopValue();
3928       } else {
3929         stop_info_sp->PerformAction(event_ptr);
3930         // The stop action might restart the target.  If it does, then we
3931         // want to mark that in the event so that whoever is receiving it
3932         // will know to wait for the running event and reflect that state
3933         // appropriately. We also need to stop processing actions, since they
3934         // aren't expecting the target to be running.
3935 
3936         // FIXME: we might have run.
3937         if (stop_info_sp->HasTargetRunSinceMe()) {
3938           SetRestarted(true);
3939           break;
3940         }
3941 
3942         this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr);
3943       }
3944 
3945       if (!still_should_stop)
3946         still_should_stop = this_thread_wants_to_stop;
3947     }
3948   }
3949 
3950   return still_should_stop;
3951 }
3952 
3953 void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) {
3954   ProcessSP process_sp(m_process_wp.lock());
3955 
3956   if (!process_sp)
3957     return;
3958 
3959   // This function gets called twice for each event, once when the event gets
3960   // pulled off of the private process event queue, and then any number of
3961   // times, first when it gets pulled off of the public event queue, then other
3962   // times when we're pretending that this is where we stopped at the end of
3963   // expression evaluation.  m_update_state is used to distinguish these three
3964   // cases; it is 0 when we're just pulling it off for private handling, and >
3965   // 1 for expression evaluation, and we don't want to do the breakpoint
3966   // command handling then.
3967   if (m_update_state != 1)
3968     return;
3969 
3970   process_sp->SetPublicState(
3971       m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr));
3972 
3973   if (m_state == eStateStopped && !m_restarted) {
3974     // Let process subclasses know we are about to do a public stop and do
3975     // anything they might need to in order to speed up register and memory
3976     // accesses.
3977     process_sp->WillPublicStop();
3978   }
3979 
3980   // If this is a halt event, even if the halt stopped with some reason other
3981   // than a plain interrupt (e.g. we had already stopped for a breakpoint when
3982   // the halt request came through) don't do the StopInfo actions, as they may
3983   // end up restarting the process.
3984   if (m_interrupted)
3985     return;
3986 
3987   // If we're not stopped or have restarted, then skip the StopInfo actions:
3988   if (m_state != eStateStopped || m_restarted) {
3989     return;
3990   }
3991 
3992   bool does_anybody_have_an_opinion = false;
3993   bool still_should_stop = ShouldStop(event_ptr, does_anybody_have_an_opinion);
3994 
3995   if (GetRestarted()) {
3996     return;
3997   }
3998 
3999   if (!still_should_stop && does_anybody_have_an_opinion) {
4000     // We've been asked to continue, so do that here.
4001     SetRestarted(true);
4002     // Use the public resume method here, since this is just extending a
4003     // public resume.
4004     process_sp->PrivateResume();
4005   } else {
4006     bool hijacked = process_sp->IsHijackedForEvent(eBroadcastBitStateChanged) &&
4007                     !process_sp->StateChangedIsHijackedForSynchronousResume();
4008 
4009     if (!hijacked) {
4010       // If we didn't restart, run the Stop Hooks here.
4011       // Don't do that if state changed events aren't hooked up to the
4012       // public (or SyncResume) broadcasters.  StopHooks are just for
4013       // real public stops.  They might also restart the target,
4014       // so watch for that.
4015       if (process_sp->GetTarget().RunStopHooks())
4016         SetRestarted(true);
4017     }
4018   }
4019 }
4020 
4021 void Process::ProcessEventData::Dump(Stream *s) const {
4022   ProcessSP process_sp(m_process_wp.lock());
4023 
4024   if (process_sp)
4025     s->Printf(" process = %p (pid = %" PRIu64 "), ",
4026               static_cast<void *>(process_sp.get()), process_sp->GetID());
4027   else
4028     s->PutCString(" process = NULL, ");
4029 
4030   s->Printf("state = %s", StateAsCString(GetState()));
4031 }
4032 
4033 const Process::ProcessEventData *
4034 Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) {
4035   if (event_ptr) {
4036     const EventData *event_data = event_ptr->GetData();
4037     if (event_data &&
4038         event_data->GetFlavor() == ProcessEventData::GetFlavorString())
4039       return static_cast<const ProcessEventData *>(event_ptr->GetData());
4040   }
4041   return nullptr;
4042 }
4043 
4044 ProcessSP
4045 Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) {
4046   ProcessSP process_sp;
4047   const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4048   if (data)
4049     process_sp = data->GetProcessSP();
4050   return process_sp;
4051 }
4052 
4053 StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) {
4054   const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4055   if (data == nullptr)
4056     return eStateInvalid;
4057   else
4058     return data->GetState();
4059 }
4060 
4061 bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) {
4062   const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4063   if (data == nullptr)
4064     return false;
4065   else
4066     return data->GetRestarted();
4067 }
4068 
4069 void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr,
4070                                                     bool new_value) {
4071   ProcessEventData *data =
4072       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4073   if (data != nullptr)
4074     data->SetRestarted(new_value);
4075 }
4076 
4077 size_t
4078 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) {
4079   ProcessEventData *data =
4080       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4081   if (data != nullptr)
4082     return data->GetNumRestartedReasons();
4083   else
4084     return 0;
4085 }
4086 
4087 const char *
4088 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr,
4089                                                      size_t idx) {
4090   ProcessEventData *data =
4091       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4092   if (data != nullptr)
4093     return data->GetRestartedReasonAtIndex(idx);
4094   else
4095     return nullptr;
4096 }
4097 
4098 void Process::ProcessEventData::AddRestartedReason(Event *event_ptr,
4099                                                    const char *reason) {
4100   ProcessEventData *data =
4101       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4102   if (data != nullptr)
4103     data->AddRestartedReason(reason);
4104 }
4105 
4106 bool Process::ProcessEventData::GetInterruptedFromEvent(
4107     const Event *event_ptr) {
4108   const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4109   if (data == nullptr)
4110     return false;
4111   else
4112     return data->GetInterrupted();
4113 }
4114 
4115 void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr,
4116                                                       bool new_value) {
4117   ProcessEventData *data =
4118       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4119   if (data != nullptr)
4120     data->SetInterrupted(new_value);
4121 }
4122 
4123 bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) {
4124   ProcessEventData *data =
4125       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4126   if (data) {
4127     data->SetUpdateStateOnRemoval();
4128     return true;
4129   }
4130   return false;
4131 }
4132 
4133 lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); }
4134 
4135 void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) {
4136   exe_ctx.SetTargetPtr(&GetTarget());
4137   exe_ctx.SetProcessPtr(this);
4138   exe_ctx.SetThreadPtr(nullptr);
4139   exe_ctx.SetFramePtr(nullptr);
4140 }
4141 
4142 // uint32_t
4143 // Process::ListProcessesMatchingName (const char *name, StringList &matches,
4144 // std::vector<lldb::pid_t> &pids)
4145 //{
4146 //    return 0;
4147 //}
4148 //
4149 // ArchSpec
4150 // Process::GetArchSpecForExistingProcess (lldb::pid_t pid)
4151 //{
4152 //    return Host::GetArchSpecForExistingProcess (pid);
4153 //}
4154 //
4155 // ArchSpec
4156 // Process::GetArchSpecForExistingProcess (const char *process_name)
4157 //{
4158 //    return Host::GetArchSpecForExistingProcess (process_name);
4159 //}
4160 
4161 void Process::AppendSTDOUT(const char *s, size_t len) {
4162   std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4163   m_stdout_data.append(s, len);
4164   BroadcastEventIfUnique(eBroadcastBitSTDOUT,
4165                          new ProcessEventData(shared_from_this(), GetState()));
4166 }
4167 
4168 void Process::AppendSTDERR(const char *s, size_t len) {
4169   std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4170   m_stderr_data.append(s, len);
4171   BroadcastEventIfUnique(eBroadcastBitSTDERR,
4172                          new ProcessEventData(shared_from_this(), GetState()));
4173 }
4174 
4175 void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) {
4176   std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex);
4177   m_profile_data.push_back(one_profile_data);
4178   BroadcastEventIfUnique(eBroadcastBitProfileData,
4179                          new ProcessEventData(shared_from_this(), GetState()));
4180 }
4181 
4182 void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp,
4183                                       const StructuredDataPluginSP &plugin_sp) {
4184   BroadcastEvent(
4185       eBroadcastBitStructuredData,
4186       new EventDataStructuredData(shared_from_this(), object_sp, plugin_sp));
4187 }
4188 
4189 StructuredDataPluginSP
4190 Process::GetStructuredDataPlugin(ConstString type_name) const {
4191   auto find_it = m_structured_data_plugin_map.find(type_name);
4192   if (find_it != m_structured_data_plugin_map.end())
4193     return find_it->second;
4194   else
4195     return StructuredDataPluginSP();
4196 }
4197 
4198 size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) {
4199   std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex);
4200   if (m_profile_data.empty())
4201     return 0;
4202 
4203   std::string &one_profile_data = m_profile_data.front();
4204   size_t bytes_available = one_profile_data.size();
4205   if (bytes_available > 0) {
4206     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
4207     LLDB_LOGF(log, "Process::GetProfileData (buf = %p, size = %" PRIu64 ")",
4208               static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4209     if (bytes_available > buf_size) {
4210       memcpy(buf, one_profile_data.c_str(), buf_size);
4211       one_profile_data.erase(0, buf_size);
4212       bytes_available = buf_size;
4213     } else {
4214       memcpy(buf, one_profile_data.c_str(), bytes_available);
4215       m_profile_data.erase(m_profile_data.begin());
4216     }
4217   }
4218   return bytes_available;
4219 }
4220 
4221 // Process STDIO
4222 
4223 size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) {
4224   std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4225   size_t bytes_available = m_stdout_data.size();
4226   if (bytes_available > 0) {
4227     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
4228     LLDB_LOGF(log, "Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")",
4229               static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4230     if (bytes_available > buf_size) {
4231       memcpy(buf, m_stdout_data.c_str(), buf_size);
4232       m_stdout_data.erase(0, buf_size);
4233       bytes_available = buf_size;
4234     } else {
4235       memcpy(buf, m_stdout_data.c_str(), bytes_available);
4236       m_stdout_data.clear();
4237     }
4238   }
4239   return bytes_available;
4240 }
4241 
4242 size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) {
4243   std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex);
4244   size_t bytes_available = m_stderr_data.size();
4245   if (bytes_available > 0) {
4246     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
4247     LLDB_LOGF(log, "Process::GetSTDERR (buf = %p, size = %" PRIu64 ")",
4248               static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4249     if (bytes_available > buf_size) {
4250       memcpy(buf, m_stderr_data.c_str(), buf_size);
4251       m_stderr_data.erase(0, buf_size);
4252       bytes_available = buf_size;
4253     } else {
4254       memcpy(buf, m_stderr_data.c_str(), bytes_available);
4255       m_stderr_data.clear();
4256     }
4257   }
4258   return bytes_available;
4259 }
4260 
4261 void Process::STDIOReadThreadBytesReceived(void *baton, const void *src,
4262                                            size_t src_len) {
4263   Process *process = (Process *)baton;
4264   process->AppendSTDOUT(static_cast<const char *>(src), src_len);
4265 }
4266 
4267 class IOHandlerProcessSTDIO : public IOHandler {
4268 public:
4269   IOHandlerProcessSTDIO(Process *process, int write_fd)
4270       : IOHandler(process->GetTarget().GetDebugger(),
4271                   IOHandler::Type::ProcessIO),
4272         m_process(process),
4273         m_read_file(GetInputFD(), File::eOpenOptionRead, false),
4274         m_write_file(write_fd, File::eOpenOptionWrite, false) {
4275     m_pipe.CreateNew(false);
4276   }
4277 
4278   ~IOHandlerProcessSTDIO() override = default;
4279 
4280   // Each IOHandler gets to run until it is done. It should read data from the
4281   // "in" and place output into "out" and "err and return when done.
4282   void Run() override {
4283     if (!m_read_file.IsValid() || !m_write_file.IsValid() ||
4284         !m_pipe.CanRead() || !m_pipe.CanWrite()) {
4285       SetIsDone(true);
4286       return;
4287     }
4288 
4289     SetIsDone(false);
4290     const int read_fd = m_read_file.GetDescriptor();
4291     TerminalState terminal_state;
4292     terminal_state.Save(read_fd, false);
4293     Terminal terminal(read_fd);
4294     terminal.SetCanonical(false);
4295     terminal.SetEcho(false);
4296 // FD_ZERO, FD_SET are not supported on windows
4297 #ifndef _WIN32
4298     const int pipe_read_fd = m_pipe.GetReadFileDescriptor();
4299     m_is_running = true;
4300     while (!GetIsDone()) {
4301       SelectHelper select_helper;
4302       select_helper.FDSetRead(read_fd);
4303       select_helper.FDSetRead(pipe_read_fd);
4304       Status error = select_helper.Select();
4305 
4306       if (error.Fail()) {
4307         SetIsDone(true);
4308       } else {
4309         char ch = 0;
4310         size_t n;
4311         if (select_helper.FDIsSetRead(read_fd)) {
4312           n = 1;
4313           if (m_read_file.Read(&ch, n).Success() && n == 1) {
4314             if (m_write_file.Write(&ch, n).Fail() || n != 1)
4315               SetIsDone(true);
4316           } else
4317             SetIsDone(true);
4318         }
4319         if (select_helper.FDIsSetRead(pipe_read_fd)) {
4320           size_t bytes_read;
4321           // Consume the interrupt byte
4322           Status error = m_pipe.Read(&ch, 1, bytes_read);
4323           if (error.Success()) {
4324             switch (ch) {
4325             case 'q':
4326               SetIsDone(true);
4327               break;
4328             case 'i':
4329               if (StateIsRunningState(m_process->GetState()))
4330                 m_process->SendAsyncInterrupt();
4331               break;
4332             }
4333           }
4334         }
4335       }
4336     }
4337     m_is_running = false;
4338 #endif
4339     terminal_state.Restore();
4340   }
4341 
4342   void Cancel() override {
4343     SetIsDone(true);
4344     // Only write to our pipe to cancel if we are in
4345     // IOHandlerProcessSTDIO::Run(). We can end up with a python command that
4346     // is being run from the command interpreter:
4347     //
4348     // (lldb) step_process_thousands_of_times
4349     //
4350     // In this case the command interpreter will be in the middle of handling
4351     // the command and if the process pushes and pops the IOHandler thousands
4352     // of times, we can end up writing to m_pipe without ever consuming the
4353     // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up
4354     // deadlocking when the pipe gets fed up and blocks until data is consumed.
4355     if (m_is_running) {
4356       char ch = 'q'; // Send 'q' for quit
4357       size_t bytes_written = 0;
4358       m_pipe.Write(&ch, 1, bytes_written);
4359     }
4360   }
4361 
4362   bool Interrupt() override {
4363     // Do only things that are safe to do in an interrupt context (like in a
4364     // SIGINT handler), like write 1 byte to a file descriptor. This will
4365     // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte
4366     // that was written to the pipe and then call
4367     // m_process->SendAsyncInterrupt() from a much safer location in code.
4368     if (m_active) {
4369       char ch = 'i'; // Send 'i' for interrupt
4370       size_t bytes_written = 0;
4371       Status result = m_pipe.Write(&ch, 1, bytes_written);
4372       return result.Success();
4373     } else {
4374       // This IOHandler might be pushed on the stack, but not being run
4375       // currently so do the right thing if we aren't actively watching for
4376       // STDIN by sending the interrupt to the process. Otherwise the write to
4377       // the pipe above would do nothing. This can happen when the command
4378       // interpreter is running and gets a "expression ...". It will be on the
4379       // IOHandler thread and sending the input is complete to the delegate
4380       // which will cause the expression to run, which will push the process IO
4381       // handler, but not run it.
4382 
4383       if (StateIsRunningState(m_process->GetState())) {
4384         m_process->SendAsyncInterrupt();
4385         return true;
4386       }
4387     }
4388     return false;
4389   }
4390 
4391   void GotEOF() override {}
4392 
4393 protected:
4394   Process *m_process;
4395   NativeFile m_read_file;  // Read from this file (usually actual STDIN for LLDB
4396   NativeFile m_write_file; // Write to this file (usually the master pty for
4397                            // getting io to debuggee)
4398   Pipe m_pipe;
4399   std::atomic<bool> m_is_running{false};
4400 };
4401 
4402 void Process::SetSTDIOFileDescriptor(int fd) {
4403   // First set up the Read Thread for reading/handling process I/O
4404   m_stdio_communication.SetConnection(
4405       std::make_unique<ConnectionFileDescriptor>(fd, true));
4406   if (m_stdio_communication.IsConnected()) {
4407     m_stdio_communication.SetReadThreadBytesReceivedCallback(
4408         STDIOReadThreadBytesReceived, this);
4409     m_stdio_communication.StartReadThread();
4410 
4411     // Now read thread is set up, set up input reader.
4412 
4413     if (!m_process_input_reader)
4414       m_process_input_reader =
4415           std::make_shared<IOHandlerProcessSTDIO>(this, fd);
4416   }
4417 }
4418 
4419 bool Process::ProcessIOHandlerIsActive() {
4420   IOHandlerSP io_handler_sp(m_process_input_reader);
4421   if (io_handler_sp)
4422     return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp);
4423   return false;
4424 }
4425 bool Process::PushProcessIOHandler() {
4426   IOHandlerSP io_handler_sp(m_process_input_reader);
4427   if (io_handler_sp) {
4428     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
4429     LLDB_LOGF(log, "Process::%s pushing IO handler", __FUNCTION__);
4430 
4431     io_handler_sp->SetIsDone(false);
4432     // If we evaluate an utility function, then we don't cancel the current
4433     // IOHandler. Our IOHandler is non-interactive and shouldn't disturb the
4434     // existing IOHandler that potentially provides the user interface (e.g.
4435     // the IOHandler for Editline).
4436     bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction();
4437     GetTarget().GetDebugger().RunIOHandlerAsync(io_handler_sp,
4438                                                 cancel_top_handler);
4439     return true;
4440   }
4441   return false;
4442 }
4443 
4444 bool Process::PopProcessIOHandler() {
4445   IOHandlerSP io_handler_sp(m_process_input_reader);
4446   if (io_handler_sp)
4447     return GetTarget().GetDebugger().RemoveIOHandler(io_handler_sp);
4448   return false;
4449 }
4450 
4451 // The process needs to know about installed plug-ins
4452 void Process::SettingsInitialize() { Thread::SettingsInitialize(); }
4453 
4454 void Process::SettingsTerminate() { Thread::SettingsTerminate(); }
4455 
4456 namespace {
4457 // RestorePlanState is used to record the "is private", "is master" and "okay
4458 // to discard" fields of the plan we are running, and reset it on Clean or on
4459 // destruction. It will only reset the state once, so you can call Clean and
4460 // then monkey with the state and it won't get reset on you again.
4461 
4462 class RestorePlanState {
4463 public:
4464   RestorePlanState(lldb::ThreadPlanSP thread_plan_sp)
4465       : m_thread_plan_sp(thread_plan_sp), m_already_reset(false) {
4466     if (m_thread_plan_sp) {
4467       m_private = m_thread_plan_sp->GetPrivate();
4468       m_is_master = m_thread_plan_sp->IsMasterPlan();
4469       m_okay_to_discard = m_thread_plan_sp->OkayToDiscard();
4470     }
4471   }
4472 
4473   ~RestorePlanState() { Clean(); }
4474 
4475   void Clean() {
4476     if (!m_already_reset && m_thread_plan_sp) {
4477       m_already_reset = true;
4478       m_thread_plan_sp->SetPrivate(m_private);
4479       m_thread_plan_sp->SetIsMasterPlan(m_is_master);
4480       m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard);
4481     }
4482   }
4483 
4484 private:
4485   lldb::ThreadPlanSP m_thread_plan_sp;
4486   bool m_already_reset;
4487   bool m_private;
4488   bool m_is_master;
4489   bool m_okay_to_discard;
4490 };
4491 } // anonymous namespace
4492 
4493 static microseconds
4494 GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) {
4495   const milliseconds default_one_thread_timeout(250);
4496 
4497   // If the overall wait is forever, then we don't need to worry about it.
4498   if (!options.GetTimeout()) {
4499     return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout()
4500                                          : default_one_thread_timeout;
4501   }
4502 
4503   // If the one thread timeout is set, use it.
4504   if (options.GetOneThreadTimeout())
4505     return *options.GetOneThreadTimeout();
4506 
4507   // Otherwise use half the total timeout, bounded by the
4508   // default_one_thread_timeout.
4509   return std::min<microseconds>(default_one_thread_timeout,
4510                                 *options.GetTimeout() / 2);
4511 }
4512 
4513 static Timeout<std::micro>
4514 GetExpressionTimeout(const EvaluateExpressionOptions &options,
4515                      bool before_first_timeout) {
4516   // If we are going to run all threads the whole time, or if we are only going
4517   // to run one thread, we can just return the overall timeout.
4518   if (!options.GetStopOthers() || !options.GetTryAllThreads())
4519     return options.GetTimeout();
4520 
4521   if (before_first_timeout)
4522     return GetOneThreadExpressionTimeout(options);
4523 
4524   if (!options.GetTimeout())
4525     return llvm::None;
4526   else
4527     return *options.GetTimeout() - GetOneThreadExpressionTimeout(options);
4528 }
4529 
4530 static llvm::Optional<ExpressionResults>
4531 HandleStoppedEvent(lldb::tid_t thread_id, const ThreadPlanSP &thread_plan_sp,
4532                    RestorePlanState &restorer, const EventSP &event_sp,
4533                    EventSP &event_to_broadcast_sp,
4534                    const EvaluateExpressionOptions &options,
4535                    bool handle_interrupts) {
4536   Log *log = GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | LIBLLDB_LOG_PROCESS);
4537 
4538   ThreadSP thread_sp = thread_plan_sp->GetTarget()
4539                            .GetProcessSP()
4540                            ->GetThreadList()
4541                            .FindThreadByID(thread_id);
4542   if (!thread_sp) {
4543     LLDB_LOG(log,
4544              "The thread on which we were running the "
4545              "expression: tid = {0}, exited while "
4546              "the expression was running.",
4547              thread_id);
4548     return eExpressionThreadVanished;
4549   }
4550 
4551   ThreadPlanSP plan = thread_sp->GetCompletedPlan();
4552   if (plan == thread_plan_sp && plan->PlanSucceeded()) {
4553     LLDB_LOG(log, "execution completed successfully");
4554 
4555     // Restore the plan state so it will get reported as intended when we are
4556     // done.
4557     restorer.Clean();
4558     return eExpressionCompleted;
4559   }
4560 
4561   StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
4562   if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint &&
4563       stop_info_sp->ShouldNotify(event_sp.get())) {
4564     LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription());
4565     if (!options.DoesIgnoreBreakpoints()) {
4566       // Restore the plan state and then force Private to false.  We are going
4567       // to stop because of this plan so we need it to become a public plan or
4568       // it won't report correctly when we continue to its termination later
4569       // on.
4570       restorer.Clean();
4571       thread_plan_sp->SetPrivate(false);
4572       event_to_broadcast_sp = event_sp;
4573     }
4574     return eExpressionHitBreakpoint;
4575   }
4576 
4577   if (!handle_interrupts &&
4578       Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get()))
4579     return llvm::None;
4580 
4581   LLDB_LOG(log, "thread plan did not successfully complete");
4582   if (!options.DoesUnwindOnError())
4583     event_to_broadcast_sp = event_sp;
4584   return eExpressionInterrupted;
4585 }
4586 
4587 ExpressionResults
4588 Process::RunThreadPlan(ExecutionContext &exe_ctx,
4589                        lldb::ThreadPlanSP &thread_plan_sp,
4590                        const EvaluateExpressionOptions &options,
4591                        DiagnosticManager &diagnostic_manager) {
4592   ExpressionResults return_value = eExpressionSetupError;
4593 
4594   std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock);
4595 
4596   if (!thread_plan_sp) {
4597     diagnostic_manager.PutString(
4598         eDiagnosticSeverityError,
4599         "RunThreadPlan called with empty thread plan.");
4600     return eExpressionSetupError;
4601   }
4602 
4603   if (!thread_plan_sp->ValidatePlan(nullptr)) {
4604     diagnostic_manager.PutString(
4605         eDiagnosticSeverityError,
4606         "RunThreadPlan called with an invalid thread plan.");
4607     return eExpressionSetupError;
4608   }
4609 
4610   if (exe_ctx.GetProcessPtr() != this) {
4611     diagnostic_manager.PutString(eDiagnosticSeverityError,
4612                                  "RunThreadPlan called on wrong process.");
4613     return eExpressionSetupError;
4614   }
4615 
4616   Thread *thread = exe_ctx.GetThreadPtr();
4617   if (thread == nullptr) {
4618     diagnostic_manager.PutString(eDiagnosticSeverityError,
4619                                  "RunThreadPlan called with invalid thread.");
4620     return eExpressionSetupError;
4621   }
4622 
4623   // Record the thread's id so we can tell when a thread we were using
4624   // to run the expression exits during the expression evaluation.
4625   lldb::tid_t expr_thread_id = thread->GetID();
4626 
4627   // We need to change some of the thread plan attributes for the thread plan
4628   // runner.  This will restore them when we are done:
4629 
4630   RestorePlanState thread_plan_restorer(thread_plan_sp);
4631 
4632   // We rely on the thread plan we are running returning "PlanCompleted" if
4633   // when it successfully completes. For that to be true the plan can't be
4634   // private - since private plans suppress themselves in the GetCompletedPlan
4635   // call.
4636 
4637   thread_plan_sp->SetPrivate(false);
4638 
4639   // The plans run with RunThreadPlan also need to be terminal master plans or
4640   // when they are done we will end up asking the plan above us whether we
4641   // should stop, which may give the wrong answer.
4642 
4643   thread_plan_sp->SetIsMasterPlan(true);
4644   thread_plan_sp->SetOkayToDiscard(false);
4645 
4646   // If we are running some utility expression for LLDB, we now have to mark
4647   // this in the ProcesModID of this process. This RAII takes care of marking
4648   // and reverting the mark it once we are done running the expression.
4649   UtilityFunctionScope util_scope(options.IsForUtilityExpr() ? this : nullptr);
4650 
4651   if (m_private_state.GetValue() != eStateStopped) {
4652     diagnostic_manager.PutString(
4653         eDiagnosticSeverityError,
4654         "RunThreadPlan called while the private state was not stopped.");
4655     return eExpressionSetupError;
4656   }
4657 
4658   // Save the thread & frame from the exe_ctx for restoration after we run
4659   const uint32_t thread_idx_id = thread->GetIndexID();
4660   StackFrameSP selected_frame_sp = thread->GetSelectedFrame();
4661   if (!selected_frame_sp) {
4662     thread->SetSelectedFrame(nullptr);
4663     selected_frame_sp = thread->GetSelectedFrame();
4664     if (!selected_frame_sp) {
4665       diagnostic_manager.Printf(
4666           eDiagnosticSeverityError,
4667           "RunThreadPlan called without a selected frame on thread %d",
4668           thread_idx_id);
4669       return eExpressionSetupError;
4670     }
4671   }
4672 
4673   // Make sure the timeout values make sense. The one thread timeout needs to
4674   // be smaller than the overall timeout.
4675   if (options.GetOneThreadTimeout() && options.GetTimeout() &&
4676       *options.GetTimeout() < *options.GetOneThreadTimeout()) {
4677     diagnostic_manager.PutString(eDiagnosticSeverityError,
4678                                  "RunThreadPlan called with one thread "
4679                                  "timeout greater than total timeout");
4680     return eExpressionSetupError;
4681   }
4682 
4683   StackID ctx_frame_id = selected_frame_sp->GetStackID();
4684 
4685   // N.B. Running the target may unset the currently selected thread and frame.
4686   // We don't want to do that either, so we should arrange to reset them as
4687   // well.
4688 
4689   lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread();
4690 
4691   uint32_t selected_tid;
4692   StackID selected_stack_id;
4693   if (selected_thread_sp) {
4694     selected_tid = selected_thread_sp->GetIndexID();
4695     selected_stack_id = selected_thread_sp->GetSelectedFrame()->GetStackID();
4696   } else {
4697     selected_tid = LLDB_INVALID_THREAD_ID;
4698   }
4699 
4700   HostThread backup_private_state_thread;
4701   lldb::StateType old_state = eStateInvalid;
4702   lldb::ThreadPlanSP stopper_base_plan_sp;
4703 
4704   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP |
4705                                                   LIBLLDB_LOG_PROCESS));
4706   if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) {
4707     // Yikes, we are running on the private state thread!  So we can't wait for
4708     // public events on this thread, since we are the thread that is generating
4709     // public events. The simplest thing to do is to spin up a temporary thread
4710     // to handle private state thread events while we are fielding public
4711     // events here.
4712     LLDB_LOGF(log, "Running thread plan on private state thread, spinning up "
4713                    "another state thread to handle the events.");
4714 
4715     backup_private_state_thread = m_private_state_thread;
4716 
4717     // One other bit of business: we want to run just this thread plan and
4718     // anything it pushes, and then stop, returning control here. But in the
4719     // normal course of things, the plan above us on the stack would be given a
4720     // shot at the stop event before deciding to stop, and we don't want that.
4721     // So we insert a "stopper" base plan on the stack before the plan we want
4722     // to run.  Since base plans always stop and return control to the user,
4723     // that will do just what we want.
4724     stopper_base_plan_sp.reset(new ThreadPlanBase(*thread));
4725     thread->QueueThreadPlan(stopper_base_plan_sp, false);
4726     // Have to make sure our public state is stopped, since otherwise the
4727     // reporting logic below doesn't work correctly.
4728     old_state = m_public_state.GetValue();
4729     m_public_state.SetValueNoLock(eStateStopped);
4730 
4731     // Now spin up the private state thread:
4732     StartPrivateStateThread(true);
4733   }
4734 
4735   thread->QueueThreadPlan(
4736       thread_plan_sp, false); // This used to pass "true" does that make sense?
4737 
4738   if (options.GetDebug()) {
4739     // In this case, we aren't actually going to run, we just want to stop
4740     // right away. Flush this thread so we will refetch the stacks and show the
4741     // correct backtrace.
4742     // FIXME: To make this prettier we should invent some stop reason for this,
4743     // but that
4744     // is only cosmetic, and this functionality is only of use to lldb
4745     // developers who can live with not pretty...
4746     thread->Flush();
4747     return eExpressionStoppedForDebug;
4748   }
4749 
4750   ListenerSP listener_sp(
4751       Listener::MakeListener("lldb.process.listener.run-thread-plan"));
4752 
4753   lldb::EventSP event_to_broadcast_sp;
4754 
4755   {
4756     // This process event hijacker Hijacks the Public events and its destructor
4757     // makes sure that the process events get restored on exit to the function.
4758     //
4759     // If the event needs to propagate beyond the hijacker (e.g., the process
4760     // exits during execution), then the event is put into
4761     // event_to_broadcast_sp for rebroadcasting.
4762 
4763     ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp);
4764 
4765     if (log) {
4766       StreamString s;
4767       thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose);
4768       LLDB_LOGF(log,
4769                 "Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64
4770                 " to run thread plan \"%s\".",
4771                 thread_idx_id, expr_thread_id, s.GetData());
4772     }
4773 
4774     bool got_event;
4775     lldb::EventSP event_sp;
4776     lldb::StateType stop_state = lldb::eStateInvalid;
4777 
4778     bool before_first_timeout = true; // This is set to false the first time
4779                                       // that we have to halt the target.
4780     bool do_resume = true;
4781     bool handle_running_event = true;
4782 
4783     // This is just for accounting:
4784     uint32_t num_resumes = 0;
4785 
4786     // If we are going to run all threads the whole time, or if we are only
4787     // going to run one thread, then we don't need the first timeout.  So we
4788     // pretend we are after the first timeout already.
4789     if (!options.GetStopOthers() || !options.GetTryAllThreads())
4790       before_first_timeout = false;
4791 
4792     LLDB_LOGF(log, "Stop others: %u, try all: %u, before_first: %u.\n",
4793               options.GetStopOthers(), options.GetTryAllThreads(),
4794               before_first_timeout);
4795 
4796     // This isn't going to work if there are unfetched events on the queue. Are
4797     // there cases where we might want to run the remaining events here, and
4798     // then try to call the function?  That's probably being too tricky for our
4799     // own good.
4800 
4801     Event *other_events = listener_sp->PeekAtNextEvent();
4802     if (other_events != nullptr) {
4803       diagnostic_manager.PutString(
4804           eDiagnosticSeverityError,
4805           "RunThreadPlan called with pending events on the queue.");
4806       return eExpressionSetupError;
4807     }
4808 
4809     // We also need to make sure that the next event is delivered.  We might be
4810     // calling a function as part of a thread plan, in which case the last
4811     // delivered event could be the running event, and we don't want event
4812     // coalescing to cause us to lose OUR running event...
4813     ForceNextEventDelivery();
4814 
4815 // This while loop must exit out the bottom, there's cleanup that we need to do
4816 // when we are done. So don't call return anywhere within it.
4817 
4818 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT
4819     // It's pretty much impossible to write test cases for things like: One
4820     // thread timeout expires, I go to halt, but the process already stopped on
4821     // the function call stop breakpoint.  Turning on this define will make us
4822     // not fetch the first event till after the halt.  So if you run a quick
4823     // function, it will have completed, and the completion event will be
4824     // waiting, when you interrupt for halt. The expression evaluation should
4825     // still succeed.
4826     bool miss_first_event = true;
4827 #endif
4828     while (true) {
4829       // We usually want to resume the process if we get to the top of the
4830       // loop. The only exception is if we get two running events with no
4831       // intervening stop, which can happen, we will just wait for then next
4832       // stop event.
4833       LLDB_LOGF(log,
4834                 "Top of while loop: do_resume: %i handle_running_event: %i "
4835                 "before_first_timeout: %i.",
4836                 do_resume, handle_running_event, before_first_timeout);
4837 
4838       if (do_resume || handle_running_event) {
4839         // Do the initial resume and wait for the running event before going
4840         // further.
4841 
4842         if (do_resume) {
4843           num_resumes++;
4844           Status resume_error = PrivateResume();
4845           if (!resume_error.Success()) {
4846             diagnostic_manager.Printf(
4847                 eDiagnosticSeverityError,
4848                 "couldn't resume inferior the %d time: \"%s\".", num_resumes,
4849                 resume_error.AsCString());
4850             return_value = eExpressionSetupError;
4851             break;
4852           }
4853         }
4854 
4855         got_event =
4856             listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout());
4857         if (!got_event) {
4858           LLDB_LOGF(log,
4859                     "Process::RunThreadPlan(): didn't get any event after "
4860                     "resume %" PRIu32 ", exiting.",
4861                     num_resumes);
4862 
4863           diagnostic_manager.Printf(eDiagnosticSeverityError,
4864                                     "didn't get any event after resume %" PRIu32
4865                                     ", exiting.",
4866                                     num_resumes);
4867           return_value = eExpressionSetupError;
4868           break;
4869         }
4870 
4871         stop_state =
4872             Process::ProcessEventData::GetStateFromEvent(event_sp.get());
4873 
4874         if (stop_state != eStateRunning) {
4875           bool restarted = false;
4876 
4877           if (stop_state == eStateStopped) {
4878             restarted = Process::ProcessEventData::GetRestartedFromEvent(
4879                 event_sp.get());
4880             LLDB_LOGF(
4881                 log,
4882                 "Process::RunThreadPlan(): didn't get running event after "
4883                 "resume %d, got %s instead (restarted: %i, do_resume: %i, "
4884                 "handle_running_event: %i).",
4885                 num_resumes, StateAsCString(stop_state), restarted, do_resume,
4886                 handle_running_event);
4887           }
4888 
4889           if (restarted) {
4890             // This is probably an overabundance of caution, I don't think I
4891             // should ever get a stopped & restarted event here.  But if I do,
4892             // the best thing is to Halt and then get out of here.
4893             const bool clear_thread_plans = false;
4894             const bool use_run_lock = false;
4895             Halt(clear_thread_plans, use_run_lock);
4896           }
4897 
4898           diagnostic_manager.Printf(
4899               eDiagnosticSeverityError,
4900               "didn't get running event after initial resume, got %s instead.",
4901               StateAsCString(stop_state));
4902           return_value = eExpressionSetupError;
4903           break;
4904         }
4905 
4906         if (log)
4907           log->PutCString("Process::RunThreadPlan(): resuming succeeded.");
4908         // We need to call the function synchronously, so spin waiting for it
4909         // to return. If we get interrupted while executing, we're going to
4910         // lose our context, and won't be able to gather the result at this
4911         // point. We set the timeout AFTER the resume, since the resume takes
4912         // some time and we don't want to charge that to the timeout.
4913       } else {
4914         if (log)
4915           log->PutCString("Process::RunThreadPlan(): waiting for next event.");
4916       }
4917 
4918       do_resume = true;
4919       handle_running_event = true;
4920 
4921       // Now wait for the process to stop again:
4922       event_sp.reset();
4923 
4924       Timeout<std::micro> timeout =
4925           GetExpressionTimeout(options, before_first_timeout);
4926       if (log) {
4927         if (timeout) {
4928           auto now = system_clock::now();
4929           LLDB_LOGF(log,
4930                     "Process::RunThreadPlan(): about to wait - now is %s - "
4931                     "endpoint is %s",
4932                     llvm::to_string(now).c_str(),
4933                     llvm::to_string(now + *timeout).c_str());
4934         } else {
4935           LLDB_LOGF(log, "Process::RunThreadPlan(): about to wait forever.");
4936         }
4937       }
4938 
4939 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT
4940       // See comment above...
4941       if (miss_first_event) {
4942         std::this_thread::sleep_for(std::chrono::milliseconds(1));
4943         miss_first_event = false;
4944         got_event = false;
4945       } else
4946 #endif
4947         got_event = listener_sp->GetEvent(event_sp, timeout);
4948 
4949       if (got_event) {
4950         if (event_sp) {
4951           bool keep_going = false;
4952           if (event_sp->GetType() == eBroadcastBitInterrupt) {
4953             const bool clear_thread_plans = false;
4954             const bool use_run_lock = false;
4955             Halt(clear_thread_plans, use_run_lock);
4956             return_value = eExpressionInterrupted;
4957             diagnostic_manager.PutString(eDiagnosticSeverityRemark,
4958                                          "execution halted by user interrupt.");
4959             LLDB_LOGF(log, "Process::RunThreadPlan(): Got  interrupted by "
4960                            "eBroadcastBitInterrupted, exiting.");
4961             break;
4962           } else {
4963             stop_state =
4964                 Process::ProcessEventData::GetStateFromEvent(event_sp.get());
4965             LLDB_LOGF(log,
4966                       "Process::RunThreadPlan(): in while loop, got event: %s.",
4967                       StateAsCString(stop_state));
4968 
4969             switch (stop_state) {
4970             case lldb::eStateStopped: {
4971               if (Process::ProcessEventData::GetRestartedFromEvent(
4972                       event_sp.get())) {
4973                 // If we were restarted, we just need to go back up to fetch
4974                 // another event.
4975                 LLDB_LOGF(log, "Process::RunThreadPlan(): Got a stop and "
4976                                "restart, so we'll continue waiting.");
4977                 keep_going = true;
4978                 do_resume = false;
4979                 handle_running_event = true;
4980               } else {
4981                 const bool handle_interrupts = true;
4982                 return_value = *HandleStoppedEvent(
4983                     expr_thread_id, thread_plan_sp, thread_plan_restorer,
4984                     event_sp, event_to_broadcast_sp, options,
4985                     handle_interrupts);
4986                 if (return_value == eExpressionThreadVanished)
4987                   keep_going = false;
4988               }
4989             } break;
4990 
4991             case lldb::eStateRunning:
4992               // This shouldn't really happen, but sometimes we do get two
4993               // running events without an intervening stop, and in that case
4994               // we should just go back to waiting for the stop.
4995               do_resume = false;
4996               keep_going = true;
4997               handle_running_event = false;
4998               break;
4999 
5000             default:
5001               LLDB_LOGF(log,
5002                         "Process::RunThreadPlan(): execution stopped with "
5003                         "unexpected state: %s.",
5004                         StateAsCString(stop_state));
5005 
5006               if (stop_state == eStateExited)
5007                 event_to_broadcast_sp = event_sp;
5008 
5009               diagnostic_manager.PutString(
5010                   eDiagnosticSeverityError,
5011                   "execution stopped with unexpected state.");
5012               return_value = eExpressionInterrupted;
5013               break;
5014             }
5015           }
5016 
5017           if (keep_going)
5018             continue;
5019           else
5020             break;
5021         } else {
5022           if (log)
5023             log->PutCString("Process::RunThreadPlan(): got_event was true, but "
5024                             "the event pointer was null.  How odd...");
5025           return_value = eExpressionInterrupted;
5026           break;
5027         }
5028       } else {
5029         // If we didn't get an event that means we've timed out... We will
5030         // interrupt the process here.  Depending on what we were asked to do
5031         // we will either exit, or try with all threads running for the same
5032         // timeout.
5033 
5034         if (log) {
5035           if (options.GetTryAllThreads()) {
5036             if (before_first_timeout) {
5037               LLDB_LOG(log,
5038                        "Running function with one thread timeout timed out.");
5039             } else
5040               LLDB_LOG(log, "Restarting function with all threads enabled and "
5041                             "timeout: {0} timed out, abandoning execution.",
5042                        timeout);
5043           } else
5044             LLDB_LOG(log, "Running function with timeout: {0} timed out, "
5045                           "abandoning execution.",
5046                      timeout);
5047         }
5048 
5049         // It is possible that between the time we issued the Halt, and we get
5050         // around to calling Halt the target could have stopped.  That's fine,
5051         // Halt will figure that out and send the appropriate Stopped event.
5052         // BUT it is also possible that we stopped & restarted (e.g. hit a
5053         // signal with "stop" set to false.)  In
5054         // that case, we'll get the stopped & restarted event, and we should go
5055         // back to waiting for the Halt's stopped event.  That's what this
5056         // while loop does.
5057 
5058         bool back_to_top = true;
5059         uint32_t try_halt_again = 0;
5060         bool do_halt = true;
5061         const uint32_t num_retries = 5;
5062         while (try_halt_again < num_retries) {
5063           Status halt_error;
5064           if (do_halt) {
5065             LLDB_LOGF(log, "Process::RunThreadPlan(): Running Halt.");
5066             const bool clear_thread_plans = false;
5067             const bool use_run_lock = false;
5068             Halt(clear_thread_plans, use_run_lock);
5069           }
5070           if (halt_error.Success()) {
5071             if (log)
5072               log->PutCString("Process::RunThreadPlan(): Halt succeeded.");
5073 
5074             got_event =
5075                 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout());
5076 
5077             if (got_event) {
5078               stop_state =
5079                   Process::ProcessEventData::GetStateFromEvent(event_sp.get());
5080               if (log) {
5081                 LLDB_LOGF(log,
5082                           "Process::RunThreadPlan(): Stopped with event: %s",
5083                           StateAsCString(stop_state));
5084                 if (stop_state == lldb::eStateStopped &&
5085                     Process::ProcessEventData::GetInterruptedFromEvent(
5086                         event_sp.get()))
5087                   log->PutCString("    Event was the Halt interruption event.");
5088               }
5089 
5090               if (stop_state == lldb::eStateStopped) {
5091                 if (Process::ProcessEventData::GetRestartedFromEvent(
5092                         event_sp.get())) {
5093                   if (log)
5094                     log->PutCString("Process::RunThreadPlan(): Went to halt "
5095                                     "but got a restarted event, there must be "
5096                                     "an un-restarted stopped event so try "
5097                                     "again...  "
5098                                     "Exiting wait loop.");
5099                   try_halt_again++;
5100                   do_halt = false;
5101                   continue;
5102                 }
5103 
5104                 // Between the time we initiated the Halt and the time we
5105                 // delivered it, the process could have already finished its
5106                 // job.  Check that here:
5107                 const bool handle_interrupts = false;
5108                 if (auto result = HandleStoppedEvent(
5109                         expr_thread_id, thread_plan_sp, thread_plan_restorer,
5110                         event_sp, event_to_broadcast_sp, options,
5111                         handle_interrupts)) {
5112                   return_value = *result;
5113                   back_to_top = false;
5114                   break;
5115                 }
5116 
5117                 if (!options.GetTryAllThreads()) {
5118                   if (log)
5119                     log->PutCString("Process::RunThreadPlan(): try_all_threads "
5120                                     "was false, we stopped so now we're "
5121                                     "quitting.");
5122                   return_value = eExpressionInterrupted;
5123                   back_to_top = false;
5124                   break;
5125                 }
5126 
5127                 if (before_first_timeout) {
5128                   // Set all the other threads to run, and return to the top of
5129                   // the loop, which will continue;
5130                   before_first_timeout = false;
5131                   thread_plan_sp->SetStopOthers(false);
5132                   if (log)
5133                     log->PutCString(
5134                         "Process::RunThreadPlan(): about to resume.");
5135 
5136                   back_to_top = true;
5137                   break;
5138                 } else {
5139                   // Running all threads failed, so return Interrupted.
5140                   if (log)
5141                     log->PutCString("Process::RunThreadPlan(): running all "
5142                                     "threads timed out.");
5143                   return_value = eExpressionInterrupted;
5144                   back_to_top = false;
5145                   break;
5146                 }
5147               }
5148             } else {
5149               if (log)
5150                 log->PutCString("Process::RunThreadPlan(): halt said it "
5151                                 "succeeded, but I got no event.  "
5152                                 "I'm getting out of here passing Interrupted.");
5153               return_value = eExpressionInterrupted;
5154               back_to_top = false;
5155               break;
5156             }
5157           } else {
5158             try_halt_again++;
5159             continue;
5160           }
5161         }
5162 
5163         if (!back_to_top || try_halt_again > num_retries)
5164           break;
5165         else
5166           continue;
5167       }
5168     } // END WAIT LOOP
5169 
5170     // If we had to start up a temporary private state thread to run this
5171     // thread plan, shut it down now.
5172     if (backup_private_state_thread.IsJoinable()) {
5173       StopPrivateStateThread();
5174       Status error;
5175       m_private_state_thread = backup_private_state_thread;
5176       if (stopper_base_plan_sp) {
5177         thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp);
5178       }
5179       if (old_state != eStateInvalid)
5180         m_public_state.SetValueNoLock(old_state);
5181     }
5182 
5183     // If our thread went away on us, we need to get out of here without
5184     // doing any more work.  We don't have to clean up the thread plan, that
5185     // will have happened when the Thread was destroyed.
5186     if (return_value == eExpressionThreadVanished) {
5187       return return_value;
5188     }
5189 
5190     if (return_value != eExpressionCompleted && log) {
5191       // Print a backtrace into the log so we can figure out where we are:
5192       StreamString s;
5193       s.PutCString("Thread state after unsuccessful completion: \n");
5194       thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX);
5195       log->PutString(s.GetString());
5196     }
5197     // Restore the thread state if we are going to discard the plan execution.
5198     // There are three cases where this could happen: 1) The execution
5199     // successfully completed 2) We hit a breakpoint, and ignore_breakpoints
5200     // was true 3) We got some other error, and discard_on_error was true
5201     bool should_unwind = (return_value == eExpressionInterrupted &&
5202                           options.DoesUnwindOnError()) ||
5203                          (return_value == eExpressionHitBreakpoint &&
5204                           options.DoesIgnoreBreakpoints());
5205 
5206     if (return_value == eExpressionCompleted || should_unwind) {
5207       thread_plan_sp->RestoreThreadState();
5208     }
5209 
5210     // Now do some processing on the results of the run:
5211     if (return_value == eExpressionInterrupted ||
5212         return_value == eExpressionHitBreakpoint) {
5213       if (log) {
5214         StreamString s;
5215         if (event_sp)
5216           event_sp->Dump(&s);
5217         else {
5218           log->PutCString("Process::RunThreadPlan(): Stop event that "
5219                           "interrupted us is NULL.");
5220         }
5221 
5222         StreamString ts;
5223 
5224         const char *event_explanation = nullptr;
5225 
5226         do {
5227           if (!event_sp) {
5228             event_explanation = "<no event>";
5229             break;
5230           } else if (event_sp->GetType() == eBroadcastBitInterrupt) {
5231             event_explanation = "<user interrupt>";
5232             break;
5233           } else {
5234             const Process::ProcessEventData *event_data =
5235                 Process::ProcessEventData::GetEventDataFromEvent(
5236                     event_sp.get());
5237 
5238             if (!event_data) {
5239               event_explanation = "<no event data>";
5240               break;
5241             }
5242 
5243             Process *process = event_data->GetProcessSP().get();
5244 
5245             if (!process) {
5246               event_explanation = "<no process>";
5247               break;
5248             }
5249 
5250             ThreadList &thread_list = process->GetThreadList();
5251 
5252             uint32_t num_threads = thread_list.GetSize();
5253             uint32_t thread_index;
5254 
5255             ts.Printf("<%u threads> ", num_threads);
5256 
5257             for (thread_index = 0; thread_index < num_threads; ++thread_index) {
5258               Thread *thread = thread_list.GetThreadAtIndex(thread_index).get();
5259 
5260               if (!thread) {
5261                 ts.Printf("<?> ");
5262                 continue;
5263               }
5264 
5265               ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID());
5266               RegisterContext *register_context =
5267                   thread->GetRegisterContext().get();
5268 
5269               if (register_context)
5270                 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC());
5271               else
5272                 ts.Printf("[ip unknown] ");
5273 
5274               // Show the private stop info here, the public stop info will be
5275               // from the last natural stop.
5276               lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo();
5277               if (stop_info_sp) {
5278                 const char *stop_desc = stop_info_sp->GetDescription();
5279                 if (stop_desc)
5280                   ts.PutCString(stop_desc);
5281               }
5282               ts.Printf(">");
5283             }
5284 
5285             event_explanation = ts.GetData();
5286           }
5287         } while (false);
5288 
5289         if (event_explanation)
5290           LLDB_LOGF(log,
5291                     "Process::RunThreadPlan(): execution interrupted: %s %s",
5292                     s.GetData(), event_explanation);
5293         else
5294           LLDB_LOGF(log, "Process::RunThreadPlan(): execution interrupted: %s",
5295                     s.GetData());
5296       }
5297 
5298       if (should_unwind) {
5299         LLDB_LOGF(log,
5300                   "Process::RunThreadPlan: ExecutionInterrupted - "
5301                   "discarding thread plans up to %p.",
5302                   static_cast<void *>(thread_plan_sp.get()));
5303         thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5304       } else {
5305         LLDB_LOGF(log,
5306                   "Process::RunThreadPlan: ExecutionInterrupted - for "
5307                   "plan: %p not discarding.",
5308                   static_cast<void *>(thread_plan_sp.get()));
5309       }
5310     } else if (return_value == eExpressionSetupError) {
5311       if (log)
5312         log->PutCString("Process::RunThreadPlan(): execution set up error.");
5313 
5314       if (options.DoesUnwindOnError()) {
5315         thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5316       }
5317     } else {
5318       if (thread->IsThreadPlanDone(thread_plan_sp.get())) {
5319         if (log)
5320           log->PutCString("Process::RunThreadPlan(): thread plan is done");
5321         return_value = eExpressionCompleted;
5322       } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) {
5323         if (log)
5324           log->PutCString(
5325               "Process::RunThreadPlan(): thread plan was discarded");
5326         return_value = eExpressionDiscarded;
5327       } else {
5328         if (log)
5329           log->PutCString(
5330               "Process::RunThreadPlan(): thread plan stopped in mid course");
5331         if (options.DoesUnwindOnError() && thread_plan_sp) {
5332           if (log)
5333             log->PutCString("Process::RunThreadPlan(): discarding thread plan "
5334                             "'cause unwind_on_error is set.");
5335           thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5336         }
5337       }
5338     }
5339 
5340     // Thread we ran the function in may have gone away because we ran the
5341     // target Check that it's still there, and if it is put it back in the
5342     // context. Also restore the frame in the context if it is still present.
5343     thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get();
5344     if (thread) {
5345       exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id));
5346     }
5347 
5348     // Also restore the current process'es selected frame & thread, since this
5349     // function calling may be done behind the user's back.
5350 
5351     if (selected_tid != LLDB_INVALID_THREAD_ID) {
5352       if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) &&
5353           selected_stack_id.IsValid()) {
5354         // We were able to restore the selected thread, now restore the frame:
5355         std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex());
5356         StackFrameSP old_frame_sp =
5357             GetThreadList().GetSelectedThread()->GetFrameWithStackID(
5358                 selected_stack_id);
5359         if (old_frame_sp)
5360           GetThreadList().GetSelectedThread()->SetSelectedFrame(
5361               old_frame_sp.get());
5362       }
5363     }
5364   }
5365 
5366   // If the process exited during the run of the thread plan, notify everyone.
5367 
5368   if (event_to_broadcast_sp) {
5369     if (log)
5370       log->PutCString("Process::RunThreadPlan(): rebroadcasting event.");
5371     BroadcastEvent(event_to_broadcast_sp);
5372   }
5373 
5374   return return_value;
5375 }
5376 
5377 const char *Process::ExecutionResultAsCString(ExpressionResults result) {
5378   const char *result_name = "<unknown>";
5379 
5380   switch (result) {
5381   case eExpressionCompleted:
5382     result_name = "eExpressionCompleted";
5383     break;
5384   case eExpressionDiscarded:
5385     result_name = "eExpressionDiscarded";
5386     break;
5387   case eExpressionInterrupted:
5388     result_name = "eExpressionInterrupted";
5389     break;
5390   case eExpressionHitBreakpoint:
5391     result_name = "eExpressionHitBreakpoint";
5392     break;
5393   case eExpressionSetupError:
5394     result_name = "eExpressionSetupError";
5395     break;
5396   case eExpressionParseError:
5397     result_name = "eExpressionParseError";
5398     break;
5399   case eExpressionResultUnavailable:
5400     result_name = "eExpressionResultUnavailable";
5401     break;
5402   case eExpressionTimedOut:
5403     result_name = "eExpressionTimedOut";
5404     break;
5405   case eExpressionStoppedForDebug:
5406     result_name = "eExpressionStoppedForDebug";
5407     break;
5408   case eExpressionThreadVanished:
5409     result_name = "eExpressionThreadVanished";
5410   }
5411   return result_name;
5412 }
5413 
5414 void Process::GetStatus(Stream &strm) {
5415   const StateType state = GetState();
5416   if (StateIsStoppedState(state, false)) {
5417     if (state == eStateExited) {
5418       int exit_status = GetExitStatus();
5419       const char *exit_description = GetExitDescription();
5420       strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n",
5421                   GetID(), exit_status, exit_status,
5422                   exit_description ? exit_description : "");
5423     } else {
5424       if (state == eStateConnected)
5425         strm.Printf("Connected to remote target.\n");
5426       else
5427         strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state));
5428     }
5429   } else {
5430     strm.Printf("Process %" PRIu64 " is running.\n", GetID());
5431   }
5432 }
5433 
5434 size_t Process::GetThreadStatus(Stream &strm,
5435                                 bool only_threads_with_stop_reason,
5436                                 uint32_t start_frame, uint32_t num_frames,
5437                                 uint32_t num_frames_with_source,
5438                                 bool stop_format) {
5439   size_t num_thread_infos_dumped = 0;
5440 
5441   // You can't hold the thread list lock while calling Thread::GetStatus.  That
5442   // very well might run code (e.g. if we need it to get return values or
5443   // arguments.)  For that to work the process has to be able to acquire it.
5444   // So instead copy the thread ID's, and look them up one by one:
5445 
5446   uint32_t num_threads;
5447   std::vector<lldb::tid_t> thread_id_array;
5448   // Scope for thread list locker;
5449   {
5450     std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex());
5451     ThreadList &curr_thread_list = GetThreadList();
5452     num_threads = curr_thread_list.GetSize();
5453     uint32_t idx;
5454     thread_id_array.resize(num_threads);
5455     for (idx = 0; idx < num_threads; ++idx)
5456       thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID();
5457   }
5458 
5459   for (uint32_t i = 0; i < num_threads; i++) {
5460     ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i]));
5461     if (thread_sp) {
5462       if (only_threads_with_stop_reason) {
5463         StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
5464         if (!stop_info_sp || !stop_info_sp->IsValid())
5465           continue;
5466       }
5467       thread_sp->GetStatus(strm, start_frame, num_frames,
5468                            num_frames_with_source,
5469                            stop_format);
5470       ++num_thread_infos_dumped;
5471     } else {
5472       Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS));
5473       LLDB_LOGF(log, "Process::GetThreadStatus - thread 0x" PRIu64
5474                      " vanished while running Thread::GetStatus.");
5475     }
5476   }
5477   return num_thread_infos_dumped;
5478 }
5479 
5480 void Process::AddInvalidMemoryRegion(const LoadRange &region) {
5481   m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize());
5482 }
5483 
5484 bool Process::RemoveInvalidMemoryRange(const LoadRange &region) {
5485   return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(),
5486                                            region.GetByteSize());
5487 }
5488 
5489 void Process::AddPreResumeAction(PreResumeActionCallback callback,
5490                                  void *baton) {
5491   m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton));
5492 }
5493 
5494 bool Process::RunPreResumeActions() {
5495   bool result = true;
5496   while (!m_pre_resume_actions.empty()) {
5497     struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back();
5498     m_pre_resume_actions.pop_back();
5499     bool this_result = action.callback(action.baton);
5500     if (result)
5501       result = this_result;
5502   }
5503   return result;
5504 }
5505 
5506 void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); }
5507 
5508 void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton)
5509 {
5510     PreResumeCallbackAndBaton element(callback, baton);
5511     auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element);
5512     if (found_iter != m_pre_resume_actions.end())
5513     {
5514         m_pre_resume_actions.erase(found_iter);
5515     }
5516 }
5517 
5518 ProcessRunLock &Process::GetRunLock() {
5519   if (m_private_state_thread.EqualsThread(Host::GetCurrentThread()))
5520     return m_private_run_lock;
5521   else
5522     return m_public_run_lock;
5523 }
5524 
5525 bool Process::CurrentThreadIsPrivateStateThread()
5526 {
5527   return m_private_state_thread.EqualsThread(Host::GetCurrentThread());
5528 }
5529 
5530 
5531 void Process::Flush() {
5532   m_thread_list.Flush();
5533   m_extended_thread_list.Flush();
5534   m_extended_thread_stop_id = 0;
5535   m_queue_list.Clear();
5536   m_queue_list_stop_id = 0;
5537 }
5538 
5539 void Process::DidExec() {
5540   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
5541   LLDB_LOGF(log, "Process::%s()", __FUNCTION__);
5542 
5543   Target &target = GetTarget();
5544   target.CleanupProcess();
5545   target.ClearModules(false);
5546   m_dynamic_checkers_up.reset();
5547   m_abi_sp.reset();
5548   m_system_runtime_up.reset();
5549   m_os_up.reset();
5550   m_dyld_up.reset();
5551   m_jit_loaders_up.reset();
5552   m_image_tokens.clear();
5553   m_allocated_memory_cache.Clear();
5554   {
5555     std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
5556     m_language_runtimes.clear();
5557   }
5558   m_instrumentation_runtimes.clear();
5559   m_thread_list.DiscardThreadPlans();
5560   m_memory_cache.Clear(true);
5561   DoDidExec();
5562   CompleteAttach();
5563   // Flush the process (threads and all stack frames) after running
5564   // CompleteAttach() in case the dynamic loader loaded things in new
5565   // locations.
5566   Flush();
5567 
5568   // After we figure out what was loaded/unloaded in CompleteAttach, we need to
5569   // let the target know so it can do any cleanup it needs to.
5570   target.DidExec();
5571 }
5572 
5573 addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) {
5574   if (address == nullptr) {
5575     error.SetErrorString("Invalid address argument");
5576     return LLDB_INVALID_ADDRESS;
5577   }
5578 
5579   addr_t function_addr = LLDB_INVALID_ADDRESS;
5580 
5581   addr_t addr = address->GetLoadAddress(&GetTarget());
5582   std::map<addr_t, addr_t>::const_iterator iter =
5583       m_resolved_indirect_addresses.find(addr);
5584   if (iter != m_resolved_indirect_addresses.end()) {
5585     function_addr = (*iter).second;
5586   } else {
5587     if (!CallVoidArgVoidPtrReturn(address, function_addr)) {
5588       Symbol *symbol = address->CalculateSymbolContextSymbol();
5589       error.SetErrorStringWithFormat(
5590           "Unable to call resolver for indirect function %s",
5591           symbol ? symbol->GetName().AsCString() : "<UNKNOWN>");
5592       function_addr = LLDB_INVALID_ADDRESS;
5593     } else {
5594       m_resolved_indirect_addresses.insert(
5595           std::pair<addr_t, addr_t>(addr, function_addr));
5596     }
5597   }
5598   return function_addr;
5599 }
5600 
5601 void Process::ModulesDidLoad(ModuleList &module_list) {
5602   // Inform the system runtime of the modified modules.
5603   SystemRuntime *sys_runtime = GetSystemRuntime();
5604   if (sys_runtime)
5605     sys_runtime->ModulesDidLoad(module_list);
5606 
5607   GetJITLoaders().ModulesDidLoad(module_list);
5608 
5609   // Give the instrumentation runtimes a chance to be created before informing
5610   // them of the modified modules.
5611   InstrumentationRuntime::ModulesDidLoad(module_list, this,
5612                                          m_instrumentation_runtimes);
5613   for (auto &runtime : m_instrumentation_runtimes)
5614     runtime.second->ModulesDidLoad(module_list);
5615 
5616   // Give the language runtimes a chance to be created before informing them of
5617   // the modified modules.
5618   for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) {
5619     if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type))
5620       runtime->ModulesDidLoad(module_list);
5621   }
5622 
5623   // If we don't have an operating system plug-in, try to load one since
5624   // loading shared libraries might cause a new one to try and load
5625   if (!m_os_up)
5626     LoadOperatingSystemPlugin(false);
5627 
5628   // Inform the structured-data plugins of the modified modules.
5629   for (auto pair : m_structured_data_plugin_map) {
5630     if (pair.second)
5631       pair.second->ModulesDidLoad(*this, module_list);
5632   }
5633 }
5634 
5635 void Process::PrintWarning(uint64_t warning_type, const void *repeat_key,
5636                            const char *fmt, ...) {
5637   bool print_warning = true;
5638 
5639   StreamSP stream_sp = GetTarget().GetDebugger().GetAsyncOutputStream();
5640   if (!stream_sp)
5641     return;
5642 
5643   if (repeat_key != nullptr) {
5644     WarningsCollection::iterator it = m_warnings_issued.find(warning_type);
5645     if (it == m_warnings_issued.end()) {
5646       m_warnings_issued[warning_type] = WarningsPointerSet();
5647       m_warnings_issued[warning_type].insert(repeat_key);
5648     } else {
5649       if (it->second.find(repeat_key) != it->second.end()) {
5650         print_warning = false;
5651       } else {
5652         it->second.insert(repeat_key);
5653       }
5654     }
5655   }
5656 
5657   if (print_warning) {
5658     va_list args;
5659     va_start(args, fmt);
5660     stream_sp->PrintfVarArg(fmt, args);
5661     va_end(args);
5662   }
5663 }
5664 
5665 void Process::PrintWarningOptimization(const SymbolContext &sc) {
5666   if (!GetWarningsOptimization())
5667     return;
5668   if (!sc.module_sp)
5669     return;
5670   if (!sc.module_sp->GetFileSpec().GetFilename().IsEmpty() && sc.function &&
5671       sc.function->GetIsOptimized()) {
5672     PrintWarning(Process::Warnings::eWarningsOptimization, sc.module_sp.get(),
5673                  "%s was compiled with optimization - stepping may behave "
5674                  "oddly; variables may not be available.\n",
5675                  sc.module_sp->GetFileSpec().GetFilename().GetCString());
5676   }
5677 }
5678 
5679 void Process::PrintWarningUnsupportedLanguage(const SymbolContext &sc) {
5680   if (!GetWarningsUnsupportedLanguage())
5681     return;
5682   if (!sc.module_sp)
5683     return;
5684   LanguageType language = sc.GetLanguage();
5685   if (language == eLanguageTypeUnknown)
5686     return;
5687   auto type_system_or_err = sc.module_sp->GetTypeSystemForLanguage(language);
5688   if (auto err = type_system_or_err.takeError()) {
5689     llvm::consumeError(std::move(err));
5690     PrintWarning(Process::Warnings::eWarningsUnsupportedLanguage,
5691                  sc.module_sp.get(),
5692                  "This version of LLDB has no plugin for the %s language. "
5693                  "Inspection of frame variables will be limited.\n",
5694                  Language::GetNameForLanguageType(language));
5695   }
5696 }
5697 
5698 bool Process::GetProcessInfo(ProcessInstanceInfo &info) {
5699   info.Clear();
5700 
5701   PlatformSP platform_sp = GetTarget().GetPlatform();
5702   if (!platform_sp)
5703     return false;
5704 
5705   return platform_sp->GetProcessInfo(GetID(), info);
5706 }
5707 
5708 ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) {
5709   ThreadCollectionSP threads;
5710 
5711   const MemoryHistorySP &memory_history =
5712       MemoryHistory::FindPlugin(shared_from_this());
5713 
5714   if (!memory_history) {
5715     return threads;
5716   }
5717 
5718   threads = std::make_shared<ThreadCollection>(
5719       memory_history->GetHistoryThreads(addr));
5720 
5721   return threads;
5722 }
5723 
5724 InstrumentationRuntimeSP
5725 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) {
5726   InstrumentationRuntimeCollection::iterator pos;
5727   pos = m_instrumentation_runtimes.find(type);
5728   if (pos == m_instrumentation_runtimes.end()) {
5729     return InstrumentationRuntimeSP();
5730   } else
5731     return (*pos).second;
5732 }
5733 
5734 bool Process::GetModuleSpec(const FileSpec &module_file_spec,
5735                             const ArchSpec &arch, ModuleSpec &module_spec) {
5736   module_spec.Clear();
5737   return false;
5738 }
5739 
5740 size_t Process::AddImageToken(lldb::addr_t image_ptr) {
5741   m_image_tokens.push_back(image_ptr);
5742   return m_image_tokens.size() - 1;
5743 }
5744 
5745 lldb::addr_t Process::GetImagePtrFromToken(size_t token) const {
5746   if (token < m_image_tokens.size())
5747     return m_image_tokens[token];
5748   return LLDB_INVALID_ADDRESS;
5749 }
5750 
5751 void Process::ResetImageToken(size_t token) {
5752   if (token < m_image_tokens.size())
5753     m_image_tokens[token] = LLDB_INVALID_ADDRESS;
5754 }
5755 
5756 Address
5757 Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr,
5758                                                AddressRange range_bounds) {
5759   Target &target = GetTarget();
5760   DisassemblerSP disassembler_sp;
5761   InstructionList *insn_list = nullptr;
5762 
5763   Address retval = default_stop_addr;
5764 
5765   if (!target.GetUseFastStepping())
5766     return retval;
5767   if (!default_stop_addr.IsValid())
5768     return retval;
5769 
5770   const char *plugin_name = nullptr;
5771   const char *flavor = nullptr;
5772   const bool prefer_file_cache = true;
5773   disassembler_sp = Disassembler::DisassembleRange(
5774       target.GetArchitecture(), plugin_name, flavor, GetTarget(), range_bounds,
5775       prefer_file_cache);
5776   if (disassembler_sp)
5777     insn_list = &disassembler_sp->GetInstructionList();
5778 
5779   if (insn_list == nullptr) {
5780     return retval;
5781   }
5782 
5783   size_t insn_offset =
5784       insn_list->GetIndexOfInstructionAtAddress(default_stop_addr);
5785   if (insn_offset == UINT32_MAX) {
5786     return retval;
5787   }
5788 
5789   uint32_t branch_index = insn_list->GetIndexOfNextBranchInstruction(
5790       insn_offset, false /* ignore_calls*/, nullptr);
5791   if (branch_index == UINT32_MAX) {
5792     return retval;
5793   }
5794 
5795   if (branch_index > insn_offset) {
5796     Address next_branch_insn_address =
5797         insn_list->GetInstructionAtIndex(branch_index)->GetAddress();
5798     if (next_branch_insn_address.IsValid() &&
5799         range_bounds.ContainsFileAddress(next_branch_insn_address)) {
5800       retval = next_branch_insn_address;
5801     }
5802   }
5803 
5804   return retval;
5805 }
5806 
5807 Status
5808 Process::GetMemoryRegions(lldb_private::MemoryRegionInfos &region_list) {
5809 
5810   Status error;
5811 
5812   lldb::addr_t range_end = 0;
5813 
5814   region_list.clear();
5815   do {
5816     lldb_private::MemoryRegionInfo region_info;
5817     error = GetMemoryRegionInfo(range_end, region_info);
5818     // GetMemoryRegionInfo should only return an error if it is unimplemented.
5819     if (error.Fail()) {
5820       region_list.clear();
5821       break;
5822     }
5823 
5824     range_end = region_info.GetRange().GetRangeEnd();
5825     if (region_info.GetMapped() == MemoryRegionInfo::eYes) {
5826       region_list.push_back(std::move(region_info));
5827     }
5828   } while (range_end != LLDB_INVALID_ADDRESS);
5829 
5830   return error;
5831 }
5832 
5833 Status
5834 Process::ConfigureStructuredData(ConstString type_name,
5835                                  const StructuredData::ObjectSP &config_sp) {
5836   // If you get this, the Process-derived class needs to implement a method to
5837   // enable an already-reported asynchronous structured data feature. See
5838   // ProcessGDBRemote for an example implementation over gdb-remote.
5839   return Status("unimplemented");
5840 }
5841 
5842 void Process::MapSupportedStructuredDataPlugins(
5843     const StructuredData::Array &supported_type_names) {
5844   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS));
5845 
5846   // Bail out early if there are no type names to map.
5847   if (supported_type_names.GetSize() == 0) {
5848     LLDB_LOGF(log, "Process::%s(): no structured data types supported",
5849               __FUNCTION__);
5850     return;
5851   }
5852 
5853   // Convert StructuredData type names to ConstString instances.
5854   std::set<ConstString> const_type_names;
5855 
5856   LLDB_LOGF(log,
5857             "Process::%s(): the process supports the following async "
5858             "structured data types:",
5859             __FUNCTION__);
5860 
5861   supported_type_names.ForEach(
5862       [&const_type_names, &log](StructuredData::Object *object) {
5863         if (!object) {
5864           // Invalid - shouldn't be null objects in the array.
5865           return false;
5866         }
5867 
5868         auto type_name = object->GetAsString();
5869         if (!type_name) {
5870           // Invalid format - all type names should be strings.
5871           return false;
5872         }
5873 
5874         const_type_names.insert(ConstString(type_name->GetValue()));
5875         LLDB_LOG(log, "- {0}", type_name->GetValue());
5876         return true;
5877       });
5878 
5879   // For each StructuredDataPlugin, if the plugin handles any of the types in
5880   // the supported_type_names, map that type name to that plugin. Stop when
5881   // we've consumed all the type names.
5882   // FIXME: should we return an error if there are type names nobody
5883   // supports?
5884   for (uint32_t plugin_index = 0; !const_type_names.empty(); plugin_index++) {
5885     auto create_instance =
5886            PluginManager::GetStructuredDataPluginCreateCallbackAtIndex(
5887                plugin_index);
5888     if (!create_instance)
5889       break;
5890 
5891     // Create the plugin.
5892     StructuredDataPluginSP plugin_sp = (*create_instance)(*this);
5893     if (!plugin_sp) {
5894       // This plugin doesn't think it can work with the process. Move on to the
5895       // next.
5896       continue;
5897     }
5898 
5899     // For any of the remaining type names, map any that this plugin supports.
5900     std::vector<ConstString> names_to_remove;
5901     for (auto &type_name : const_type_names) {
5902       if (plugin_sp->SupportsStructuredDataType(type_name)) {
5903         m_structured_data_plugin_map.insert(
5904             std::make_pair(type_name, plugin_sp));
5905         names_to_remove.push_back(type_name);
5906         LLDB_LOGF(log,
5907                   "Process::%s(): using plugin %s for type name "
5908                   "%s",
5909                   __FUNCTION__, plugin_sp->GetPluginName().GetCString(),
5910                   type_name.GetCString());
5911       }
5912     }
5913 
5914     // Remove the type names that were consumed by this plugin.
5915     for (auto &type_name : names_to_remove)
5916       const_type_names.erase(type_name);
5917   }
5918 }
5919 
5920 bool Process::RouteAsyncStructuredData(
5921     const StructuredData::ObjectSP object_sp) {
5922   // Nothing to do if there's no data.
5923   if (!object_sp)
5924     return false;
5925 
5926   // The contract is this must be a dictionary, so we can look up the routing
5927   // key via the top-level 'type' string value within the dictionary.
5928   StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary();
5929   if (!dictionary)
5930     return false;
5931 
5932   // Grab the async structured type name (i.e. the feature/plugin name).
5933   ConstString type_name;
5934   if (!dictionary->GetValueForKeyAsString("type", type_name))
5935     return false;
5936 
5937   // Check if there's a plugin registered for this type name.
5938   auto find_it = m_structured_data_plugin_map.find(type_name);
5939   if (find_it == m_structured_data_plugin_map.end()) {
5940     // We don't have a mapping for this structured data type.
5941     return false;
5942   }
5943 
5944   // Route the structured data to the plugin.
5945   find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp);
5946   return true;
5947 }
5948 
5949 Status Process::UpdateAutomaticSignalFiltering() {
5950   // Default implementation does nothign.
5951   // No automatic signal filtering to speak of.
5952   return Status();
5953 }
5954 
5955 UtilityFunction *Process::GetLoadImageUtilityFunction(
5956     Platform *platform,
5957     llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory) {
5958   if (platform != GetTarget().GetPlatform().get())
5959     return nullptr;
5960   llvm::call_once(m_dlopen_utility_func_flag_once,
5961                   [&] { m_dlopen_utility_func_up = factory(); });
5962   return m_dlopen_utility_func_up.get();
5963 }
5964 
5965 llvm::Expected<TraceTypeInfo> Process::GetSupportedTraceType() {
5966   if (!IsLiveDebugSession())
5967     return llvm::createStringError(llvm::inconvertibleErrorCode(),
5968                                    "Can't trace a non-live process.");
5969   return llvm::make_error<UnimplementedError>();
5970 }
5971 
5972 bool Process::CallVoidArgVoidPtrReturn(const Address *address,
5973                                        addr_t &returned_func,
5974                                        bool trap_exceptions) {
5975   Thread *thread = GetThreadList().GetExpressionExecutionThread().get();
5976   if (thread == nullptr || address == nullptr)
5977     return false;
5978 
5979   EvaluateExpressionOptions options;
5980   options.SetStopOthers(true);
5981   options.SetUnwindOnError(true);
5982   options.SetIgnoreBreakpoints(true);
5983   options.SetTryAllThreads(true);
5984   options.SetDebug(false);
5985   options.SetTimeout(GetUtilityExpressionTimeout());
5986   options.SetTrapExceptions(trap_exceptions);
5987 
5988   auto type_system_or_err =
5989       GetTarget().GetScratchTypeSystemForLanguage(eLanguageTypeC);
5990   if (!type_system_or_err) {
5991     llvm::consumeError(type_system_or_err.takeError());
5992     return false;
5993   }
5994   CompilerType void_ptr_type =
5995       type_system_or_err->GetBasicTypeFromAST(eBasicTypeVoid).GetPointerType();
5996   lldb::ThreadPlanSP call_plan_sp(new ThreadPlanCallFunction(
5997       *thread, *address, void_ptr_type, llvm::ArrayRef<addr_t>(), options));
5998   if (call_plan_sp) {
5999     DiagnosticManager diagnostics;
6000 
6001     StackFrame *frame = thread->GetStackFrameAtIndex(0).get();
6002     if (frame) {
6003       ExecutionContext exe_ctx;
6004       frame->CalculateExecutionContext(exe_ctx);
6005       ExpressionResults result =
6006           RunThreadPlan(exe_ctx, call_plan_sp, options, diagnostics);
6007       if (result == eExpressionCompleted) {
6008         returned_func =
6009             call_plan_sp->GetReturnValueObject()->GetValueAsUnsigned(
6010                 LLDB_INVALID_ADDRESS);
6011 
6012         if (GetAddressByteSize() == 4) {
6013           if (returned_func == UINT32_MAX)
6014             return false;
6015         } else if (GetAddressByteSize() == 8) {
6016           if (returned_func == UINT64_MAX)
6017             return false;
6018         }
6019         return true;
6020       }
6021     }
6022   }
6023 
6024   return false;
6025 }
6026