1 //===-- Process.cpp -------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include <atomic>
10 #include <memory>
11 #include <mutex>
12 
13 #include "llvm/ADT/ScopeExit.h"
14 #include "llvm/Support/ScopedPrinter.h"
15 #include "llvm/Support/Threading.h"
16 
17 #include "lldb/Breakpoint/BreakpointLocation.h"
18 #include "lldb/Breakpoint/StoppointCallbackContext.h"
19 #include "lldb/Core/Debugger.h"
20 #include "lldb/Core/Module.h"
21 #include "lldb/Core/ModuleSpec.h"
22 #include "lldb/Core/PluginManager.h"
23 #include "lldb/Core/StreamFile.h"
24 #include "lldb/Expression/DiagnosticManager.h"
25 #include "lldb/Expression/DynamicCheckerFunctions.h"
26 #include "lldb/Expression/UserExpression.h"
27 #include "lldb/Expression/UtilityFunction.h"
28 #include "lldb/Host/ConnectionFileDescriptor.h"
29 #include "lldb/Host/FileSystem.h"
30 #include "lldb/Host/Host.h"
31 #include "lldb/Host/HostInfo.h"
32 #include "lldb/Host/OptionParser.h"
33 #include "lldb/Host/Pipe.h"
34 #include "lldb/Host/Terminal.h"
35 #include "lldb/Host/ThreadLauncher.h"
36 #include "lldb/Interpreter/CommandInterpreter.h"
37 #include "lldb/Interpreter/OptionArgParser.h"
38 #include "lldb/Interpreter/OptionValueProperties.h"
39 #include "lldb/Symbol/Function.h"
40 #include "lldb/Symbol/Symbol.h"
41 #include "lldb/Target/ABI.h"
42 #include "lldb/Target/AssertFrameRecognizer.h"
43 #include "lldb/Target/DynamicLoader.h"
44 #include "lldb/Target/InstrumentationRuntime.h"
45 #include "lldb/Target/JITLoader.h"
46 #include "lldb/Target/JITLoaderList.h"
47 #include "lldb/Target/Language.h"
48 #include "lldb/Target/LanguageRuntime.h"
49 #include "lldb/Target/MemoryHistory.h"
50 #include "lldb/Target/MemoryRegionInfo.h"
51 #include "lldb/Target/OperatingSystem.h"
52 #include "lldb/Target/Platform.h"
53 #include "lldb/Target/Process.h"
54 #include "lldb/Target/RegisterContext.h"
55 #include "lldb/Target/StopInfo.h"
56 #include "lldb/Target/StructuredDataPlugin.h"
57 #include "lldb/Target/SystemRuntime.h"
58 #include "lldb/Target/Target.h"
59 #include "lldb/Target/TargetList.h"
60 #include "lldb/Target/Thread.h"
61 #include "lldb/Target/ThreadPlan.h"
62 #include "lldb/Target/ThreadPlanBase.h"
63 #include "lldb/Target/ThreadPlanCallFunction.h"
64 #include "lldb/Target/ThreadPlanStack.h"
65 #include "lldb/Target/UnixSignals.h"
66 #include "lldb/Utility/Event.h"
67 #include "lldb/Utility/LLDBLog.h"
68 #include "lldb/Utility/Log.h"
69 #include "lldb/Utility/NameMatches.h"
70 #include "lldb/Utility/ProcessInfo.h"
71 #include "lldb/Utility/SelectHelper.h"
72 #include "lldb/Utility/State.h"
73 #include "lldb/Utility/Timer.h"
74 
75 using namespace lldb;
76 using namespace lldb_private;
77 using namespace std::chrono;
78 
79 // Comment out line below to disable memory caching, overriding the process
80 // setting target.process.disable-memory-cache
81 #define ENABLE_MEMORY_CACHING
82 
83 #ifdef ENABLE_MEMORY_CACHING
84 #define DISABLE_MEM_CACHE_DEFAULT false
85 #else
86 #define DISABLE_MEM_CACHE_DEFAULT true
87 #endif
88 
89 class ProcessOptionValueProperties
90     : public Cloneable<ProcessOptionValueProperties, OptionValueProperties> {
91 public:
92   ProcessOptionValueProperties(ConstString name) : Cloneable(name) {}
93 
94   const Property *GetPropertyAtIndex(const ExecutionContext *exe_ctx,
95                                      bool will_modify,
96                                      uint32_t idx) const override {
97     // When getting the value for a key from the process options, we will
98     // always try and grab the setting from the current process if there is
99     // one. Else we just use the one from this instance.
100     if (exe_ctx) {
101       Process *process = exe_ctx->GetProcessPtr();
102       if (process) {
103         ProcessOptionValueProperties *instance_properties =
104             static_cast<ProcessOptionValueProperties *>(
105                 process->GetValueProperties().get());
106         if (this != instance_properties)
107           return instance_properties->ProtectedGetPropertyAtIndex(idx);
108       }
109     }
110     return ProtectedGetPropertyAtIndex(idx);
111   }
112 };
113 
114 static constexpr OptionEnumValueElement g_follow_fork_mode_values[] = {
115     {
116         eFollowParent,
117         "parent",
118         "Continue tracing the parent process and detach the child.",
119     },
120     {
121         eFollowChild,
122         "child",
123         "Trace the child process and detach the parent.",
124     },
125 };
126 
127 #define LLDB_PROPERTIES_process
128 #include "TargetProperties.inc"
129 
130 enum {
131 #define LLDB_PROPERTIES_process
132 #include "TargetPropertiesEnum.inc"
133   ePropertyExperimental,
134 };
135 
136 #define LLDB_PROPERTIES_process_experimental
137 #include "TargetProperties.inc"
138 
139 enum {
140 #define LLDB_PROPERTIES_process_experimental
141 #include "TargetPropertiesEnum.inc"
142 };
143 
144 class ProcessExperimentalOptionValueProperties
145     : public Cloneable<ProcessExperimentalOptionValueProperties,
146                        OptionValueProperties> {
147 public:
148   ProcessExperimentalOptionValueProperties()
149       : Cloneable(
150             ConstString(Properties::GetExperimentalSettingsName())) {}
151 };
152 
153 ProcessExperimentalProperties::ProcessExperimentalProperties()
154     : Properties(OptionValuePropertiesSP(
155           new ProcessExperimentalOptionValueProperties())) {
156   m_collection_sp->Initialize(g_process_experimental_properties);
157 }
158 
159 ProcessProperties::ProcessProperties(lldb_private::Process *process)
160     : Properties(),
161       m_process(process) // Can be nullptr for global ProcessProperties
162 {
163   if (process == nullptr) {
164     // Global process properties, set them up one time
165     m_collection_sp =
166         std::make_shared<ProcessOptionValueProperties>(ConstString("process"));
167     m_collection_sp->Initialize(g_process_properties);
168     m_collection_sp->AppendProperty(
169         ConstString("thread"), ConstString("Settings specific to threads."),
170         true, Thread::GetGlobalProperties().GetValueProperties());
171   } else {
172     m_collection_sp =
173         OptionValueProperties::CreateLocalCopy(Process::GetGlobalProperties());
174     m_collection_sp->SetValueChangedCallback(
175         ePropertyPythonOSPluginPath,
176         [this] { m_process->LoadOperatingSystemPlugin(true); });
177   }
178 
179   m_experimental_properties_up =
180       std::make_unique<ProcessExperimentalProperties>();
181   m_collection_sp->AppendProperty(
182       ConstString(Properties::GetExperimentalSettingsName()),
183       ConstString("Experimental settings - setting these won't produce "
184                   "errors if the setting is not present."),
185       true, m_experimental_properties_up->GetValueProperties());
186 }
187 
188 ProcessProperties::~ProcessProperties() = default;
189 
190 bool ProcessProperties::GetDisableMemoryCache() const {
191   const uint32_t idx = ePropertyDisableMemCache;
192   return m_collection_sp->GetPropertyAtIndexAsBoolean(
193       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
194 }
195 
196 uint64_t ProcessProperties::GetMemoryCacheLineSize() const {
197   const uint32_t idx = ePropertyMemCacheLineSize;
198   return m_collection_sp->GetPropertyAtIndexAsUInt64(
199       nullptr, idx, g_process_properties[idx].default_uint_value);
200 }
201 
202 Args ProcessProperties::GetExtraStartupCommands() const {
203   Args args;
204   const uint32_t idx = ePropertyExtraStartCommand;
205   m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, args);
206   return args;
207 }
208 
209 void ProcessProperties::SetExtraStartupCommands(const Args &args) {
210   const uint32_t idx = ePropertyExtraStartCommand;
211   m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, args);
212 }
213 
214 FileSpec ProcessProperties::GetPythonOSPluginPath() const {
215   const uint32_t idx = ePropertyPythonOSPluginPath;
216   return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx);
217 }
218 
219 uint32_t ProcessProperties::GetVirtualAddressableBits() const {
220   const uint32_t idx = ePropertyVirtualAddressableBits;
221   return m_collection_sp->GetPropertyAtIndexAsUInt64(
222       nullptr, idx, g_process_properties[idx].default_uint_value);
223 }
224 
225 void ProcessProperties::SetVirtualAddressableBits(uint32_t bits) {
226   const uint32_t idx = ePropertyVirtualAddressableBits;
227   m_collection_sp->SetPropertyAtIndexAsUInt64(nullptr, idx, bits);
228 }
229 void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) {
230   const uint32_t idx = ePropertyPythonOSPluginPath;
231   m_collection_sp->SetPropertyAtIndexAsFileSpec(nullptr, idx, file);
232 }
233 
234 bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const {
235   const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions;
236   return m_collection_sp->GetPropertyAtIndexAsBoolean(
237       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
238 }
239 
240 void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) {
241   const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions;
242   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore);
243 }
244 
245 bool ProcessProperties::GetUnwindOnErrorInExpressions() const {
246   const uint32_t idx = ePropertyUnwindOnErrorInExpressions;
247   return m_collection_sp->GetPropertyAtIndexAsBoolean(
248       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
249 }
250 
251 void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) {
252   const uint32_t idx = ePropertyUnwindOnErrorInExpressions;
253   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore);
254 }
255 
256 bool ProcessProperties::GetStopOnSharedLibraryEvents() const {
257   const uint32_t idx = ePropertyStopOnSharedLibraryEvents;
258   return m_collection_sp->GetPropertyAtIndexAsBoolean(
259       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
260 }
261 
262 void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) {
263   const uint32_t idx = ePropertyStopOnSharedLibraryEvents;
264   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop);
265 }
266 
267 bool ProcessProperties::GetDisableLangRuntimeUnwindPlans() const {
268   const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans;
269   return m_collection_sp->GetPropertyAtIndexAsBoolean(
270       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
271 }
272 
273 void ProcessProperties::SetDisableLangRuntimeUnwindPlans(bool disable) {
274   const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans;
275   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, disable);
276   m_process->Flush();
277 }
278 
279 bool ProcessProperties::GetDetachKeepsStopped() const {
280   const uint32_t idx = ePropertyDetachKeepsStopped;
281   return m_collection_sp->GetPropertyAtIndexAsBoolean(
282       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
283 }
284 
285 void ProcessProperties::SetDetachKeepsStopped(bool stop) {
286   const uint32_t idx = ePropertyDetachKeepsStopped;
287   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop);
288 }
289 
290 bool ProcessProperties::GetWarningsOptimization() const {
291   const uint32_t idx = ePropertyWarningOptimization;
292   return m_collection_sp->GetPropertyAtIndexAsBoolean(
293       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
294 }
295 
296 bool ProcessProperties::GetWarningsUnsupportedLanguage() const {
297   const uint32_t idx = ePropertyWarningUnsupportedLanguage;
298   return m_collection_sp->GetPropertyAtIndexAsBoolean(
299       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
300 }
301 
302 bool ProcessProperties::GetStopOnExec() const {
303   const uint32_t idx = ePropertyStopOnExec;
304   return m_collection_sp->GetPropertyAtIndexAsBoolean(
305       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
306 }
307 
308 std::chrono::seconds ProcessProperties::GetUtilityExpressionTimeout() const {
309   const uint32_t idx = ePropertyUtilityExpressionTimeout;
310   uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64(
311       nullptr, idx, g_process_properties[idx].default_uint_value);
312   return std::chrono::seconds(value);
313 }
314 
315 std::chrono::seconds ProcessProperties::GetInterruptTimeout() const {
316   const uint32_t idx = ePropertyInterruptTimeout;
317   uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64(
318       nullptr, idx, g_process_properties[idx].default_uint_value);
319   return std::chrono::seconds(value);
320 }
321 
322 bool ProcessProperties::GetSteppingRunsAllThreads() const {
323   const uint32_t idx = ePropertySteppingRunsAllThreads;
324   return m_collection_sp->GetPropertyAtIndexAsBoolean(
325       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
326 }
327 
328 bool ProcessProperties::GetOSPluginReportsAllThreads() const {
329   const bool fail_value = true;
330   const Property *exp_property =
331       m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental);
332   OptionValueProperties *exp_values =
333       exp_property->GetValue()->GetAsProperties();
334   if (!exp_values)
335     return fail_value;
336 
337   return exp_values->GetPropertyAtIndexAsBoolean(
338       nullptr, ePropertyOSPluginReportsAllThreads, fail_value);
339 }
340 
341 void ProcessProperties::SetOSPluginReportsAllThreads(bool does_report) {
342   const Property *exp_property =
343       m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental);
344   OptionValueProperties *exp_values =
345       exp_property->GetValue()->GetAsProperties();
346   if (exp_values)
347     exp_values->SetPropertyAtIndexAsBoolean(
348         nullptr, ePropertyOSPluginReportsAllThreads, does_report);
349 }
350 
351 FollowForkMode ProcessProperties::GetFollowForkMode() const {
352   const uint32_t idx = ePropertyFollowForkMode;
353   return (FollowForkMode)m_collection_sp->GetPropertyAtIndexAsEnumeration(
354       nullptr, idx, g_process_properties[idx].default_uint_value);
355 }
356 
357 ProcessSP Process::FindPlugin(lldb::TargetSP target_sp,
358                               llvm::StringRef plugin_name,
359                               ListenerSP listener_sp,
360                               const FileSpec *crash_file_path,
361                               bool can_connect) {
362   static uint32_t g_process_unique_id = 0;
363 
364   ProcessSP process_sp;
365   ProcessCreateInstance create_callback = nullptr;
366   if (!plugin_name.empty()) {
367     create_callback =
368         PluginManager::GetProcessCreateCallbackForPluginName(plugin_name);
369     if (create_callback) {
370       process_sp = create_callback(target_sp, listener_sp, crash_file_path,
371                                    can_connect);
372       if (process_sp) {
373         if (process_sp->CanDebug(target_sp, true)) {
374           process_sp->m_process_unique_id = ++g_process_unique_id;
375         } else
376           process_sp.reset();
377       }
378     }
379   } else {
380     for (uint32_t idx = 0;
381          (create_callback =
382               PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr;
383          ++idx) {
384       process_sp = create_callback(target_sp, listener_sp, crash_file_path,
385                                    can_connect);
386       if (process_sp) {
387         if (process_sp->CanDebug(target_sp, false)) {
388           process_sp->m_process_unique_id = ++g_process_unique_id;
389           break;
390         } else
391           process_sp.reset();
392       }
393     }
394   }
395   return process_sp;
396 }
397 
398 ConstString &Process::GetStaticBroadcasterClass() {
399   static ConstString class_name("lldb.process");
400   return class_name;
401 }
402 
403 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp)
404     : Process(target_sp, listener_sp,
405               UnixSignals::Create(HostInfo::GetArchitecture())) {
406   // This constructor just delegates to the full Process constructor,
407   // defaulting to using the Host's UnixSignals.
408 }
409 
410 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp,
411                  const UnixSignalsSP &unix_signals_sp)
412     : ProcessProperties(this),
413       Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()),
414                   Process::GetStaticBroadcasterClass().AsCString()),
415       m_target_wp(target_sp), m_public_state(eStateUnloaded),
416       m_private_state(eStateUnloaded),
417       m_private_state_broadcaster(nullptr,
418                                   "lldb.process.internal_state_broadcaster"),
419       m_private_state_control_broadcaster(
420           nullptr, "lldb.process.internal_state_control_broadcaster"),
421       m_private_state_listener_sp(
422           Listener::MakeListener("lldb.process.internal_state_listener")),
423       m_mod_id(), m_process_unique_id(0), m_thread_index_id(0),
424       m_thread_id_to_index_id_map(), m_exit_status(-1), m_exit_string(),
425       m_exit_status_mutex(), m_thread_mutex(), m_thread_list_real(this),
426       m_thread_list(this), m_thread_plans(*this), m_extended_thread_list(this),
427       m_extended_thread_stop_id(0), m_queue_list(this), m_queue_list_stop_id(0),
428       m_notifications(), m_image_tokens(), m_listener_sp(listener_sp),
429       m_breakpoint_site_list(), m_dynamic_checkers_up(),
430       m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(),
431       m_stdio_communication("process.stdio"), m_stdio_communication_mutex(),
432       m_stdin_forward(false), m_stdout_data(), m_stderr_data(),
433       m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0),
434       m_memory_cache(*this), m_allocated_memory_cache(*this),
435       m_should_detach(false), m_next_event_action_up(), m_public_run_lock(),
436       m_private_run_lock(), m_currently_handling_do_on_removals(false),
437       m_resume_requested(false), m_finalizing(false),
438       m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false),
439       m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false),
440       m_can_interpret_function_calls(false), m_run_thread_plan_lock(),
441       m_can_jit(eCanJITDontKnow) {
442   CheckInWithManager();
443 
444   Log *log = GetLog(LLDBLog::Object);
445   LLDB_LOGF(log, "%p Process::Process()", static_cast<void *>(this));
446 
447   if (!m_unix_signals_sp)
448     m_unix_signals_sp = std::make_shared<UnixSignals>();
449 
450   SetEventName(eBroadcastBitStateChanged, "state-changed");
451   SetEventName(eBroadcastBitInterrupt, "interrupt");
452   SetEventName(eBroadcastBitSTDOUT, "stdout-available");
453   SetEventName(eBroadcastBitSTDERR, "stderr-available");
454   SetEventName(eBroadcastBitProfileData, "profile-data-available");
455   SetEventName(eBroadcastBitStructuredData, "structured-data-available");
456 
457   m_private_state_control_broadcaster.SetEventName(
458       eBroadcastInternalStateControlStop, "control-stop");
459   m_private_state_control_broadcaster.SetEventName(
460       eBroadcastInternalStateControlPause, "control-pause");
461   m_private_state_control_broadcaster.SetEventName(
462       eBroadcastInternalStateControlResume, "control-resume");
463 
464   m_listener_sp->StartListeningForEvents(
465       this, eBroadcastBitStateChanged | eBroadcastBitInterrupt |
466                 eBroadcastBitSTDOUT | eBroadcastBitSTDERR |
467                 eBroadcastBitProfileData | eBroadcastBitStructuredData);
468 
469   m_private_state_listener_sp->StartListeningForEvents(
470       &m_private_state_broadcaster,
471       eBroadcastBitStateChanged | eBroadcastBitInterrupt);
472 
473   m_private_state_listener_sp->StartListeningForEvents(
474       &m_private_state_control_broadcaster,
475       eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause |
476           eBroadcastInternalStateControlResume);
477   // We need something valid here, even if just the default UnixSignalsSP.
478   assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization");
479 
480   // Allow the platform to override the default cache line size
481   OptionValueSP value_sp =
482       m_collection_sp
483           ->GetPropertyAtIndex(nullptr, true, ePropertyMemCacheLineSize)
484           ->GetValue();
485   uint32_t platform_cache_line_size =
486       target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize();
487   if (!value_sp->OptionWasSet() && platform_cache_line_size != 0)
488     value_sp->SetUInt64Value(platform_cache_line_size);
489 
490   RegisterAssertFrameRecognizer(this);
491 }
492 
493 Process::~Process() {
494   Log *log = GetLog(LLDBLog::Object);
495   LLDB_LOGF(log, "%p Process::~Process()", static_cast<void *>(this));
496   StopPrivateStateThread();
497 
498   // ThreadList::Clear() will try to acquire this process's mutex, so
499   // explicitly clear the thread list here to ensure that the mutex is not
500   // destroyed before the thread list.
501   m_thread_list.Clear();
502 }
503 
504 ProcessProperties &Process::GetGlobalProperties() {
505   // NOTE: intentional leak so we don't crash if global destructor chain gets
506   // called as other threads still use the result of this function
507   static ProcessProperties *g_settings_ptr =
508       new ProcessProperties(nullptr);
509   return *g_settings_ptr;
510 }
511 
512 void Process::Finalize() {
513   if (m_finalizing.exchange(true))
514     return;
515 
516   // Destroy the process. This will call the virtual function DoDestroy under
517   // the hood, giving our derived class a chance to do the ncessary tear down.
518   DestroyImpl(false);
519 
520   // Clear our broadcaster before we proceed with destroying
521   Broadcaster::Clear();
522 
523   // Do any cleanup needed prior to being destructed... Subclasses that
524   // override this method should call this superclass method as well.
525 
526   // We need to destroy the loader before the derived Process class gets
527   // destroyed since it is very likely that undoing the loader will require
528   // access to the real process.
529   m_dynamic_checkers_up.reset();
530   m_abi_sp.reset();
531   m_os_up.reset();
532   m_system_runtime_up.reset();
533   m_dyld_up.reset();
534   m_jit_loaders_up.reset();
535   m_thread_plans.Clear();
536   m_thread_list_real.Destroy();
537   m_thread_list.Destroy();
538   m_extended_thread_list.Destroy();
539   m_queue_list.Clear();
540   m_queue_list_stop_id = 0;
541   std::vector<Notifications> empty_notifications;
542   m_notifications.swap(empty_notifications);
543   m_image_tokens.clear();
544   m_memory_cache.Clear();
545   m_allocated_memory_cache.Clear();
546   {
547     std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
548     m_language_runtimes.clear();
549   }
550   m_instrumentation_runtimes.clear();
551   m_next_event_action_up.reset();
552   // Clear the last natural stop ID since it has a strong reference to this
553   // process
554   m_mod_id.SetStopEventForLastNaturalStopID(EventSP());
555   //#ifdef LLDB_CONFIGURATION_DEBUG
556   //    StreamFile s(stdout, false);
557   //    EventSP event_sp;
558   //    while (m_private_state_listener_sp->GetNextEvent(event_sp))
559   //    {
560   //        event_sp->Dump (&s);
561   //        s.EOL();
562   //    }
563   //#endif
564   // We have to be very careful here as the m_private_state_listener might
565   // contain events that have ProcessSP values in them which can keep this
566   // process around forever. These events need to be cleared out.
567   m_private_state_listener_sp->Clear();
568   m_public_run_lock.TrySetRunning(); // This will do nothing if already locked
569   m_public_run_lock.SetStopped();
570   m_private_run_lock.TrySetRunning(); // This will do nothing if already locked
571   m_private_run_lock.SetStopped();
572   m_structured_data_plugin_map.clear();
573 }
574 
575 void Process::RegisterNotificationCallbacks(const Notifications &callbacks) {
576   m_notifications.push_back(callbacks);
577   if (callbacks.initialize != nullptr)
578     callbacks.initialize(callbacks.baton, this);
579 }
580 
581 bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) {
582   std::vector<Notifications>::iterator pos, end = m_notifications.end();
583   for (pos = m_notifications.begin(); pos != end; ++pos) {
584     if (pos->baton == callbacks.baton &&
585         pos->initialize == callbacks.initialize &&
586         pos->process_state_changed == callbacks.process_state_changed) {
587       m_notifications.erase(pos);
588       return true;
589     }
590   }
591   return false;
592 }
593 
594 void Process::SynchronouslyNotifyStateChanged(StateType state) {
595   std::vector<Notifications>::iterator notification_pos,
596       notification_end = m_notifications.end();
597   for (notification_pos = m_notifications.begin();
598        notification_pos != notification_end; ++notification_pos) {
599     if (notification_pos->process_state_changed)
600       notification_pos->process_state_changed(notification_pos->baton, this,
601                                               state);
602   }
603 }
604 
605 // FIXME: We need to do some work on events before the general Listener sees
606 // them.
607 // For instance if we are continuing from a breakpoint, we need to ensure that
608 // we do the little "insert real insn, step & stop" trick.  But we can't do
609 // that when the event is delivered by the broadcaster - since that is done on
610 // the thread that is waiting for new events, so if we needed more than one
611 // event for our handling, we would stall.  So instead we do it when we fetch
612 // the event off of the queue.
613 //
614 
615 StateType Process::GetNextEvent(EventSP &event_sp) {
616   StateType state = eStateInvalid;
617 
618   if (m_listener_sp->GetEventForBroadcaster(this, event_sp,
619                                             std::chrono::seconds(0)) &&
620       event_sp)
621     state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
622 
623   return state;
624 }
625 
626 void Process::SyncIOHandler(uint32_t iohandler_id,
627                             const Timeout<std::micro> &timeout) {
628   // don't sync (potentially context switch) in case where there is no process
629   // IO
630   if (!m_process_input_reader)
631     return;
632 
633   auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout);
634 
635   Log *log = GetLog(LLDBLog::Process);
636   if (Result) {
637     LLDB_LOG(
638         log,
639         "waited from m_iohandler_sync to change from {0}. New value is {1}.",
640         iohandler_id, *Result);
641   } else {
642     LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.",
643              iohandler_id);
644   }
645 }
646 
647 StateType Process::WaitForProcessToStop(const Timeout<std::micro> &timeout,
648                                         EventSP *event_sp_ptr, bool wait_always,
649                                         ListenerSP hijack_listener_sp,
650                                         Stream *stream, bool use_run_lock) {
651   // We can't just wait for a "stopped" event, because the stopped event may
652   // have restarted the target. We have to actually check each event, and in
653   // the case of a stopped event check the restarted flag on the event.
654   if (event_sp_ptr)
655     event_sp_ptr->reset();
656   StateType state = GetState();
657   // If we are exited or detached, we won't ever get back to any other valid
658   // state...
659   if (state == eStateDetached || state == eStateExited)
660     return state;
661 
662   Log *log = GetLog(LLDBLog::Process);
663   LLDB_LOG(log, "timeout = {0}", timeout);
664 
665   if (!wait_always && StateIsStoppedState(state, true) &&
666       StateIsStoppedState(GetPrivateState(), true)) {
667     LLDB_LOGF(log,
668               "Process::%s returning without waiting for events; process "
669               "private and public states are already 'stopped'.",
670               __FUNCTION__);
671     // We need to toggle the run lock as this won't get done in
672     // SetPublicState() if the process is hijacked.
673     if (hijack_listener_sp && use_run_lock)
674       m_public_run_lock.SetStopped();
675     return state;
676   }
677 
678   while (state != eStateInvalid) {
679     EventSP event_sp;
680     state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp);
681     if (event_sp_ptr && event_sp)
682       *event_sp_ptr = event_sp;
683 
684     bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr);
685     Process::HandleProcessStateChangedEvent(event_sp, stream,
686                                             pop_process_io_handler);
687 
688     switch (state) {
689     case eStateCrashed:
690     case eStateDetached:
691     case eStateExited:
692     case eStateUnloaded:
693       // We need to toggle the run lock as this won't get done in
694       // SetPublicState() if the process is hijacked.
695       if (hijack_listener_sp && use_run_lock)
696         m_public_run_lock.SetStopped();
697       return state;
698     case eStateStopped:
699       if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get()))
700         continue;
701       else {
702         // We need to toggle the run lock as this won't get done in
703         // SetPublicState() if the process is hijacked.
704         if (hijack_listener_sp && use_run_lock)
705           m_public_run_lock.SetStopped();
706         return state;
707       }
708     default:
709       continue;
710     }
711   }
712   return state;
713 }
714 
715 bool Process::HandleProcessStateChangedEvent(const EventSP &event_sp,
716                                              Stream *stream,
717                                              bool &pop_process_io_handler) {
718   const bool handle_pop = pop_process_io_handler;
719 
720   pop_process_io_handler = false;
721   ProcessSP process_sp =
722       Process::ProcessEventData::GetProcessFromEvent(event_sp.get());
723 
724   if (!process_sp)
725     return false;
726 
727   StateType event_state =
728       Process::ProcessEventData::GetStateFromEvent(event_sp.get());
729   if (event_state == eStateInvalid)
730     return false;
731 
732   switch (event_state) {
733   case eStateInvalid:
734   case eStateUnloaded:
735   case eStateAttaching:
736   case eStateLaunching:
737   case eStateStepping:
738   case eStateDetached:
739     if (stream)
740       stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(),
741                      StateAsCString(event_state));
742     if (event_state == eStateDetached)
743       pop_process_io_handler = true;
744     break;
745 
746   case eStateConnected:
747   case eStateRunning:
748     // Don't be chatty when we run...
749     break;
750 
751   case eStateExited:
752     if (stream)
753       process_sp->GetStatus(*stream);
754     pop_process_io_handler = true;
755     break;
756 
757   case eStateStopped:
758   case eStateCrashed:
759   case eStateSuspended:
760     // Make sure the program hasn't been auto-restarted:
761     if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) {
762       if (stream) {
763         size_t num_reasons =
764             Process::ProcessEventData::GetNumRestartedReasons(event_sp.get());
765         if (num_reasons > 0) {
766           // FIXME: Do we want to report this, or would that just be annoyingly
767           // chatty?
768           if (num_reasons == 1) {
769             const char *reason =
770                 Process::ProcessEventData::GetRestartedReasonAtIndex(
771                     event_sp.get(), 0);
772             stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n",
773                            process_sp->GetID(),
774                            reason ? reason : "<UNKNOWN REASON>");
775           } else {
776             stream->Printf("Process %" PRIu64
777                            " stopped and restarted, reasons:\n",
778                            process_sp->GetID());
779 
780             for (size_t i = 0; i < num_reasons; i++) {
781               const char *reason =
782                   Process::ProcessEventData::GetRestartedReasonAtIndex(
783                       event_sp.get(), i);
784               stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>");
785             }
786           }
787         }
788       }
789     } else {
790       StopInfoSP curr_thread_stop_info_sp;
791       // Lock the thread list so it doesn't change on us, this is the scope for
792       // the locker:
793       {
794         ThreadList &thread_list = process_sp->GetThreadList();
795         std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex());
796 
797         ThreadSP curr_thread(thread_list.GetSelectedThread());
798         ThreadSP thread;
799         StopReason curr_thread_stop_reason = eStopReasonInvalid;
800         bool prefer_curr_thread = false;
801         if (curr_thread && curr_thread->IsValid()) {
802           curr_thread_stop_reason = curr_thread->GetStopReason();
803           switch (curr_thread_stop_reason) {
804           case eStopReasonNone:
805           case eStopReasonInvalid:
806             // Don't prefer the current thread if it didn't stop for a reason.
807             break;
808           case eStopReasonSignal: {
809             // We need to do the same computation we do for other threads
810             // below in case the current thread happens to be the one that
811             // stopped for the no-stop signal.
812             uint64_t signo = curr_thread->GetStopInfo()->GetValue();
813             if (process_sp->GetUnixSignals()->GetShouldStop(signo))
814               prefer_curr_thread = true;
815           } break;
816           default:
817             prefer_curr_thread = true;
818             break;
819           }
820           curr_thread_stop_info_sp = curr_thread->GetStopInfo();
821         }
822 
823         if (!prefer_curr_thread) {
824           // Prefer a thread that has just completed its plan over another
825           // thread as current thread.
826           ThreadSP plan_thread;
827           ThreadSP other_thread;
828 
829           const size_t num_threads = thread_list.GetSize();
830           size_t i;
831           for (i = 0; i < num_threads; ++i) {
832             thread = thread_list.GetThreadAtIndex(i);
833             StopReason thread_stop_reason = thread->GetStopReason();
834             switch (thread_stop_reason) {
835             case eStopReasonInvalid:
836             case eStopReasonNone:
837               break;
838 
839             case eStopReasonSignal: {
840               // Don't select a signal thread if we weren't going to stop at
841               // that signal.  We have to have had another reason for stopping
842               // here, and the user doesn't want to see this thread.
843               uint64_t signo = thread->GetStopInfo()->GetValue();
844               if (process_sp->GetUnixSignals()->GetShouldStop(signo)) {
845                 if (!other_thread)
846                   other_thread = thread;
847               }
848               break;
849             }
850             case eStopReasonTrace:
851             case eStopReasonBreakpoint:
852             case eStopReasonWatchpoint:
853             case eStopReasonException:
854             case eStopReasonExec:
855             case eStopReasonFork:
856             case eStopReasonVFork:
857             case eStopReasonVForkDone:
858             case eStopReasonThreadExiting:
859             case eStopReasonInstrumentation:
860             case eStopReasonProcessorTrace:
861               if (!other_thread)
862                 other_thread = thread;
863               break;
864             case eStopReasonPlanComplete:
865               if (!plan_thread)
866                 plan_thread = thread;
867               break;
868             }
869           }
870           if (plan_thread)
871             thread_list.SetSelectedThreadByID(plan_thread->GetID());
872           else if (other_thread)
873             thread_list.SetSelectedThreadByID(other_thread->GetID());
874           else {
875             if (curr_thread && curr_thread->IsValid())
876               thread = curr_thread;
877             else
878               thread = thread_list.GetThreadAtIndex(0);
879 
880             if (thread)
881               thread_list.SetSelectedThreadByID(thread->GetID());
882           }
883         }
884       }
885       // Drop the ThreadList mutex by here, since GetThreadStatus below might
886       // have to run code, e.g. for Data formatters, and if we hold the
887       // ThreadList mutex, then the process is going to have a hard time
888       // restarting the process.
889       if (stream) {
890         Debugger &debugger = process_sp->GetTarget().GetDebugger();
891         if (debugger.GetTargetList().GetSelectedTarget().get() ==
892             &process_sp->GetTarget()) {
893           ThreadSP thread_sp = process_sp->GetThreadList().GetSelectedThread();
894 
895           if (!thread_sp || !thread_sp->IsValid())
896             return false;
897 
898           const bool only_threads_with_stop_reason = true;
899           const uint32_t start_frame = thread_sp->GetSelectedFrameIndex();
900           const uint32_t num_frames = 1;
901           const uint32_t num_frames_with_source = 1;
902           const bool stop_format = true;
903 
904           process_sp->GetStatus(*stream);
905           process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason,
906                                       start_frame, num_frames,
907                                       num_frames_with_source,
908                                       stop_format);
909           if (curr_thread_stop_info_sp) {
910             lldb::addr_t crashing_address;
911             ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference(
912                 curr_thread_stop_info_sp, &crashing_address);
913             if (valobj_sp) {
914               const ValueObject::GetExpressionPathFormat format =
915                   ValueObject::GetExpressionPathFormat::
916                       eGetExpressionPathFormatHonorPointers;
917               stream->PutCString("Likely cause: ");
918               valobj_sp->GetExpressionPath(*stream, format);
919               stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address);
920             }
921           }
922         } else {
923           uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget(
924               process_sp->GetTarget().shared_from_this());
925           if (target_idx != UINT32_MAX)
926             stream->Printf("Target %d: (", target_idx);
927           else
928             stream->Printf("Target <unknown index>: (");
929           process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief);
930           stream->Printf(") stopped.\n");
931         }
932       }
933 
934       // Pop the process IO handler
935       pop_process_io_handler = true;
936     }
937     break;
938   }
939 
940   if (handle_pop && pop_process_io_handler)
941     process_sp->PopProcessIOHandler();
942 
943   return true;
944 }
945 
946 bool Process::HijackProcessEvents(ListenerSP listener_sp) {
947   if (listener_sp) {
948     return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged |
949                                               eBroadcastBitInterrupt);
950   } else
951     return false;
952 }
953 
954 void Process::RestoreProcessEvents() { RestoreBroadcaster(); }
955 
956 StateType Process::GetStateChangedEvents(EventSP &event_sp,
957                                          const Timeout<std::micro> &timeout,
958                                          ListenerSP hijack_listener_sp) {
959   Log *log = GetLog(LLDBLog::Process);
960   LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
961 
962   ListenerSP listener_sp = hijack_listener_sp;
963   if (!listener_sp)
964     listener_sp = m_listener_sp;
965 
966   StateType state = eStateInvalid;
967   if (listener_sp->GetEventForBroadcasterWithType(
968           this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp,
969           timeout)) {
970     if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged)
971       state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
972     else
973       LLDB_LOG(log, "got no event or was interrupted.");
974   }
975 
976   LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state);
977   return state;
978 }
979 
980 Event *Process::PeekAtStateChangedEvents() {
981   Log *log = GetLog(LLDBLog::Process);
982 
983   LLDB_LOGF(log, "Process::%s...", __FUNCTION__);
984 
985   Event *event_ptr;
986   event_ptr = m_listener_sp->PeekAtNextEventForBroadcasterWithType(
987       this, eBroadcastBitStateChanged);
988   if (log) {
989     if (event_ptr) {
990       LLDB_LOGF(log, "Process::%s (event_ptr) => %s", __FUNCTION__,
991                 StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr)));
992     } else {
993       LLDB_LOGF(log, "Process::%s no events found", __FUNCTION__);
994     }
995   }
996   return event_ptr;
997 }
998 
999 StateType
1000 Process::GetStateChangedEventsPrivate(EventSP &event_sp,
1001                                       const Timeout<std::micro> &timeout) {
1002   Log *log = GetLog(LLDBLog::Process);
1003   LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
1004 
1005   StateType state = eStateInvalid;
1006   if (m_private_state_listener_sp->GetEventForBroadcasterWithType(
1007           &m_private_state_broadcaster,
1008           eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp,
1009           timeout))
1010     if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged)
1011       state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
1012 
1013   LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout,
1014            state == eStateInvalid ? "TIMEOUT" : StateAsCString(state));
1015   return state;
1016 }
1017 
1018 bool Process::GetEventsPrivate(EventSP &event_sp,
1019                                const Timeout<std::micro> &timeout,
1020                                bool control_only) {
1021   Log *log = GetLog(LLDBLog::Process);
1022   LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
1023 
1024   if (control_only)
1025     return m_private_state_listener_sp->GetEventForBroadcaster(
1026         &m_private_state_control_broadcaster, event_sp, timeout);
1027   else
1028     return m_private_state_listener_sp->GetEvent(event_sp, timeout);
1029 }
1030 
1031 bool Process::IsRunning() const {
1032   return StateIsRunningState(m_public_state.GetValue());
1033 }
1034 
1035 int Process::GetExitStatus() {
1036   std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1037 
1038   if (m_public_state.GetValue() == eStateExited)
1039     return m_exit_status;
1040   return -1;
1041 }
1042 
1043 const char *Process::GetExitDescription() {
1044   std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1045 
1046   if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty())
1047     return m_exit_string.c_str();
1048   return nullptr;
1049 }
1050 
1051 bool Process::SetExitStatus(int status, const char *cstr) {
1052   // Use a mutex to protect setting the exit status.
1053   std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1054 
1055   Log *log(GetLog(LLDBLog::State | LLDBLog::Process));
1056   LLDB_LOGF(
1057       log, "Process::SetExitStatus (status=%i (0x%8.8x), description=%s%s%s)",
1058       status, status, cstr ? "\"" : "", cstr ? cstr : "NULL", cstr ? "\"" : "");
1059 
1060   // We were already in the exited state
1061   if (m_private_state.GetValue() == eStateExited) {
1062     LLDB_LOGF(log, "Process::SetExitStatus () ignoring exit status because "
1063                    "state was already set to eStateExited");
1064     return false;
1065   }
1066 
1067   m_exit_status = status;
1068   if (cstr)
1069     m_exit_string = cstr;
1070   else
1071     m_exit_string.clear();
1072 
1073   // Clear the last natural stop ID since it has a strong reference to this
1074   // process
1075   m_mod_id.SetStopEventForLastNaturalStopID(EventSP());
1076 
1077   SetPrivateState(eStateExited);
1078 
1079   // Allow subclasses to do some cleanup
1080   DidExit();
1081 
1082   return true;
1083 }
1084 
1085 bool Process::IsAlive() {
1086   switch (m_private_state.GetValue()) {
1087   case eStateConnected:
1088   case eStateAttaching:
1089   case eStateLaunching:
1090   case eStateStopped:
1091   case eStateRunning:
1092   case eStateStepping:
1093   case eStateCrashed:
1094   case eStateSuspended:
1095     return true;
1096   default:
1097     return false;
1098   }
1099 }
1100 
1101 // This static callback can be used to watch for local child processes on the
1102 // current host. The child process exits, the process will be found in the
1103 // global target list (we want to be completely sure that the
1104 // lldb_private::Process doesn't go away before we can deliver the signal.
1105 bool Process::SetProcessExitStatus(
1106     lldb::pid_t pid, bool exited,
1107     int signo,      // Zero for no signal
1108     int exit_status // Exit value of process if signal is zero
1109     ) {
1110   Log *log = GetLog(LLDBLog::Process);
1111   LLDB_LOGF(log,
1112             "Process::SetProcessExitStatus (pid=%" PRIu64
1113             ", exited=%i, signal=%i, exit_status=%i)\n",
1114             pid, exited, signo, exit_status);
1115 
1116   if (exited) {
1117     TargetSP target_sp(Debugger::FindTargetWithProcessID(pid));
1118     if (target_sp) {
1119       ProcessSP process_sp(target_sp->GetProcessSP());
1120       if (process_sp) {
1121         const char *signal_cstr = nullptr;
1122         if (signo)
1123           signal_cstr = process_sp->GetUnixSignals()->GetSignalAsCString(signo);
1124 
1125         process_sp->SetExitStatus(exit_status, signal_cstr);
1126       }
1127     }
1128     return true;
1129   }
1130   return false;
1131 }
1132 
1133 bool Process::UpdateThreadList(ThreadList &old_thread_list,
1134                                ThreadList &new_thread_list) {
1135   m_thread_plans.ClearThreadCache();
1136   return DoUpdateThreadList(old_thread_list, new_thread_list);
1137 }
1138 
1139 void Process::UpdateThreadListIfNeeded() {
1140   const uint32_t stop_id = GetStopID();
1141   if (m_thread_list.GetSize(false) == 0 ||
1142       stop_id != m_thread_list.GetStopID()) {
1143     bool clear_unused_threads = true;
1144     const StateType state = GetPrivateState();
1145     if (StateIsStoppedState(state, true)) {
1146       std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex());
1147       m_thread_list.SetStopID(stop_id);
1148 
1149       // m_thread_list does have its own mutex, but we need to hold onto the
1150       // mutex between the call to UpdateThreadList(...) and the
1151       // os->UpdateThreadList(...) so it doesn't change on us
1152       ThreadList &old_thread_list = m_thread_list;
1153       ThreadList real_thread_list(this);
1154       ThreadList new_thread_list(this);
1155       // Always update the thread list with the protocol specific thread list,
1156       // but only update if "true" is returned
1157       if (UpdateThreadList(m_thread_list_real, real_thread_list)) {
1158         // Don't call into the OperatingSystem to update the thread list if we
1159         // are shutting down, since that may call back into the SBAPI's,
1160         // requiring the API lock which is already held by whoever is shutting
1161         // us down, causing a deadlock.
1162         OperatingSystem *os = GetOperatingSystem();
1163         if (os && !m_destroy_in_process) {
1164           // Clear any old backing threads where memory threads might have been
1165           // backed by actual threads from the lldb_private::Process subclass
1166           size_t num_old_threads = old_thread_list.GetSize(false);
1167           for (size_t i = 0; i < num_old_threads; ++i)
1168             old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread();
1169           // See if the OS plugin reports all threads.  If it does, then
1170           // it is safe to clear unseen thread's plans here.  Otherwise we
1171           // should preserve them in case they show up again:
1172           clear_unused_threads = GetOSPluginReportsAllThreads();
1173 
1174           // Turn off dynamic types to ensure we don't run any expressions.
1175           // Objective-C can run an expression to determine if a SBValue is a
1176           // dynamic type or not and we need to avoid this. OperatingSystem
1177           // plug-ins can't run expressions that require running code...
1178 
1179           Target &target = GetTarget();
1180           const lldb::DynamicValueType saved_prefer_dynamic =
1181               target.GetPreferDynamicValue();
1182           if (saved_prefer_dynamic != lldb::eNoDynamicValues)
1183             target.SetPreferDynamicValue(lldb::eNoDynamicValues);
1184 
1185           // Now let the OperatingSystem plug-in update the thread list
1186 
1187           os->UpdateThreadList(
1188               old_thread_list, // Old list full of threads created by OS plug-in
1189               real_thread_list, // The actual thread list full of threads
1190                                 // created by each lldb_private::Process
1191                                 // subclass
1192               new_thread_list); // The new thread list that we will show to the
1193                                 // user that gets filled in
1194 
1195           if (saved_prefer_dynamic != lldb::eNoDynamicValues)
1196             target.SetPreferDynamicValue(saved_prefer_dynamic);
1197         } else {
1198           // No OS plug-in, the new thread list is the same as the real thread
1199           // list.
1200           new_thread_list = real_thread_list;
1201         }
1202 
1203         m_thread_list_real.Update(real_thread_list);
1204         m_thread_list.Update(new_thread_list);
1205         m_thread_list.SetStopID(stop_id);
1206 
1207         if (GetLastNaturalStopID() != m_extended_thread_stop_id) {
1208           // Clear any extended threads that we may have accumulated previously
1209           m_extended_thread_list.Clear();
1210           m_extended_thread_stop_id = GetLastNaturalStopID();
1211 
1212           m_queue_list.Clear();
1213           m_queue_list_stop_id = GetLastNaturalStopID();
1214         }
1215       }
1216       // Now update the plan stack map.
1217       // If we do have an OS plugin, any absent real threads in the
1218       // m_thread_list have already been removed from the ThreadPlanStackMap.
1219       // So any remaining threads are OS Plugin threads, and those we want to
1220       // preserve in case they show up again.
1221       m_thread_plans.Update(m_thread_list, clear_unused_threads);
1222     }
1223   }
1224 }
1225 
1226 ThreadPlanStack *Process::FindThreadPlans(lldb::tid_t tid) {
1227   return m_thread_plans.Find(tid);
1228 }
1229 
1230 bool Process::PruneThreadPlansForTID(lldb::tid_t tid) {
1231   return m_thread_plans.PrunePlansForTID(tid);
1232 }
1233 
1234 void Process::PruneThreadPlans() {
1235   m_thread_plans.Update(GetThreadList(), true, false);
1236 }
1237 
1238 bool Process::DumpThreadPlansForTID(Stream &strm, lldb::tid_t tid,
1239                                     lldb::DescriptionLevel desc_level,
1240                                     bool internal, bool condense_trivial,
1241                                     bool skip_unreported_plans) {
1242   return m_thread_plans.DumpPlansForTID(
1243       strm, tid, desc_level, internal, condense_trivial, skip_unreported_plans);
1244 }
1245 void Process::DumpThreadPlans(Stream &strm, lldb::DescriptionLevel desc_level,
1246                               bool internal, bool condense_trivial,
1247                               bool skip_unreported_plans) {
1248   m_thread_plans.DumpPlans(strm, desc_level, internal, condense_trivial,
1249                            skip_unreported_plans);
1250 }
1251 
1252 void Process::UpdateQueueListIfNeeded() {
1253   if (m_system_runtime_up) {
1254     if (m_queue_list.GetSize() == 0 ||
1255         m_queue_list_stop_id != GetLastNaturalStopID()) {
1256       const StateType state = GetPrivateState();
1257       if (StateIsStoppedState(state, true)) {
1258         m_system_runtime_up->PopulateQueueList(m_queue_list);
1259         m_queue_list_stop_id = GetLastNaturalStopID();
1260       }
1261     }
1262   }
1263 }
1264 
1265 ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) {
1266   OperatingSystem *os = GetOperatingSystem();
1267   if (os)
1268     return os->CreateThread(tid, context);
1269   return ThreadSP();
1270 }
1271 
1272 uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) {
1273   return AssignIndexIDToThread(thread_id);
1274 }
1275 
1276 bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) {
1277   return (m_thread_id_to_index_id_map.find(thread_id) !=
1278           m_thread_id_to_index_id_map.end());
1279 }
1280 
1281 uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) {
1282   uint32_t result = 0;
1283   std::map<uint64_t, uint32_t>::iterator iterator =
1284       m_thread_id_to_index_id_map.find(thread_id);
1285   if (iterator == m_thread_id_to_index_id_map.end()) {
1286     result = ++m_thread_index_id;
1287     m_thread_id_to_index_id_map[thread_id] = result;
1288   } else {
1289     result = iterator->second;
1290   }
1291 
1292   return result;
1293 }
1294 
1295 StateType Process::GetState() {
1296   return m_public_state.GetValue();
1297 }
1298 
1299 void Process::SetPublicState(StateType new_state, bool restarted) {
1300   const bool new_state_is_stopped = StateIsStoppedState(new_state, false);
1301   if (new_state_is_stopped) {
1302     // This will only set the time if the public stop time has no value, so
1303     // it is ok to call this multiple times. With a public stop we can't look
1304     // at the stop ID because many private stops might have happened, so we
1305     // can't check for a stop ID of zero. This allows the "statistics" command
1306     // to dump the time it takes to reach somewhere in your code, like a
1307     // breakpoint you set.
1308     GetTarget().GetStatistics().SetFirstPublicStopTime();
1309   }
1310 
1311   Log *log(GetLog(LLDBLog::State | LLDBLog::Process));
1312   LLDB_LOGF(log, "Process::SetPublicState (state = %s, restarted = %i)",
1313             StateAsCString(new_state), restarted);
1314   const StateType old_state = m_public_state.GetValue();
1315   m_public_state.SetValue(new_state);
1316 
1317   // On the transition from Run to Stopped, we unlock the writer end of the run
1318   // lock.  The lock gets locked in Resume, which is the public API to tell the
1319   // program to run.
1320   if (!StateChangedIsExternallyHijacked()) {
1321     if (new_state == eStateDetached) {
1322       LLDB_LOGF(log,
1323                 "Process::SetPublicState (%s) -- unlocking run lock for detach",
1324                 StateAsCString(new_state));
1325       m_public_run_lock.SetStopped();
1326     } else {
1327       const bool old_state_is_stopped = StateIsStoppedState(old_state, false);
1328       if ((old_state_is_stopped != new_state_is_stopped)) {
1329         if (new_state_is_stopped && !restarted) {
1330           LLDB_LOGF(log, "Process::SetPublicState (%s) -- unlocking run lock",
1331                     StateAsCString(new_state));
1332           m_public_run_lock.SetStopped();
1333         }
1334       }
1335     }
1336   }
1337 }
1338 
1339 Status Process::Resume() {
1340   Log *log(GetLog(LLDBLog::State | LLDBLog::Process));
1341   LLDB_LOGF(log, "Process::Resume -- locking run lock");
1342   if (!m_public_run_lock.TrySetRunning()) {
1343     Status error("Resume request failed - process still running.");
1344     LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming.");
1345     return error;
1346   }
1347   Status error = PrivateResume();
1348   if (!error.Success()) {
1349     // Undo running state change
1350     m_public_run_lock.SetStopped();
1351   }
1352   return error;
1353 }
1354 
1355 static const char *g_resume_sync_name = "lldb.Process.ResumeSynchronous.hijack";
1356 
1357 Status Process::ResumeSynchronous(Stream *stream) {
1358   Log *log(GetLog(LLDBLog::State | LLDBLog::Process));
1359   LLDB_LOGF(log, "Process::ResumeSynchronous -- locking run lock");
1360   if (!m_public_run_lock.TrySetRunning()) {
1361     Status error("Resume request failed - process still running.");
1362     LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming.");
1363     return error;
1364   }
1365 
1366   ListenerSP listener_sp(
1367       Listener::MakeListener(g_resume_sync_name));
1368   HijackProcessEvents(listener_sp);
1369 
1370   Status error = PrivateResume();
1371   if (error.Success()) {
1372     StateType state = WaitForProcessToStop(llvm::None, nullptr, true,
1373                                            listener_sp, stream);
1374     const bool must_be_alive =
1375         false; // eStateExited is ok, so this must be false
1376     if (!StateIsStoppedState(state, must_be_alive))
1377       error.SetErrorStringWithFormat(
1378           "process not in stopped state after synchronous resume: %s",
1379           StateAsCString(state));
1380   } else {
1381     // Undo running state change
1382     m_public_run_lock.SetStopped();
1383   }
1384 
1385   // Undo the hijacking of process events...
1386   RestoreProcessEvents();
1387 
1388   return error;
1389 }
1390 
1391 bool Process::StateChangedIsExternallyHijacked() {
1392   if (IsHijackedForEvent(eBroadcastBitStateChanged)) {
1393     const char *hijacking_name = GetHijackingListenerName();
1394     if (hijacking_name &&
1395         strcmp(hijacking_name, g_resume_sync_name))
1396       return true;
1397   }
1398   return false;
1399 }
1400 
1401 bool Process::StateChangedIsHijackedForSynchronousResume() {
1402   if (IsHijackedForEvent(eBroadcastBitStateChanged)) {
1403     const char *hijacking_name = GetHijackingListenerName();
1404     if (hijacking_name &&
1405         strcmp(hijacking_name, g_resume_sync_name) == 0)
1406       return true;
1407   }
1408   return false;
1409 }
1410 
1411 StateType Process::GetPrivateState() { return m_private_state.GetValue(); }
1412 
1413 void Process::SetPrivateState(StateType new_state) {
1414   if (m_finalizing)
1415     return;
1416 
1417   Log *log(GetLog(LLDBLog::State | LLDBLog::Process | LLDBLog::Unwind));
1418   bool state_changed = false;
1419 
1420   LLDB_LOGF(log, "Process::SetPrivateState (%s)", StateAsCString(new_state));
1421 
1422   std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex());
1423   std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex());
1424 
1425   const StateType old_state = m_private_state.GetValueNoLock();
1426   state_changed = old_state != new_state;
1427 
1428   const bool old_state_is_stopped = StateIsStoppedState(old_state, false);
1429   const bool new_state_is_stopped = StateIsStoppedState(new_state, false);
1430   if (old_state_is_stopped != new_state_is_stopped) {
1431     if (new_state_is_stopped)
1432       m_private_run_lock.SetStopped();
1433     else
1434       m_private_run_lock.SetRunning();
1435   }
1436 
1437   if (state_changed) {
1438     m_private_state.SetValueNoLock(new_state);
1439     EventSP event_sp(
1440         new Event(eBroadcastBitStateChanged,
1441                   new ProcessEventData(shared_from_this(), new_state)));
1442     if (StateIsStoppedState(new_state, false)) {
1443       // Note, this currently assumes that all threads in the list stop when
1444       // the process stops.  In the future we will want to support a debugging
1445       // model where some threads continue to run while others are stopped.
1446       // When that happens we will either need a way for the thread list to
1447       // identify which threads are stopping or create a special thread list
1448       // containing only threads which actually stopped.
1449       //
1450       // The process plugin is responsible for managing the actual behavior of
1451       // the threads and should have stopped any threads that are going to stop
1452       // before we get here.
1453       m_thread_list.DidStop();
1454 
1455       if (m_mod_id.BumpStopID() == 0)
1456         GetTarget().GetStatistics().SetFirstPrivateStopTime();
1457 
1458       if (!m_mod_id.IsLastResumeForUserExpression())
1459         m_mod_id.SetStopEventForLastNaturalStopID(event_sp);
1460       m_memory_cache.Clear();
1461       LLDB_LOGF(log, "Process::SetPrivateState (%s) stop_id = %u",
1462                 StateAsCString(new_state), m_mod_id.GetStopID());
1463     }
1464 
1465     m_private_state_broadcaster.BroadcastEvent(event_sp);
1466   } else {
1467     LLDB_LOGF(log,
1468               "Process::SetPrivateState (%s) state didn't change. Ignoring...",
1469               StateAsCString(new_state));
1470   }
1471 }
1472 
1473 void Process::SetRunningUserExpression(bool on) {
1474   m_mod_id.SetRunningUserExpression(on);
1475 }
1476 
1477 void Process::SetRunningUtilityFunction(bool on) {
1478   m_mod_id.SetRunningUtilityFunction(on);
1479 }
1480 
1481 addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; }
1482 
1483 const lldb::ABISP &Process::GetABI() {
1484   if (!m_abi_sp)
1485     m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture());
1486   return m_abi_sp;
1487 }
1488 
1489 std::vector<LanguageRuntime *> Process::GetLanguageRuntimes() {
1490   std::vector<LanguageRuntime *> language_runtimes;
1491 
1492   if (m_finalizing)
1493     return language_runtimes;
1494 
1495   std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
1496   // Before we pass off a copy of the language runtimes, we must make sure that
1497   // our collection is properly populated. It's possible that some of the
1498   // language runtimes were not loaded yet, either because nobody requested it
1499   // yet or the proper condition for loading wasn't yet met (e.g. libc++.so
1500   // hadn't been loaded).
1501   for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) {
1502     if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type))
1503       language_runtimes.emplace_back(runtime);
1504   }
1505 
1506   return language_runtimes;
1507 }
1508 
1509 LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language) {
1510   if (m_finalizing)
1511     return nullptr;
1512 
1513   LanguageRuntime *runtime = nullptr;
1514 
1515   std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
1516   LanguageRuntimeCollection::iterator pos;
1517   pos = m_language_runtimes.find(language);
1518   if (pos == m_language_runtimes.end() || !pos->second) {
1519     lldb::LanguageRuntimeSP runtime_sp(
1520         LanguageRuntime::FindPlugin(this, language));
1521 
1522     m_language_runtimes[language] = runtime_sp;
1523     runtime = runtime_sp.get();
1524   } else
1525     runtime = pos->second.get();
1526 
1527   if (runtime)
1528     // It's possible that a language runtime can support multiple LanguageTypes,
1529     // for example, CPPLanguageRuntime will support eLanguageTypeC_plus_plus,
1530     // eLanguageTypeC_plus_plus_03, etc. Because of this, we should get the
1531     // primary language type and make sure that our runtime supports it.
1532     assert(runtime->GetLanguageType() == Language::GetPrimaryLanguage(language));
1533 
1534   return runtime;
1535 }
1536 
1537 bool Process::IsPossibleDynamicValue(ValueObject &in_value) {
1538   if (m_finalizing)
1539     return false;
1540 
1541   if (in_value.IsDynamic())
1542     return false;
1543   LanguageType known_type = in_value.GetObjectRuntimeLanguage();
1544 
1545   if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) {
1546     LanguageRuntime *runtime = GetLanguageRuntime(known_type);
1547     return runtime ? runtime->CouldHaveDynamicValue(in_value) : false;
1548   }
1549 
1550   for (LanguageRuntime *runtime : GetLanguageRuntimes()) {
1551     if (runtime->CouldHaveDynamicValue(in_value))
1552       return true;
1553   }
1554 
1555   return false;
1556 }
1557 
1558 void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) {
1559   m_dynamic_checkers_up.reset(dynamic_checkers);
1560 }
1561 
1562 BreakpointSiteList &Process::GetBreakpointSiteList() {
1563   return m_breakpoint_site_list;
1564 }
1565 
1566 const BreakpointSiteList &Process::GetBreakpointSiteList() const {
1567   return m_breakpoint_site_list;
1568 }
1569 
1570 void Process::DisableAllBreakpointSites() {
1571   m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void {
1572     //        bp_site->SetEnabled(true);
1573     DisableBreakpointSite(bp_site);
1574   });
1575 }
1576 
1577 Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) {
1578   Status error(DisableBreakpointSiteByID(break_id));
1579 
1580   if (error.Success())
1581     m_breakpoint_site_list.Remove(break_id);
1582 
1583   return error;
1584 }
1585 
1586 Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) {
1587   Status error;
1588   BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id);
1589   if (bp_site_sp) {
1590     if (bp_site_sp->IsEnabled())
1591       error = DisableBreakpointSite(bp_site_sp.get());
1592   } else {
1593     error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64,
1594                                    break_id);
1595   }
1596 
1597   return error;
1598 }
1599 
1600 Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) {
1601   Status error;
1602   BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id);
1603   if (bp_site_sp) {
1604     if (!bp_site_sp->IsEnabled())
1605       error = EnableBreakpointSite(bp_site_sp.get());
1606   } else {
1607     error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64,
1608                                    break_id);
1609   }
1610   return error;
1611 }
1612 
1613 lldb::break_id_t
1614 Process::CreateBreakpointSite(const BreakpointLocationSP &owner,
1615                               bool use_hardware) {
1616   addr_t load_addr = LLDB_INVALID_ADDRESS;
1617 
1618   bool show_error = true;
1619   switch (GetState()) {
1620   case eStateInvalid:
1621   case eStateUnloaded:
1622   case eStateConnected:
1623   case eStateAttaching:
1624   case eStateLaunching:
1625   case eStateDetached:
1626   case eStateExited:
1627     show_error = false;
1628     break;
1629 
1630   case eStateStopped:
1631   case eStateRunning:
1632   case eStateStepping:
1633   case eStateCrashed:
1634   case eStateSuspended:
1635     show_error = IsAlive();
1636     break;
1637   }
1638 
1639   // Reset the IsIndirect flag here, in case the location changes from pointing
1640   // to a indirect symbol to a regular symbol.
1641   owner->SetIsIndirect(false);
1642 
1643   if (owner->ShouldResolveIndirectFunctions()) {
1644     Symbol *symbol = owner->GetAddress().CalculateSymbolContextSymbol();
1645     if (symbol && symbol->IsIndirect()) {
1646       Status error;
1647       Address symbol_address = symbol->GetAddress();
1648       load_addr = ResolveIndirectFunction(&symbol_address, error);
1649       if (!error.Success() && show_error) {
1650         GetTarget().GetDebugger().GetErrorStream().Printf(
1651             "warning: failed to resolve indirect function at 0x%" PRIx64
1652             " for breakpoint %i.%i: %s\n",
1653             symbol->GetLoadAddress(&GetTarget()),
1654             owner->GetBreakpoint().GetID(), owner->GetID(),
1655             error.AsCString() ? error.AsCString() : "unknown error");
1656         return LLDB_INVALID_BREAK_ID;
1657       }
1658       Address resolved_address(load_addr);
1659       load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget());
1660       owner->SetIsIndirect(true);
1661     } else
1662       load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget());
1663   } else
1664     load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget());
1665 
1666   if (load_addr != LLDB_INVALID_ADDRESS) {
1667     BreakpointSiteSP bp_site_sp;
1668 
1669     // Look up this breakpoint site.  If it exists, then add this new owner,
1670     // otherwise create a new breakpoint site and add it.
1671 
1672     bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr);
1673 
1674     if (bp_site_sp) {
1675       bp_site_sp->AddOwner(owner);
1676       owner->SetBreakpointSite(bp_site_sp);
1677       return bp_site_sp->GetID();
1678     } else {
1679       bp_site_sp.reset(new BreakpointSite(&m_breakpoint_site_list, owner,
1680                                           load_addr, use_hardware));
1681       if (bp_site_sp) {
1682         Status error = EnableBreakpointSite(bp_site_sp.get());
1683         if (error.Success()) {
1684           owner->SetBreakpointSite(bp_site_sp);
1685           return m_breakpoint_site_list.Add(bp_site_sp);
1686         } else {
1687           if (show_error || use_hardware) {
1688             // Report error for setting breakpoint...
1689             GetTarget().GetDebugger().GetErrorStream().Printf(
1690                 "warning: failed to set breakpoint site at 0x%" PRIx64
1691                 " for breakpoint %i.%i: %s\n",
1692                 load_addr, owner->GetBreakpoint().GetID(), owner->GetID(),
1693                 error.AsCString() ? error.AsCString() : "unknown error");
1694           }
1695         }
1696       }
1697     }
1698   }
1699   // We failed to enable the breakpoint
1700   return LLDB_INVALID_BREAK_ID;
1701 }
1702 
1703 void Process::RemoveOwnerFromBreakpointSite(lldb::user_id_t owner_id,
1704                                             lldb::user_id_t owner_loc_id,
1705                                             BreakpointSiteSP &bp_site_sp) {
1706   uint32_t num_owners = bp_site_sp->RemoveOwner(owner_id, owner_loc_id);
1707   if (num_owners == 0) {
1708     // Don't try to disable the site if we don't have a live process anymore.
1709     if (IsAlive())
1710       DisableBreakpointSite(bp_site_sp.get());
1711     m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress());
1712   }
1713 }
1714 
1715 size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size,
1716                                                   uint8_t *buf) const {
1717   size_t bytes_removed = 0;
1718   BreakpointSiteList bp_sites_in_range;
1719 
1720   if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size,
1721                                          bp_sites_in_range)) {
1722     bp_sites_in_range.ForEach([bp_addr, size,
1723                                buf](BreakpointSite *bp_site) -> void {
1724       if (bp_site->GetType() == BreakpointSite::eSoftware) {
1725         addr_t intersect_addr;
1726         size_t intersect_size;
1727         size_t opcode_offset;
1728         if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr,
1729                                      &intersect_size, &opcode_offset)) {
1730           assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size);
1731           assert(bp_addr < intersect_addr + intersect_size &&
1732                  intersect_addr + intersect_size <= bp_addr + size);
1733           assert(opcode_offset + intersect_size <= bp_site->GetByteSize());
1734           size_t buf_offset = intersect_addr - bp_addr;
1735           ::memcpy(buf + buf_offset,
1736                    bp_site->GetSavedOpcodeBytes() + opcode_offset,
1737                    intersect_size);
1738         }
1739       }
1740     });
1741   }
1742   return bytes_removed;
1743 }
1744 
1745 size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) {
1746   PlatformSP platform_sp(GetTarget().GetPlatform());
1747   if (platform_sp)
1748     return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site);
1749   return 0;
1750 }
1751 
1752 Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) {
1753   Status error;
1754   assert(bp_site != nullptr);
1755   Log *log = GetLog(LLDBLog::Breakpoints);
1756   const addr_t bp_addr = bp_site->GetLoadAddress();
1757   LLDB_LOGF(
1758       log, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64,
1759       bp_site->GetID(), (uint64_t)bp_addr);
1760   if (bp_site->IsEnabled()) {
1761     LLDB_LOGF(
1762         log,
1763         "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1764         " -- already enabled",
1765         bp_site->GetID(), (uint64_t)bp_addr);
1766     return error;
1767   }
1768 
1769   if (bp_addr == LLDB_INVALID_ADDRESS) {
1770     error.SetErrorString("BreakpointSite contains an invalid load address.");
1771     return error;
1772   }
1773   // Ask the lldb::Process subclass to fill in the correct software breakpoint
1774   // trap for the breakpoint site
1775   const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site);
1776 
1777   if (bp_opcode_size == 0) {
1778     error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() "
1779                                    "returned zero, unable to get breakpoint "
1780                                    "trap for address 0x%" PRIx64,
1781                                    bp_addr);
1782   } else {
1783     const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes();
1784 
1785     if (bp_opcode_bytes == nullptr) {
1786       error.SetErrorString(
1787           "BreakpointSite doesn't contain a valid breakpoint trap opcode.");
1788       return error;
1789     }
1790 
1791     // Save the original opcode by reading it
1792     if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size,
1793                      error) == bp_opcode_size) {
1794       // Write a software breakpoint in place of the original opcode
1795       if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) ==
1796           bp_opcode_size) {
1797         uint8_t verify_bp_opcode_bytes[64];
1798         if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size,
1799                          error) == bp_opcode_size) {
1800           if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes,
1801                        bp_opcode_size) == 0) {
1802             bp_site->SetEnabled(true);
1803             bp_site->SetType(BreakpointSite::eSoftware);
1804             LLDB_LOGF(log,
1805                       "Process::EnableSoftwareBreakpoint (site_id = %d) "
1806                       "addr = 0x%" PRIx64 " -- SUCCESS",
1807                       bp_site->GetID(), (uint64_t)bp_addr);
1808           } else
1809             error.SetErrorString(
1810                 "failed to verify the breakpoint trap in memory.");
1811         } else
1812           error.SetErrorString(
1813               "Unable to read memory to verify breakpoint trap.");
1814       } else
1815         error.SetErrorString("Unable to write breakpoint trap to memory.");
1816     } else
1817       error.SetErrorString("Unable to read memory at breakpoint address.");
1818   }
1819   if (log && error.Fail())
1820     LLDB_LOGF(
1821         log,
1822         "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1823         " -- FAILED: %s",
1824         bp_site->GetID(), (uint64_t)bp_addr, error.AsCString());
1825   return error;
1826 }
1827 
1828 Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) {
1829   Status error;
1830   assert(bp_site != nullptr);
1831   Log *log = GetLog(LLDBLog::Breakpoints);
1832   addr_t bp_addr = bp_site->GetLoadAddress();
1833   lldb::user_id_t breakID = bp_site->GetID();
1834   LLDB_LOGF(log,
1835             "Process::DisableSoftwareBreakpoint (breakID = %" PRIu64
1836             ") addr = 0x%" PRIx64,
1837             breakID, (uint64_t)bp_addr);
1838 
1839   if (bp_site->IsHardware()) {
1840     error.SetErrorString("Breakpoint site is a hardware breakpoint.");
1841   } else if (bp_site->IsEnabled()) {
1842     const size_t break_op_size = bp_site->GetByteSize();
1843     const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes();
1844     if (break_op_size > 0) {
1845       // Clear a software breakpoint instruction
1846       uint8_t curr_break_op[8];
1847       assert(break_op_size <= sizeof(curr_break_op));
1848       bool break_op_found = false;
1849 
1850       // Read the breakpoint opcode
1851       if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) ==
1852           break_op_size) {
1853         bool verify = false;
1854         // Make sure the breakpoint opcode exists at this address
1855         if (::memcmp(curr_break_op, break_op, break_op_size) == 0) {
1856           break_op_found = true;
1857           // We found a valid breakpoint opcode at this address, now restore
1858           // the saved opcode.
1859           if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(),
1860                             break_op_size, error) == break_op_size) {
1861             verify = true;
1862           } else
1863             error.SetErrorString(
1864                 "Memory write failed when restoring original opcode.");
1865         } else {
1866           error.SetErrorString(
1867               "Original breakpoint trap is no longer in memory.");
1868           // Set verify to true and so we can check if the original opcode has
1869           // already been restored
1870           verify = true;
1871         }
1872 
1873         if (verify) {
1874           uint8_t verify_opcode[8];
1875           assert(break_op_size < sizeof(verify_opcode));
1876           // Verify that our original opcode made it back to the inferior
1877           if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) ==
1878               break_op_size) {
1879             // compare the memory we just read with the original opcode
1880             if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode,
1881                          break_op_size) == 0) {
1882               // SUCCESS
1883               bp_site->SetEnabled(false);
1884               LLDB_LOGF(log,
1885                         "Process::DisableSoftwareBreakpoint (site_id = %d) "
1886                         "addr = 0x%" PRIx64 " -- SUCCESS",
1887                         bp_site->GetID(), (uint64_t)bp_addr);
1888               return error;
1889             } else {
1890               if (break_op_found)
1891                 error.SetErrorString("Failed to restore original opcode.");
1892             }
1893           } else
1894             error.SetErrorString("Failed to read memory to verify that "
1895                                  "breakpoint trap was restored.");
1896         }
1897       } else
1898         error.SetErrorString(
1899             "Unable to read memory that should contain the breakpoint trap.");
1900     }
1901   } else {
1902     LLDB_LOGF(
1903         log,
1904         "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1905         " -- already disabled",
1906         bp_site->GetID(), (uint64_t)bp_addr);
1907     return error;
1908   }
1909 
1910   LLDB_LOGF(
1911       log,
1912       "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1913       " -- FAILED: %s",
1914       bp_site->GetID(), (uint64_t)bp_addr, error.AsCString());
1915   return error;
1916 }
1917 
1918 // Uncomment to verify memory caching works after making changes to caching
1919 // code
1920 //#define VERIFY_MEMORY_READS
1921 
1922 size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) {
1923   if (ABISP abi_sp = GetABI())
1924     addr = abi_sp->FixAnyAddress(addr);
1925 
1926   error.Clear();
1927   if (!GetDisableMemoryCache()) {
1928 #if defined(VERIFY_MEMORY_READS)
1929     // Memory caching is enabled, with debug verification
1930 
1931     if (buf && size) {
1932       // Uncomment the line below to make sure memory caching is working.
1933       // I ran this through the test suite and got no assertions, so I am
1934       // pretty confident this is working well. If any changes are made to
1935       // memory caching, uncomment the line below and test your changes!
1936 
1937       // Verify all memory reads by using the cache first, then redundantly
1938       // reading the same memory from the inferior and comparing to make sure
1939       // everything is exactly the same.
1940       std::string verify_buf(size, '\0');
1941       assert(verify_buf.size() == size);
1942       const size_t cache_bytes_read =
1943           m_memory_cache.Read(this, addr, buf, size, error);
1944       Status verify_error;
1945       const size_t verify_bytes_read =
1946           ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()),
1947                                  verify_buf.size(), verify_error);
1948       assert(cache_bytes_read == verify_bytes_read);
1949       assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0);
1950       assert(verify_error.Success() == error.Success());
1951       return cache_bytes_read;
1952     }
1953     return 0;
1954 #else  // !defined(VERIFY_MEMORY_READS)
1955     // Memory caching is enabled, without debug verification
1956 
1957     return m_memory_cache.Read(addr, buf, size, error);
1958 #endif // defined (VERIFY_MEMORY_READS)
1959   } else {
1960     // Memory caching is disabled
1961 
1962     return ReadMemoryFromInferior(addr, buf, size, error);
1963   }
1964 }
1965 
1966 size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str,
1967                                       Status &error) {
1968   char buf[256];
1969   out_str.clear();
1970   addr_t curr_addr = addr;
1971   while (true) {
1972     size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error);
1973     if (length == 0)
1974       break;
1975     out_str.append(buf, length);
1976     // If we got "length - 1" bytes, we didn't get the whole C string, we need
1977     // to read some more characters
1978     if (length == sizeof(buf) - 1)
1979       curr_addr += length;
1980     else
1981       break;
1982   }
1983   return out_str.size();
1984 }
1985 
1986 // Deprecated in favor of ReadStringFromMemory which has wchar support and
1987 // correct code to find null terminators.
1988 size_t Process::ReadCStringFromMemory(addr_t addr, char *dst,
1989                                       size_t dst_max_len,
1990                                       Status &result_error) {
1991   size_t total_cstr_len = 0;
1992   if (dst && dst_max_len) {
1993     result_error.Clear();
1994     // NULL out everything just to be safe
1995     memset(dst, 0, dst_max_len);
1996     Status error;
1997     addr_t curr_addr = addr;
1998     const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize();
1999     size_t bytes_left = dst_max_len - 1;
2000     char *curr_dst = dst;
2001 
2002     while (bytes_left > 0) {
2003       addr_t cache_line_bytes_left =
2004           cache_line_size - (curr_addr % cache_line_size);
2005       addr_t bytes_to_read =
2006           std::min<addr_t>(bytes_left, cache_line_bytes_left);
2007       size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error);
2008 
2009       if (bytes_read == 0) {
2010         result_error = error;
2011         dst[total_cstr_len] = '\0';
2012         break;
2013       }
2014       const size_t len = strlen(curr_dst);
2015 
2016       total_cstr_len += len;
2017 
2018       if (len < bytes_to_read)
2019         break;
2020 
2021       curr_dst += bytes_read;
2022       curr_addr += bytes_read;
2023       bytes_left -= bytes_read;
2024     }
2025   } else {
2026     if (dst == nullptr)
2027       result_error.SetErrorString("invalid arguments");
2028     else
2029       result_error.Clear();
2030   }
2031   return total_cstr_len;
2032 }
2033 
2034 size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size,
2035                                        Status &error) {
2036   LLDB_SCOPED_TIMER();
2037 
2038   if (ABISP abi_sp = GetABI())
2039     addr = abi_sp->FixAnyAddress(addr);
2040 
2041   if (buf == nullptr || size == 0)
2042     return 0;
2043 
2044   size_t bytes_read = 0;
2045   uint8_t *bytes = (uint8_t *)buf;
2046 
2047   while (bytes_read < size) {
2048     const size_t curr_size = size - bytes_read;
2049     const size_t curr_bytes_read =
2050         DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error);
2051     bytes_read += curr_bytes_read;
2052     if (curr_bytes_read == curr_size || curr_bytes_read == 0)
2053       break;
2054   }
2055 
2056   // Replace any software breakpoint opcodes that fall into this range back
2057   // into "buf" before we return
2058   if (bytes_read > 0)
2059     RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf);
2060   return bytes_read;
2061 }
2062 
2063 uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr,
2064                                                 size_t integer_byte_size,
2065                                                 uint64_t fail_value,
2066                                                 Status &error) {
2067   Scalar scalar;
2068   if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar,
2069                                   error))
2070     return scalar.ULongLong(fail_value);
2071   return fail_value;
2072 }
2073 
2074 int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr,
2075                                              size_t integer_byte_size,
2076                                              int64_t fail_value,
2077                                              Status &error) {
2078   Scalar scalar;
2079   if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar,
2080                                   error))
2081     return scalar.SLongLong(fail_value);
2082   return fail_value;
2083 }
2084 
2085 addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) {
2086   Scalar scalar;
2087   if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar,
2088                                   error))
2089     return scalar.ULongLong(LLDB_INVALID_ADDRESS);
2090   return LLDB_INVALID_ADDRESS;
2091 }
2092 
2093 bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value,
2094                                    Status &error) {
2095   Scalar scalar;
2096   const uint32_t addr_byte_size = GetAddressByteSize();
2097   if (addr_byte_size <= 4)
2098     scalar = (uint32_t)ptr_value;
2099   else
2100     scalar = ptr_value;
2101   return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) ==
2102          addr_byte_size;
2103 }
2104 
2105 size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size,
2106                                    Status &error) {
2107   size_t bytes_written = 0;
2108   const uint8_t *bytes = (const uint8_t *)buf;
2109 
2110   while (bytes_written < size) {
2111     const size_t curr_size = size - bytes_written;
2112     const size_t curr_bytes_written = DoWriteMemory(
2113         addr + bytes_written, bytes + bytes_written, curr_size, error);
2114     bytes_written += curr_bytes_written;
2115     if (curr_bytes_written == curr_size || curr_bytes_written == 0)
2116       break;
2117   }
2118   return bytes_written;
2119 }
2120 
2121 size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size,
2122                             Status &error) {
2123   if (ABISP abi_sp = GetABI())
2124     addr = abi_sp->FixAnyAddress(addr);
2125 
2126 #if defined(ENABLE_MEMORY_CACHING)
2127   m_memory_cache.Flush(addr, size);
2128 #endif
2129 
2130   if (buf == nullptr || size == 0)
2131     return 0;
2132 
2133   m_mod_id.BumpMemoryID();
2134 
2135   // We need to write any data that would go where any current software traps
2136   // (enabled software breakpoints) any software traps (breakpoints) that we
2137   // may have placed in our tasks memory.
2138 
2139   BreakpointSiteList bp_sites_in_range;
2140   if (!m_breakpoint_site_list.FindInRange(addr, addr + size, bp_sites_in_range))
2141     return WriteMemoryPrivate(addr, buf, size, error);
2142 
2143   // No breakpoint sites overlap
2144   if (bp_sites_in_range.IsEmpty())
2145     return WriteMemoryPrivate(addr, buf, size, error);
2146 
2147   const uint8_t *ubuf = (const uint8_t *)buf;
2148   uint64_t bytes_written = 0;
2149 
2150   bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf,
2151                              &error](BreakpointSite *bp) -> void {
2152     if (error.Fail())
2153       return;
2154 
2155     if (bp->GetType() != BreakpointSite::eSoftware)
2156       return;
2157 
2158     addr_t intersect_addr;
2159     size_t intersect_size;
2160     size_t opcode_offset;
2161     const bool intersects = bp->IntersectsRange(
2162         addr, size, &intersect_addr, &intersect_size, &opcode_offset);
2163     UNUSED_IF_ASSERT_DISABLED(intersects);
2164     assert(intersects);
2165     assert(addr <= intersect_addr && intersect_addr < addr + size);
2166     assert(addr < intersect_addr + intersect_size &&
2167            intersect_addr + intersect_size <= addr + size);
2168     assert(opcode_offset + intersect_size <= bp->GetByteSize());
2169 
2170     // Check for bytes before this breakpoint
2171     const addr_t curr_addr = addr + bytes_written;
2172     if (intersect_addr > curr_addr) {
2173       // There are some bytes before this breakpoint that we need to just
2174       // write to memory
2175       size_t curr_size = intersect_addr - curr_addr;
2176       size_t curr_bytes_written =
2177           WriteMemoryPrivate(curr_addr, ubuf + bytes_written, curr_size, error);
2178       bytes_written += curr_bytes_written;
2179       if (curr_bytes_written != curr_size) {
2180         // We weren't able to write all of the requested bytes, we are
2181         // done looping and will return the number of bytes that we have
2182         // written so far.
2183         if (error.Success())
2184           error.SetErrorToGenericError();
2185       }
2186     }
2187     // Now write any bytes that would cover up any software breakpoints
2188     // directly into the breakpoint opcode buffer
2189     ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written,
2190              intersect_size);
2191     bytes_written += intersect_size;
2192   });
2193 
2194   // Write any remaining bytes after the last breakpoint if we have any left
2195   if (bytes_written < size)
2196     bytes_written +=
2197         WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written,
2198                            size - bytes_written, error);
2199 
2200   return bytes_written;
2201 }
2202 
2203 size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar,
2204                                     size_t byte_size, Status &error) {
2205   if (byte_size == UINT32_MAX)
2206     byte_size = scalar.GetByteSize();
2207   if (byte_size > 0) {
2208     uint8_t buf[32];
2209     const size_t mem_size =
2210         scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error);
2211     if (mem_size > 0)
2212       return WriteMemory(addr, buf, mem_size, error);
2213     else
2214       error.SetErrorString("failed to get scalar as memory data");
2215   } else {
2216     error.SetErrorString("invalid scalar value");
2217   }
2218   return 0;
2219 }
2220 
2221 size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size,
2222                                             bool is_signed, Scalar &scalar,
2223                                             Status &error) {
2224   uint64_t uval = 0;
2225   if (byte_size == 0) {
2226     error.SetErrorString("byte size is zero");
2227   } else if (byte_size & (byte_size - 1)) {
2228     error.SetErrorStringWithFormat("byte size %u is not a power of 2",
2229                                    byte_size);
2230   } else if (byte_size <= sizeof(uval)) {
2231     const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error);
2232     if (bytes_read == byte_size) {
2233       DataExtractor data(&uval, sizeof(uval), GetByteOrder(),
2234                          GetAddressByteSize());
2235       lldb::offset_t offset = 0;
2236       if (byte_size <= 4)
2237         scalar = data.GetMaxU32(&offset, byte_size);
2238       else
2239         scalar = data.GetMaxU64(&offset, byte_size);
2240       if (is_signed)
2241         scalar.SignExtend(byte_size * 8);
2242       return bytes_read;
2243     }
2244   } else {
2245     error.SetErrorStringWithFormat(
2246         "byte size of %u is too large for integer scalar type", byte_size);
2247   }
2248   return 0;
2249 }
2250 
2251 Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) {
2252   Status error;
2253   for (const auto &Entry : entries) {
2254     WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(),
2255                 error);
2256     if (!error.Success())
2257       break;
2258   }
2259   return error;
2260 }
2261 
2262 #define USE_ALLOCATE_MEMORY_CACHE 1
2263 addr_t Process::AllocateMemory(size_t size, uint32_t permissions,
2264                                Status &error) {
2265   if (GetPrivateState() != eStateStopped) {
2266     error.SetErrorToGenericError();
2267     return LLDB_INVALID_ADDRESS;
2268   }
2269 
2270 #if defined(USE_ALLOCATE_MEMORY_CACHE)
2271   return m_allocated_memory_cache.AllocateMemory(size, permissions, error);
2272 #else
2273   addr_t allocated_addr = DoAllocateMemory(size, permissions, error);
2274   Log *log = GetLog(LLDBLog::Process);
2275   LLDB_LOGF(log,
2276             "Process::AllocateMemory(size=%" PRIu64
2277             ", permissions=%s) => 0x%16.16" PRIx64
2278             " (m_stop_id = %u m_memory_id = %u)",
2279             (uint64_t)size, GetPermissionsAsCString(permissions),
2280             (uint64_t)allocated_addr, m_mod_id.GetStopID(),
2281             m_mod_id.GetMemoryID());
2282   return allocated_addr;
2283 #endif
2284 }
2285 
2286 addr_t Process::CallocateMemory(size_t size, uint32_t permissions,
2287                                 Status &error) {
2288   addr_t return_addr = AllocateMemory(size, permissions, error);
2289   if (error.Success()) {
2290     std::string buffer(size, 0);
2291     WriteMemory(return_addr, buffer.c_str(), size, error);
2292   }
2293   return return_addr;
2294 }
2295 
2296 bool Process::CanJIT() {
2297   if (m_can_jit == eCanJITDontKnow) {
2298     Log *log = GetLog(LLDBLog::Process);
2299     Status err;
2300 
2301     uint64_t allocated_memory = AllocateMemory(
2302         8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable,
2303         err);
2304 
2305     if (err.Success()) {
2306       m_can_jit = eCanJITYes;
2307       LLDB_LOGF(log,
2308                 "Process::%s pid %" PRIu64
2309                 " allocation test passed, CanJIT () is true",
2310                 __FUNCTION__, GetID());
2311     } else {
2312       m_can_jit = eCanJITNo;
2313       LLDB_LOGF(log,
2314                 "Process::%s pid %" PRIu64
2315                 " allocation test failed, CanJIT () is false: %s",
2316                 __FUNCTION__, GetID(), err.AsCString());
2317     }
2318 
2319     DeallocateMemory(allocated_memory);
2320   }
2321 
2322   return m_can_jit == eCanJITYes;
2323 }
2324 
2325 void Process::SetCanJIT(bool can_jit) {
2326   m_can_jit = (can_jit ? eCanJITYes : eCanJITNo);
2327 }
2328 
2329 void Process::SetCanRunCode(bool can_run_code) {
2330   SetCanJIT(can_run_code);
2331   m_can_interpret_function_calls = can_run_code;
2332 }
2333 
2334 Status Process::DeallocateMemory(addr_t ptr) {
2335   Status error;
2336 #if defined(USE_ALLOCATE_MEMORY_CACHE)
2337   if (!m_allocated_memory_cache.DeallocateMemory(ptr)) {
2338     error.SetErrorStringWithFormat(
2339         "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr);
2340   }
2341 #else
2342   error = DoDeallocateMemory(ptr);
2343 
2344   Log *log = GetLog(LLDBLog::Process);
2345   LLDB_LOGF(log,
2346             "Process::DeallocateMemory(addr=0x%16.16" PRIx64
2347             ") => err = %s (m_stop_id = %u, m_memory_id = %u)",
2348             ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(),
2349             m_mod_id.GetMemoryID());
2350 #endif
2351   return error;
2352 }
2353 
2354 ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec,
2355                                        lldb::addr_t header_addr,
2356                                        size_t size_to_read) {
2357   Log *log = GetLog(LLDBLog::Host);
2358   if (log) {
2359     LLDB_LOGF(log,
2360               "Process::ReadModuleFromMemory reading %s binary from memory",
2361               file_spec.GetPath().c_str());
2362   }
2363   ModuleSP module_sp(new Module(file_spec, ArchSpec()));
2364   if (module_sp) {
2365     Status error;
2366     ObjectFile *objfile = module_sp->GetMemoryObjectFile(
2367         shared_from_this(), header_addr, error, size_to_read);
2368     if (objfile)
2369       return module_sp;
2370   }
2371   return ModuleSP();
2372 }
2373 
2374 bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr,
2375                                         uint32_t &permissions) {
2376   MemoryRegionInfo range_info;
2377   permissions = 0;
2378   Status error(GetMemoryRegionInfo(load_addr, range_info));
2379   if (!error.Success())
2380     return false;
2381   if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow ||
2382       range_info.GetWritable() == MemoryRegionInfo::eDontKnow ||
2383       range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) {
2384     return false;
2385   }
2386 
2387   if (range_info.GetReadable() == MemoryRegionInfo::eYes)
2388     permissions |= lldb::ePermissionsReadable;
2389 
2390   if (range_info.GetWritable() == MemoryRegionInfo::eYes)
2391     permissions |= lldb::ePermissionsWritable;
2392 
2393   if (range_info.GetExecutable() == MemoryRegionInfo::eYes)
2394     permissions |= lldb::ePermissionsExecutable;
2395 
2396   return true;
2397 }
2398 
2399 Status Process::EnableWatchpoint(Watchpoint *watchpoint, bool notify) {
2400   Status error;
2401   error.SetErrorString("watchpoints are not supported");
2402   return error;
2403 }
2404 
2405 Status Process::DisableWatchpoint(Watchpoint *watchpoint, bool notify) {
2406   Status error;
2407   error.SetErrorString("watchpoints are not supported");
2408   return error;
2409 }
2410 
2411 StateType
2412 Process::WaitForProcessStopPrivate(EventSP &event_sp,
2413                                    const Timeout<std::micro> &timeout) {
2414   StateType state;
2415 
2416   while (true) {
2417     event_sp.reset();
2418     state = GetStateChangedEventsPrivate(event_sp, timeout);
2419 
2420     if (StateIsStoppedState(state, false))
2421       break;
2422 
2423     // If state is invalid, then we timed out
2424     if (state == eStateInvalid)
2425       break;
2426 
2427     if (event_sp)
2428       HandlePrivateEvent(event_sp);
2429   }
2430   return state;
2431 }
2432 
2433 void Process::LoadOperatingSystemPlugin(bool flush) {
2434   if (flush)
2435     m_thread_list.Clear();
2436   m_os_up.reset(OperatingSystem::FindPlugin(this, nullptr));
2437   if (flush)
2438     Flush();
2439 }
2440 
2441 Status Process::Launch(ProcessLaunchInfo &launch_info) {
2442   StateType state_after_launch = eStateInvalid;
2443   EventSP first_stop_event_sp;
2444   Status status =
2445       LaunchPrivate(launch_info, state_after_launch, first_stop_event_sp);
2446   if (status.Fail())
2447     return status;
2448 
2449   if (state_after_launch != eStateStopped &&
2450       state_after_launch != eStateCrashed)
2451     return Status();
2452 
2453   // Note, the stop event was consumed above, but not handled. This
2454   // was done to give DidLaunch a chance to run. The target is either
2455   // stopped or crashed. Directly set the state.  This is done to
2456   // prevent a stop message with a bunch of spurious output on thread
2457   // status, as well as not pop a ProcessIOHandler.
2458   SetPublicState(state_after_launch, false);
2459 
2460   if (PrivateStateThreadIsValid())
2461     ResumePrivateStateThread();
2462   else
2463     StartPrivateStateThread();
2464 
2465   // Target was stopped at entry as was intended. Need to notify the
2466   // listeners about it.
2467   if (launch_info.GetFlags().Test(eLaunchFlagStopAtEntry))
2468     HandlePrivateEvent(first_stop_event_sp);
2469 
2470   return Status();
2471 }
2472 
2473 Status Process::LaunchPrivate(ProcessLaunchInfo &launch_info, StateType &state,
2474                               EventSP &event_sp) {
2475   Status error;
2476   m_abi_sp.reset();
2477   m_dyld_up.reset();
2478   m_jit_loaders_up.reset();
2479   m_system_runtime_up.reset();
2480   m_os_up.reset();
2481   m_process_input_reader.reset();
2482 
2483   Module *exe_module = GetTarget().GetExecutableModulePointer();
2484 
2485   // The "remote executable path" is hooked up to the local Executable
2486   // module.  But we should be able to debug a remote process even if the
2487   // executable module only exists on the remote.  However, there needs to
2488   // be a way to express this path, without actually having a module.
2489   // The way to do that is to set the ExecutableFile in the LaunchInfo.
2490   // Figure that out here:
2491 
2492   FileSpec exe_spec_to_use;
2493   if (!exe_module) {
2494     if (!launch_info.GetExecutableFile()) {
2495       error.SetErrorString("executable module does not exist");
2496       return error;
2497     }
2498     exe_spec_to_use = launch_info.GetExecutableFile();
2499   } else
2500     exe_spec_to_use = exe_module->GetFileSpec();
2501 
2502   if (exe_module && FileSystem::Instance().Exists(exe_module->GetFileSpec())) {
2503     // Install anything that might need to be installed prior to launching.
2504     // For host systems, this will do nothing, but if we are connected to a
2505     // remote platform it will install any needed binaries
2506     error = GetTarget().Install(&launch_info);
2507     if (error.Fail())
2508       return error;
2509   }
2510 
2511   // Listen and queue events that are broadcasted during the process launch.
2512   ListenerSP listener_sp(Listener::MakeListener("LaunchEventHijack"));
2513   HijackProcessEvents(listener_sp);
2514   auto on_exit = llvm::make_scope_exit([this]() { RestoreProcessEvents(); });
2515 
2516   if (PrivateStateThreadIsValid())
2517     PausePrivateStateThread();
2518 
2519   error = WillLaunch(exe_module);
2520   if (error.Fail()) {
2521     std::string local_exec_file_path = exe_spec_to_use.GetPath();
2522     return Status("file doesn't exist: '%s'", local_exec_file_path.c_str());
2523   }
2524 
2525   const bool restarted = false;
2526   SetPublicState(eStateLaunching, restarted);
2527   m_should_detach = false;
2528 
2529   if (m_public_run_lock.TrySetRunning()) {
2530     // Now launch using these arguments.
2531     error = DoLaunch(exe_module, launch_info);
2532   } else {
2533     // This shouldn't happen
2534     error.SetErrorString("failed to acquire process run lock");
2535   }
2536 
2537   if (error.Fail()) {
2538     if (GetID() != LLDB_INVALID_PROCESS_ID) {
2539       SetID(LLDB_INVALID_PROCESS_ID);
2540       const char *error_string = error.AsCString();
2541       if (error_string == nullptr)
2542         error_string = "launch failed";
2543       SetExitStatus(-1, error_string);
2544     }
2545     return error;
2546   }
2547 
2548   // Now wait for the process to launch and return control to us, and then
2549   // call DidLaunch:
2550   state = WaitForProcessStopPrivate(event_sp, seconds(10));
2551 
2552   if (state == eStateInvalid || !event_sp) {
2553     // We were able to launch the process, but we failed to catch the
2554     // initial stop.
2555     error.SetErrorString("failed to catch stop after launch");
2556     SetExitStatus(0, error.AsCString());
2557     Destroy(false);
2558     return error;
2559   }
2560 
2561   if (state == eStateExited) {
2562     // We exited while trying to launch somehow.  Don't call DidLaunch
2563     // as that's not likely to work, and return an invalid pid.
2564     HandlePrivateEvent(event_sp);
2565     return Status();
2566   }
2567 
2568   if (state == eStateStopped || state == eStateCrashed) {
2569     DidLaunch();
2570 
2571     // Now that we know the process type, update its signal responses from the
2572     // ones stored in the Target:
2573     if (m_unix_signals_sp) {
2574       StreamSP warning_strm = GetTarget().GetDebugger().GetAsyncErrorStream();
2575       GetTarget().UpdateSignalsFromDummy(m_unix_signals_sp, warning_strm);
2576     }
2577 
2578     DynamicLoader *dyld = GetDynamicLoader();
2579     if (dyld)
2580       dyld->DidLaunch();
2581 
2582     GetJITLoaders().DidLaunch();
2583 
2584     SystemRuntime *system_runtime = GetSystemRuntime();
2585     if (system_runtime)
2586       system_runtime->DidLaunch();
2587 
2588     if (!m_os_up)
2589       LoadOperatingSystemPlugin(false);
2590 
2591     // We successfully launched the process and stopped, now it the
2592     // right time to set up signal filters before resuming.
2593     UpdateAutomaticSignalFiltering();
2594     return Status();
2595   }
2596 
2597   return Status("Unexpected process state after the launch: %s, expected %s, "
2598                 "%s, %s or %s",
2599                 StateAsCString(state), StateAsCString(eStateInvalid),
2600                 StateAsCString(eStateExited), StateAsCString(eStateStopped),
2601                 StateAsCString(eStateCrashed));
2602 }
2603 
2604 Status Process::LoadCore() {
2605   Status error = DoLoadCore();
2606   if (error.Success()) {
2607     ListenerSP listener_sp(
2608         Listener::MakeListener("lldb.process.load_core_listener"));
2609     HijackProcessEvents(listener_sp);
2610 
2611     if (PrivateStateThreadIsValid())
2612       ResumePrivateStateThread();
2613     else
2614       StartPrivateStateThread();
2615 
2616     DynamicLoader *dyld = GetDynamicLoader();
2617     if (dyld)
2618       dyld->DidAttach();
2619 
2620     GetJITLoaders().DidAttach();
2621 
2622     SystemRuntime *system_runtime = GetSystemRuntime();
2623     if (system_runtime)
2624       system_runtime->DidAttach();
2625 
2626     if (!m_os_up)
2627       LoadOperatingSystemPlugin(false);
2628 
2629     // We successfully loaded a core file, now pretend we stopped so we can
2630     // show all of the threads in the core file and explore the crashed state.
2631     SetPrivateState(eStateStopped);
2632 
2633     // Wait for a stopped event since we just posted one above...
2634     lldb::EventSP event_sp;
2635     StateType state =
2636         WaitForProcessToStop(llvm::None, &event_sp, true, listener_sp);
2637 
2638     if (!StateIsStoppedState(state, false)) {
2639       Log *log = GetLog(LLDBLog::Process);
2640       LLDB_LOGF(log, "Process::Halt() failed to stop, state is: %s",
2641                 StateAsCString(state));
2642       error.SetErrorString(
2643           "Did not get stopped event after loading the core file.");
2644     }
2645     RestoreProcessEvents();
2646   }
2647   return error;
2648 }
2649 
2650 DynamicLoader *Process::GetDynamicLoader() {
2651   if (!m_dyld_up)
2652     m_dyld_up.reset(DynamicLoader::FindPlugin(this, ""));
2653   return m_dyld_up.get();
2654 }
2655 
2656 DataExtractor Process::GetAuxvData() { return DataExtractor(); }
2657 
2658 llvm::Expected<bool> Process::SaveCore(llvm::StringRef outfile) {
2659   return false;
2660 }
2661 
2662 JITLoaderList &Process::GetJITLoaders() {
2663   if (!m_jit_loaders_up) {
2664     m_jit_loaders_up = std::make_unique<JITLoaderList>();
2665     JITLoader::LoadPlugins(this, *m_jit_loaders_up);
2666   }
2667   return *m_jit_loaders_up;
2668 }
2669 
2670 SystemRuntime *Process::GetSystemRuntime() {
2671   if (!m_system_runtime_up)
2672     m_system_runtime_up.reset(SystemRuntime::FindPlugin(this));
2673   return m_system_runtime_up.get();
2674 }
2675 
2676 Process::AttachCompletionHandler::AttachCompletionHandler(Process *process,
2677                                                           uint32_t exec_count)
2678     : NextEventAction(process), m_exec_count(exec_count) {
2679   Log *log = GetLog(LLDBLog::Process);
2680   LLDB_LOGF(
2681       log,
2682       "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32,
2683       __FUNCTION__, static_cast<void *>(process), exec_count);
2684 }
2685 
2686 Process::NextEventAction::EventActionResult
2687 Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) {
2688   Log *log = GetLog(LLDBLog::Process);
2689 
2690   StateType state = ProcessEventData::GetStateFromEvent(event_sp.get());
2691   LLDB_LOGF(log,
2692             "Process::AttachCompletionHandler::%s called with state %s (%d)",
2693             __FUNCTION__, StateAsCString(state), static_cast<int>(state));
2694 
2695   switch (state) {
2696   case eStateAttaching:
2697     return eEventActionSuccess;
2698 
2699   case eStateRunning:
2700   case eStateConnected:
2701     return eEventActionRetry;
2702 
2703   case eStateStopped:
2704   case eStateCrashed:
2705     // During attach, prior to sending the eStateStopped event,
2706     // lldb_private::Process subclasses must set the new process ID.
2707     assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID);
2708     // We don't want these events to be reported, so go set the
2709     // ShouldReportStop here:
2710     m_process->GetThreadList().SetShouldReportStop(eVoteNo);
2711 
2712     if (m_exec_count > 0) {
2713       --m_exec_count;
2714 
2715       LLDB_LOGF(log,
2716                 "Process::AttachCompletionHandler::%s state %s: reduced "
2717                 "remaining exec count to %" PRIu32 ", requesting resume",
2718                 __FUNCTION__, StateAsCString(state), m_exec_count);
2719 
2720       RequestResume();
2721       return eEventActionRetry;
2722     } else {
2723       LLDB_LOGF(log,
2724                 "Process::AttachCompletionHandler::%s state %s: no more "
2725                 "execs expected to start, continuing with attach",
2726                 __FUNCTION__, StateAsCString(state));
2727 
2728       m_process->CompleteAttach();
2729       return eEventActionSuccess;
2730     }
2731     break;
2732 
2733   default:
2734   case eStateExited:
2735   case eStateInvalid:
2736     break;
2737   }
2738 
2739   m_exit_string.assign("No valid Process");
2740   return eEventActionExit;
2741 }
2742 
2743 Process::NextEventAction::EventActionResult
2744 Process::AttachCompletionHandler::HandleBeingInterrupted() {
2745   return eEventActionSuccess;
2746 }
2747 
2748 const char *Process::AttachCompletionHandler::GetExitString() {
2749   return m_exit_string.c_str();
2750 }
2751 
2752 ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) {
2753   if (m_listener_sp)
2754     return m_listener_sp;
2755   else
2756     return debugger.GetListener();
2757 }
2758 
2759 Status Process::Attach(ProcessAttachInfo &attach_info) {
2760   m_abi_sp.reset();
2761   m_process_input_reader.reset();
2762   m_dyld_up.reset();
2763   m_jit_loaders_up.reset();
2764   m_system_runtime_up.reset();
2765   m_os_up.reset();
2766 
2767   lldb::pid_t attach_pid = attach_info.GetProcessID();
2768   Status error;
2769   if (attach_pid == LLDB_INVALID_PROCESS_ID) {
2770     char process_name[PATH_MAX];
2771 
2772     if (attach_info.GetExecutableFile().GetPath(process_name,
2773                                                 sizeof(process_name))) {
2774       const bool wait_for_launch = attach_info.GetWaitForLaunch();
2775 
2776       if (wait_for_launch) {
2777         error = WillAttachToProcessWithName(process_name, wait_for_launch);
2778         if (error.Success()) {
2779           if (m_public_run_lock.TrySetRunning()) {
2780             m_should_detach = true;
2781             const bool restarted = false;
2782             SetPublicState(eStateAttaching, restarted);
2783             // Now attach using these arguments.
2784             error = DoAttachToProcessWithName(process_name, attach_info);
2785           } else {
2786             // This shouldn't happen
2787             error.SetErrorString("failed to acquire process run lock");
2788           }
2789 
2790           if (error.Fail()) {
2791             if (GetID() != LLDB_INVALID_PROCESS_ID) {
2792               SetID(LLDB_INVALID_PROCESS_ID);
2793               if (error.AsCString() == nullptr)
2794                 error.SetErrorString("attach failed");
2795 
2796               SetExitStatus(-1, error.AsCString());
2797             }
2798           } else {
2799             SetNextEventAction(new Process::AttachCompletionHandler(
2800                 this, attach_info.GetResumeCount()));
2801             StartPrivateStateThread();
2802           }
2803           return error;
2804         }
2805       } else {
2806         ProcessInstanceInfoList process_infos;
2807         PlatformSP platform_sp(GetTarget().GetPlatform());
2808 
2809         if (platform_sp) {
2810           ProcessInstanceInfoMatch match_info;
2811           match_info.GetProcessInfo() = attach_info;
2812           match_info.SetNameMatchType(NameMatch::Equals);
2813           platform_sp->FindProcesses(match_info, process_infos);
2814           const uint32_t num_matches = process_infos.size();
2815           if (num_matches == 1) {
2816             attach_pid = process_infos[0].GetProcessID();
2817             // Fall through and attach using the above process ID
2818           } else {
2819             match_info.GetProcessInfo().GetExecutableFile().GetPath(
2820                 process_name, sizeof(process_name));
2821             if (num_matches > 1) {
2822               StreamString s;
2823               ProcessInstanceInfo::DumpTableHeader(s, true, false);
2824               for (size_t i = 0; i < num_matches; i++) {
2825                 process_infos[i].DumpAsTableRow(
2826                     s, platform_sp->GetUserIDResolver(), true, false);
2827               }
2828               error.SetErrorStringWithFormat(
2829                   "more than one process named %s:\n%s", process_name,
2830                   s.GetData());
2831             } else
2832               error.SetErrorStringWithFormat(
2833                   "could not find a process named %s", process_name);
2834           }
2835         } else {
2836           error.SetErrorString(
2837               "invalid platform, can't find processes by name");
2838           return error;
2839         }
2840       }
2841     } else {
2842       error.SetErrorString("invalid process name");
2843     }
2844   }
2845 
2846   if (attach_pid != LLDB_INVALID_PROCESS_ID) {
2847     error = WillAttachToProcessWithID(attach_pid);
2848     if (error.Success()) {
2849 
2850       if (m_public_run_lock.TrySetRunning()) {
2851         // Now attach using these arguments.
2852         m_should_detach = true;
2853         const bool restarted = false;
2854         SetPublicState(eStateAttaching, restarted);
2855         error = DoAttachToProcessWithID(attach_pid, attach_info);
2856       } else {
2857         // This shouldn't happen
2858         error.SetErrorString("failed to acquire process run lock");
2859       }
2860 
2861       if (error.Success()) {
2862         SetNextEventAction(new Process::AttachCompletionHandler(
2863             this, attach_info.GetResumeCount()));
2864         StartPrivateStateThread();
2865       } else {
2866         if (GetID() != LLDB_INVALID_PROCESS_ID)
2867           SetID(LLDB_INVALID_PROCESS_ID);
2868 
2869         const char *error_string = error.AsCString();
2870         if (error_string == nullptr)
2871           error_string = "attach failed";
2872 
2873         SetExitStatus(-1, error_string);
2874       }
2875     }
2876   }
2877   return error;
2878 }
2879 
2880 void Process::CompleteAttach() {
2881   Log *log(GetLog(LLDBLog::Process | LLDBLog::Target));
2882   LLDB_LOGF(log, "Process::%s()", __FUNCTION__);
2883 
2884   // Let the process subclass figure out at much as it can about the process
2885   // before we go looking for a dynamic loader plug-in.
2886   ArchSpec process_arch;
2887   DidAttach(process_arch);
2888 
2889   if (process_arch.IsValid()) {
2890     GetTarget().SetArchitecture(process_arch);
2891     if (log) {
2892       const char *triple_str = process_arch.GetTriple().getTriple().c_str();
2893       LLDB_LOGF(log,
2894                 "Process::%s replacing process architecture with DidAttach() "
2895                 "architecture: %s",
2896                 __FUNCTION__, triple_str ? triple_str : "<null>");
2897     }
2898   }
2899 
2900   // We just attached.  If we have a platform, ask it for the process
2901   // architecture, and if it isn't the same as the one we've already set,
2902   // switch architectures.
2903   PlatformSP platform_sp(GetTarget().GetPlatform());
2904   assert(platform_sp);
2905   ArchSpec process_host_arch = GetSystemArchitecture();
2906   if (platform_sp) {
2907     const ArchSpec &target_arch = GetTarget().GetArchitecture();
2908     if (target_arch.IsValid() &&
2909         !platform_sp->IsCompatibleArchitecture(target_arch, process_host_arch,
2910                                                false, nullptr)) {
2911       ArchSpec platform_arch;
2912       platform_sp = GetTarget().GetDebugger().GetPlatformList().GetOrCreate(
2913           target_arch, process_host_arch, &platform_arch);
2914       if (platform_sp) {
2915         GetTarget().SetPlatform(platform_sp);
2916         GetTarget().SetArchitecture(platform_arch);
2917         LLDB_LOG(log,
2918                  "switching platform to {0} and architecture to {1} based on "
2919                  "info from attach",
2920                  platform_sp->GetName(), platform_arch.GetTriple().getTriple());
2921       }
2922     } else if (!process_arch.IsValid()) {
2923       ProcessInstanceInfo process_info;
2924       GetProcessInfo(process_info);
2925       const ArchSpec &process_arch = process_info.GetArchitecture();
2926       const ArchSpec &target_arch = GetTarget().GetArchitecture();
2927       if (process_arch.IsValid() &&
2928           target_arch.IsCompatibleMatch(process_arch) &&
2929           !target_arch.IsExactMatch(process_arch)) {
2930         GetTarget().SetArchitecture(process_arch);
2931         LLDB_LOGF(log,
2932                   "Process::%s switching architecture to %s based on info "
2933                   "the platform retrieved for pid %" PRIu64,
2934                   __FUNCTION__, process_arch.GetTriple().getTriple().c_str(),
2935                   GetID());
2936       }
2937     }
2938   }
2939   // Now that we know the process type, update its signal responses from the
2940   // ones stored in the Target:
2941   if (m_unix_signals_sp) {
2942     StreamSP warning_strm = GetTarget().GetDebugger().GetAsyncErrorStream();
2943     GetTarget().UpdateSignalsFromDummy(m_unix_signals_sp, warning_strm);
2944   }
2945 
2946   // We have completed the attach, now it is time to find the dynamic loader
2947   // plug-in
2948   DynamicLoader *dyld = GetDynamicLoader();
2949   if (dyld) {
2950     dyld->DidAttach();
2951     if (log) {
2952       ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
2953       LLDB_LOG(log,
2954                "after DynamicLoader::DidAttach(), target "
2955                "executable is {0} (using {1} plugin)",
2956                exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(),
2957                dyld->GetPluginName());
2958     }
2959   }
2960 
2961   GetJITLoaders().DidAttach();
2962 
2963   SystemRuntime *system_runtime = GetSystemRuntime();
2964   if (system_runtime) {
2965     system_runtime->DidAttach();
2966     if (log) {
2967       ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
2968       LLDB_LOG(log,
2969                "after SystemRuntime::DidAttach(), target "
2970                "executable is {0} (using {1} plugin)",
2971                exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(),
2972                system_runtime->GetPluginName());
2973     }
2974   }
2975 
2976   if (!m_os_up) {
2977     LoadOperatingSystemPlugin(false);
2978     if (m_os_up) {
2979       // Somebody might have gotten threads before now, but we need to force the
2980       // update after we've loaded the OperatingSystem plugin or it won't get a
2981       // chance to process the threads.
2982       m_thread_list.Clear();
2983       UpdateThreadListIfNeeded();
2984     }
2985   }
2986   // Figure out which one is the executable, and set that in our target:
2987   ModuleSP new_executable_module_sp;
2988   for (ModuleSP module_sp : GetTarget().GetImages().Modules()) {
2989     if (module_sp && module_sp->IsExecutable()) {
2990       if (GetTarget().GetExecutableModulePointer() != module_sp.get())
2991         new_executable_module_sp = module_sp;
2992       break;
2993     }
2994   }
2995   if (new_executable_module_sp) {
2996     GetTarget().SetExecutableModule(new_executable_module_sp,
2997                                     eLoadDependentsNo);
2998     if (log) {
2999       ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
3000       LLDB_LOGF(
3001           log,
3002           "Process::%s after looping through modules, target executable is %s",
3003           __FUNCTION__,
3004           exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str()
3005                         : "<none>");
3006     }
3007   }
3008 }
3009 
3010 Status Process::ConnectRemote(llvm::StringRef remote_url) {
3011   m_abi_sp.reset();
3012   m_process_input_reader.reset();
3013 
3014   // Find the process and its architecture.  Make sure it matches the
3015   // architecture of the current Target, and if not adjust it.
3016 
3017   Status error(DoConnectRemote(remote_url));
3018   if (error.Success()) {
3019     if (GetID() != LLDB_INVALID_PROCESS_ID) {
3020       EventSP event_sp;
3021       StateType state = WaitForProcessStopPrivate(event_sp, llvm::None);
3022 
3023       if (state == eStateStopped || state == eStateCrashed) {
3024         // If we attached and actually have a process on the other end, then
3025         // this ended up being the equivalent of an attach.
3026         CompleteAttach();
3027 
3028         // This delays passing the stopped event to listeners till
3029         // CompleteAttach gets a chance to complete...
3030         HandlePrivateEvent(event_sp);
3031       }
3032     }
3033 
3034     if (PrivateStateThreadIsValid())
3035       ResumePrivateStateThread();
3036     else
3037       StartPrivateStateThread();
3038   }
3039   return error;
3040 }
3041 
3042 Status Process::PrivateResume() {
3043   Log *log(GetLog(LLDBLog::Process | LLDBLog::Step));
3044   LLDB_LOGF(log,
3045             "Process::PrivateResume() m_stop_id = %u, public state: %s "
3046             "private state: %s",
3047             m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()),
3048             StateAsCString(m_private_state.GetValue()));
3049 
3050   // If signals handing status changed we might want to update our signal
3051   // filters before resuming.
3052   UpdateAutomaticSignalFiltering();
3053 
3054   Status error(WillResume());
3055   // Tell the process it is about to resume before the thread list
3056   if (error.Success()) {
3057     // Now let the thread list know we are about to resume so it can let all of
3058     // our threads know that they are about to be resumed. Threads will each be
3059     // called with Thread::WillResume(StateType) where StateType contains the
3060     // state that they are supposed to have when the process is resumed
3061     // (suspended/running/stepping). Threads should also check their resume
3062     // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to
3063     // start back up with a signal.
3064     if (m_thread_list.WillResume()) {
3065       // Last thing, do the PreResumeActions.
3066       if (!RunPreResumeActions()) {
3067         error.SetErrorString(
3068             "Process::PrivateResume PreResumeActions failed, not resuming.");
3069       } else {
3070         m_mod_id.BumpResumeID();
3071         error = DoResume();
3072         if (error.Success()) {
3073           DidResume();
3074           m_thread_list.DidResume();
3075           LLDB_LOGF(log, "Process thinks the process has resumed.");
3076         } else {
3077           LLDB_LOGF(log, "Process::PrivateResume() DoResume failed.");
3078           return error;
3079         }
3080       }
3081     } else {
3082       // Somebody wanted to run without running (e.g. we were faking a step
3083       // from one frame of a set of inlined frames that share the same PC to
3084       // another.)  So generate a continue & a stopped event, and let the world
3085       // handle them.
3086       LLDB_LOGF(log,
3087                 "Process::PrivateResume() asked to simulate a start & stop.");
3088 
3089       SetPrivateState(eStateRunning);
3090       SetPrivateState(eStateStopped);
3091     }
3092   } else
3093     LLDB_LOGF(log, "Process::PrivateResume() got an error \"%s\".",
3094               error.AsCString("<unknown error>"));
3095   return error;
3096 }
3097 
3098 Status Process::Halt(bool clear_thread_plans, bool use_run_lock) {
3099   if (!StateIsRunningState(m_public_state.GetValue()))
3100     return Status("Process is not running.");
3101 
3102   // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in
3103   // case it was already set and some thread plan logic calls halt on its own.
3104   m_clear_thread_plans_on_stop |= clear_thread_plans;
3105 
3106   ListenerSP halt_listener_sp(
3107       Listener::MakeListener("lldb.process.halt_listener"));
3108   HijackProcessEvents(halt_listener_sp);
3109 
3110   EventSP event_sp;
3111 
3112   SendAsyncInterrupt();
3113 
3114   if (m_public_state.GetValue() == eStateAttaching) {
3115     // Don't hijack and eat the eStateExited as the code that was doing the
3116     // attach will be waiting for this event...
3117     RestoreProcessEvents();
3118     SetExitStatus(SIGKILL, "Cancelled async attach.");
3119     Destroy(false);
3120     return Status();
3121   }
3122 
3123   // Wait for the process halt timeout seconds for the process to stop.
3124   StateType state =
3125       WaitForProcessToStop(GetInterruptTimeout(), &event_sp, true,
3126                            halt_listener_sp, nullptr, use_run_lock);
3127   RestoreProcessEvents();
3128 
3129   if (state == eStateInvalid || !event_sp) {
3130     // We timed out and didn't get a stop event...
3131     return Status("Halt timed out. State = %s", StateAsCString(GetState()));
3132   }
3133 
3134   BroadcastEvent(event_sp);
3135 
3136   return Status();
3137 }
3138 
3139 Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) {
3140   Status error;
3141 
3142   // Check both the public & private states here.  If we're hung evaluating an
3143   // expression, for instance, then the public state will be stopped, but we
3144   // still need to interrupt.
3145   if (m_public_state.GetValue() == eStateRunning ||
3146       m_private_state.GetValue() == eStateRunning) {
3147     Log *log = GetLog(LLDBLog::Process);
3148     LLDB_LOGF(log, "Process::%s() About to stop.", __FUNCTION__);
3149 
3150     ListenerSP listener_sp(
3151         Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack"));
3152     HijackProcessEvents(listener_sp);
3153 
3154     SendAsyncInterrupt();
3155 
3156     // Consume the interrupt event.
3157     StateType state = WaitForProcessToStop(GetInterruptTimeout(),
3158                                            &exit_event_sp, true, listener_sp);
3159 
3160     RestoreProcessEvents();
3161 
3162     // If the process exited while we were waiting for it to stop, put the
3163     // exited event into the shared pointer passed in and return.  Our caller
3164     // doesn't need to do anything else, since they don't have a process
3165     // anymore...
3166 
3167     if (state == eStateExited || m_private_state.GetValue() == eStateExited) {
3168       LLDB_LOGF(log, "Process::%s() Process exited while waiting to stop.",
3169                 __FUNCTION__);
3170       return error;
3171     } else
3172       exit_event_sp.reset(); // It is ok to consume any non-exit stop events
3173 
3174     if (state != eStateStopped) {
3175       LLDB_LOGF(log, "Process::%s() failed to stop, state is: %s", __FUNCTION__,
3176                 StateAsCString(state));
3177       // If we really couldn't stop the process then we should just error out
3178       // here, but if the lower levels just bobbled sending the event and we
3179       // really are stopped, then continue on.
3180       StateType private_state = m_private_state.GetValue();
3181       if (private_state != eStateStopped) {
3182         return Status(
3183             "Attempt to stop the target in order to detach timed out. "
3184             "State = %s",
3185             StateAsCString(GetState()));
3186       }
3187     }
3188   }
3189   return error;
3190 }
3191 
3192 Status Process::Detach(bool keep_stopped) {
3193   EventSP exit_event_sp;
3194   Status error;
3195   m_destroy_in_process = true;
3196 
3197   error = WillDetach();
3198 
3199   if (error.Success()) {
3200     if (DetachRequiresHalt()) {
3201       error = StopForDestroyOrDetach(exit_event_sp);
3202       if (!error.Success()) {
3203         m_destroy_in_process = false;
3204         return error;
3205       } else if (exit_event_sp) {
3206         // We shouldn't need to do anything else here.  There's no process left
3207         // to detach from...
3208         StopPrivateStateThread();
3209         m_destroy_in_process = false;
3210         return error;
3211       }
3212     }
3213 
3214     m_thread_list.DiscardThreadPlans();
3215     DisableAllBreakpointSites();
3216 
3217     error = DoDetach(keep_stopped);
3218     if (error.Success()) {
3219       DidDetach();
3220       StopPrivateStateThread();
3221     } else {
3222       return error;
3223     }
3224   }
3225   m_destroy_in_process = false;
3226 
3227   // If we exited when we were waiting for a process to stop, then forward the
3228   // event here so we don't lose the event
3229   if (exit_event_sp) {
3230     // Directly broadcast our exited event because we shut down our private
3231     // state thread above
3232     BroadcastEvent(exit_event_sp);
3233   }
3234 
3235   // If we have been interrupted (to kill us) in the middle of running, we may
3236   // not end up propagating the last events through the event system, in which
3237   // case we might strand the write lock.  Unlock it here so when we do to tear
3238   // down the process we don't get an error destroying the lock.
3239 
3240   m_public_run_lock.SetStopped();
3241   return error;
3242 }
3243 
3244 Status Process::Destroy(bool force_kill) {
3245   // If we've already called Process::Finalize then there's nothing useful to
3246   // be done here.  Finalize has actually called Destroy already.
3247   if (m_finalizing)
3248     return {};
3249   return DestroyImpl(force_kill);
3250 }
3251 
3252 Status Process::DestroyImpl(bool force_kill) {
3253   // Tell ourselves we are in the process of destroying the process, so that we
3254   // don't do any unnecessary work that might hinder the destruction.  Remember
3255   // to set this back to false when we are done.  That way if the attempt
3256   // failed and the process stays around for some reason it won't be in a
3257   // confused state.
3258 
3259   if (force_kill)
3260     m_should_detach = false;
3261 
3262   if (GetShouldDetach()) {
3263     // FIXME: This will have to be a process setting:
3264     bool keep_stopped = false;
3265     Detach(keep_stopped);
3266   }
3267 
3268   m_destroy_in_process = true;
3269 
3270   Status error(WillDestroy());
3271   if (error.Success()) {
3272     EventSP exit_event_sp;
3273     if (DestroyRequiresHalt()) {
3274       error = StopForDestroyOrDetach(exit_event_sp);
3275     }
3276 
3277     if (m_public_state.GetValue() == eStateStopped) {
3278       // Ditch all thread plans, and remove all our breakpoints: in case we
3279       // have to restart the target to kill it, we don't want it hitting a
3280       // breakpoint... Only do this if we've stopped, however, since if we
3281       // didn't manage to halt it above, then we're not going to have much luck
3282       // doing this now.
3283       m_thread_list.DiscardThreadPlans();
3284       DisableAllBreakpointSites();
3285     }
3286 
3287     error = DoDestroy();
3288     if (error.Success()) {
3289       DidDestroy();
3290       StopPrivateStateThread();
3291     }
3292     m_stdio_communication.StopReadThread();
3293     m_stdio_communication.Disconnect();
3294     m_stdin_forward = false;
3295 
3296     if (m_process_input_reader) {
3297       m_process_input_reader->SetIsDone(true);
3298       m_process_input_reader->Cancel();
3299       m_process_input_reader.reset();
3300     }
3301 
3302     // If we exited when we were waiting for a process to stop, then forward
3303     // the event here so we don't lose the event
3304     if (exit_event_sp) {
3305       // Directly broadcast our exited event because we shut down our private
3306       // state thread above
3307       BroadcastEvent(exit_event_sp);
3308     }
3309 
3310     // If we have been interrupted (to kill us) in the middle of running, we
3311     // may not end up propagating the last events through the event system, in
3312     // which case we might strand the write lock.  Unlock it here so when we do
3313     // to tear down the process we don't get an error destroying the lock.
3314     m_public_run_lock.SetStopped();
3315   }
3316 
3317   m_destroy_in_process = false;
3318 
3319   return error;
3320 }
3321 
3322 Status Process::Signal(int signal) {
3323   Status error(WillSignal());
3324   if (error.Success()) {
3325     error = DoSignal(signal);
3326     if (error.Success())
3327       DidSignal();
3328   }
3329   return error;
3330 }
3331 
3332 void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) {
3333   assert(signals_sp && "null signals_sp");
3334   m_unix_signals_sp = signals_sp;
3335 }
3336 
3337 const lldb::UnixSignalsSP &Process::GetUnixSignals() {
3338   assert(m_unix_signals_sp && "null m_unix_signals_sp");
3339   return m_unix_signals_sp;
3340 }
3341 
3342 lldb::ByteOrder Process::GetByteOrder() const {
3343   return GetTarget().GetArchitecture().GetByteOrder();
3344 }
3345 
3346 uint32_t Process::GetAddressByteSize() const {
3347   return GetTarget().GetArchitecture().GetAddressByteSize();
3348 }
3349 
3350 bool Process::ShouldBroadcastEvent(Event *event_ptr) {
3351   const StateType state =
3352       Process::ProcessEventData::GetStateFromEvent(event_ptr);
3353   bool return_value = true;
3354   Log *log(GetLog(LLDBLog::Events | LLDBLog::Process));
3355 
3356   switch (state) {
3357   case eStateDetached:
3358   case eStateExited:
3359   case eStateUnloaded:
3360     m_stdio_communication.SynchronizeWithReadThread();
3361     m_stdio_communication.StopReadThread();
3362     m_stdio_communication.Disconnect();
3363     m_stdin_forward = false;
3364 
3365     LLVM_FALLTHROUGH;
3366   case eStateConnected:
3367   case eStateAttaching:
3368   case eStateLaunching:
3369     // These events indicate changes in the state of the debugging session,
3370     // always report them.
3371     return_value = true;
3372     break;
3373   case eStateInvalid:
3374     // We stopped for no apparent reason, don't report it.
3375     return_value = false;
3376     break;
3377   case eStateRunning:
3378   case eStateStepping:
3379     // If we've started the target running, we handle the cases where we are
3380     // already running and where there is a transition from stopped to running
3381     // differently. running -> running: Automatically suppress extra running
3382     // events stopped -> running: Report except when there is one or more no
3383     // votes
3384     //     and no yes votes.
3385     SynchronouslyNotifyStateChanged(state);
3386     if (m_force_next_event_delivery)
3387       return_value = true;
3388     else {
3389       switch (m_last_broadcast_state) {
3390       case eStateRunning:
3391       case eStateStepping:
3392         // We always suppress multiple runnings with no PUBLIC stop in between.
3393         return_value = false;
3394         break;
3395       default:
3396         // TODO: make this work correctly. For now always report
3397         // run if we aren't running so we don't miss any running events. If I
3398         // run the lldb/test/thread/a.out file and break at main.cpp:58, run
3399         // and hit the breakpoints on multiple threads, then somehow during the
3400         // stepping over of all breakpoints no run gets reported.
3401 
3402         // This is a transition from stop to run.
3403         switch (m_thread_list.ShouldReportRun(event_ptr)) {
3404         case eVoteYes:
3405         case eVoteNoOpinion:
3406           return_value = true;
3407           break;
3408         case eVoteNo:
3409           return_value = false;
3410           break;
3411         }
3412         break;
3413       }
3414     }
3415     break;
3416   case eStateStopped:
3417   case eStateCrashed:
3418   case eStateSuspended:
3419     // We've stopped.  First see if we're going to restart the target. If we
3420     // are going to stop, then we always broadcast the event. If we aren't
3421     // going to stop, let the thread plans decide if we're going to report this
3422     // event. If no thread has an opinion, we don't report it.
3423 
3424     m_stdio_communication.SynchronizeWithReadThread();
3425     RefreshStateAfterStop();
3426     if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) {
3427       LLDB_LOGF(log,
3428                 "Process::ShouldBroadcastEvent (%p) stopped due to an "
3429                 "interrupt, state: %s",
3430                 static_cast<void *>(event_ptr), StateAsCString(state));
3431       // Even though we know we are going to stop, we should let the threads
3432       // have a look at the stop, so they can properly set their state.
3433       m_thread_list.ShouldStop(event_ptr);
3434       return_value = true;
3435     } else {
3436       bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr);
3437       bool should_resume = false;
3438 
3439       // It makes no sense to ask "ShouldStop" if we've already been
3440       // restarted... Asking the thread list is also not likely to go well,
3441       // since we are running again. So in that case just report the event.
3442 
3443       if (!was_restarted)
3444         should_resume = !m_thread_list.ShouldStop(event_ptr);
3445 
3446       if (was_restarted || should_resume || m_resume_requested) {
3447         Vote report_stop_vote = m_thread_list.ShouldReportStop(event_ptr);
3448         LLDB_LOGF(log,
3449                   "Process::ShouldBroadcastEvent: should_resume: %i state: "
3450                   "%s was_restarted: %i report_stop_vote: %d.",
3451                   should_resume, StateAsCString(state), was_restarted,
3452                   report_stop_vote);
3453 
3454         switch (report_stop_vote) {
3455         case eVoteYes:
3456           return_value = true;
3457           break;
3458         case eVoteNoOpinion:
3459         case eVoteNo:
3460           return_value = false;
3461           break;
3462         }
3463 
3464         if (!was_restarted) {
3465           LLDB_LOGF(log,
3466                     "Process::ShouldBroadcastEvent (%p) Restarting process "
3467                     "from state: %s",
3468                     static_cast<void *>(event_ptr), StateAsCString(state));
3469           ProcessEventData::SetRestartedInEvent(event_ptr, true);
3470           PrivateResume();
3471         }
3472       } else {
3473         return_value = true;
3474         SynchronouslyNotifyStateChanged(state);
3475       }
3476     }
3477     break;
3478   }
3479 
3480   // Forcing the next event delivery is a one shot deal.  So reset it here.
3481   m_force_next_event_delivery = false;
3482 
3483   // We do some coalescing of events (for instance two consecutive running
3484   // events get coalesced.) But we only coalesce against events we actually
3485   // broadcast.  So we use m_last_broadcast_state to track that.  NB - you
3486   // can't use "m_public_state.GetValue()" for that purpose, as was originally
3487   // done, because the PublicState reflects the last event pulled off the
3488   // queue, and there may be several events stacked up on the queue unserviced.
3489   // So the PublicState may not reflect the last broadcasted event yet.
3490   // m_last_broadcast_state gets updated here.
3491 
3492   if (return_value)
3493     m_last_broadcast_state = state;
3494 
3495   LLDB_LOGF(log,
3496             "Process::ShouldBroadcastEvent (%p) => new state: %s, last "
3497             "broadcast state: %s - %s",
3498             static_cast<void *>(event_ptr), StateAsCString(state),
3499             StateAsCString(m_last_broadcast_state),
3500             return_value ? "YES" : "NO");
3501   return return_value;
3502 }
3503 
3504 bool Process::StartPrivateStateThread(bool is_secondary_thread) {
3505   Log *log = GetLog(LLDBLog::Events);
3506 
3507   bool already_running = PrivateStateThreadIsValid();
3508   LLDB_LOGF(log, "Process::%s()%s ", __FUNCTION__,
3509             already_running ? " already running"
3510                             : " starting private state thread");
3511 
3512   if (!is_secondary_thread && already_running)
3513     return true;
3514 
3515   // Create a thread that watches our internal state and controls which events
3516   // make it to clients (into the DCProcess event queue).
3517   char thread_name[1024];
3518   uint32_t max_len = llvm::get_max_thread_name_length();
3519   if (max_len > 0 && max_len <= 30) {
3520     // On platforms with abbreviated thread name lengths, choose thread names
3521     // that fit within the limit.
3522     if (already_running)
3523       snprintf(thread_name, sizeof(thread_name), "intern-state-OV");
3524     else
3525       snprintf(thread_name, sizeof(thread_name), "intern-state");
3526   } else {
3527     if (already_running)
3528       snprintf(thread_name, sizeof(thread_name),
3529                "<lldb.process.internal-state-override(pid=%" PRIu64 ")>",
3530                GetID());
3531     else
3532       snprintf(thread_name, sizeof(thread_name),
3533                "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID());
3534   }
3535 
3536   llvm::Expected<HostThread> private_state_thread =
3537       ThreadLauncher::LaunchThread(
3538           thread_name,
3539           [this, is_secondary_thread] {
3540             return RunPrivateStateThread(is_secondary_thread);
3541           },
3542           8 * 1024 * 1024);
3543   if (!private_state_thread) {
3544     LLDB_LOG(GetLog(LLDBLog::Host), "failed to launch host thread: {}",
3545              llvm::toString(private_state_thread.takeError()));
3546     return false;
3547   }
3548 
3549   assert(private_state_thread->IsJoinable());
3550   m_private_state_thread = *private_state_thread;
3551   ResumePrivateStateThread();
3552   return true;
3553 }
3554 
3555 void Process::PausePrivateStateThread() {
3556   ControlPrivateStateThread(eBroadcastInternalStateControlPause);
3557 }
3558 
3559 void Process::ResumePrivateStateThread() {
3560   ControlPrivateStateThread(eBroadcastInternalStateControlResume);
3561 }
3562 
3563 void Process::StopPrivateStateThread() {
3564   if (m_private_state_thread.IsJoinable())
3565     ControlPrivateStateThread(eBroadcastInternalStateControlStop);
3566   else {
3567     Log *log = GetLog(LLDBLog::Process);
3568     LLDB_LOGF(
3569         log,
3570         "Went to stop the private state thread, but it was already invalid.");
3571   }
3572 }
3573 
3574 void Process::ControlPrivateStateThread(uint32_t signal) {
3575   Log *log = GetLog(LLDBLog::Process);
3576 
3577   assert(signal == eBroadcastInternalStateControlStop ||
3578          signal == eBroadcastInternalStateControlPause ||
3579          signal == eBroadcastInternalStateControlResume);
3580 
3581   LLDB_LOGF(log, "Process::%s (signal = %d)", __FUNCTION__, signal);
3582 
3583   // Signal the private state thread
3584   if (m_private_state_thread.IsJoinable()) {
3585     // Broadcast the event.
3586     // It is important to do this outside of the if below, because it's
3587     // possible that the thread state is invalid but that the thread is waiting
3588     // on a control event instead of simply being on its way out (this should
3589     // not happen, but it apparently can).
3590     LLDB_LOGF(log, "Sending control event of type: %d.", signal);
3591     std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt());
3592     m_private_state_control_broadcaster.BroadcastEvent(signal,
3593                                                        event_receipt_sp);
3594 
3595     // Wait for the event receipt or for the private state thread to exit
3596     bool receipt_received = false;
3597     if (PrivateStateThreadIsValid()) {
3598       while (!receipt_received) {
3599         // Check for a receipt for n seconds and then check if the private
3600         // state thread is still around.
3601         receipt_received =
3602           event_receipt_sp->WaitForEventReceived(GetUtilityExpressionTimeout());
3603         if (!receipt_received) {
3604           // Check if the private state thread is still around. If it isn't
3605           // then we are done waiting
3606           if (!PrivateStateThreadIsValid())
3607             break; // Private state thread exited or is exiting, we are done
3608         }
3609       }
3610     }
3611 
3612     if (signal == eBroadcastInternalStateControlStop) {
3613       thread_result_t result = {};
3614       m_private_state_thread.Join(&result);
3615       m_private_state_thread.Reset();
3616     }
3617   } else {
3618     LLDB_LOGF(
3619         log,
3620         "Private state thread already dead, no need to signal it to stop.");
3621   }
3622 }
3623 
3624 void Process::SendAsyncInterrupt() {
3625   if (PrivateStateThreadIsValid())
3626     m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt,
3627                                                nullptr);
3628   else
3629     BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr);
3630 }
3631 
3632 void Process::HandlePrivateEvent(EventSP &event_sp) {
3633   Log *log = GetLog(LLDBLog::Process);
3634   m_resume_requested = false;
3635 
3636   const StateType new_state =
3637       Process::ProcessEventData::GetStateFromEvent(event_sp.get());
3638 
3639   // First check to see if anybody wants a shot at this event:
3640   if (m_next_event_action_up) {
3641     NextEventAction::EventActionResult action_result =
3642         m_next_event_action_up->PerformAction(event_sp);
3643     LLDB_LOGF(log, "Ran next event action, result was %d.", action_result);
3644 
3645     switch (action_result) {
3646     case NextEventAction::eEventActionSuccess:
3647       SetNextEventAction(nullptr);
3648       break;
3649 
3650     case NextEventAction::eEventActionRetry:
3651       break;
3652 
3653     case NextEventAction::eEventActionExit:
3654       // Handle Exiting Here.  If we already got an exited event, we should
3655       // just propagate it.  Otherwise, swallow this event, and set our state
3656       // to exit so the next event will kill us.
3657       if (new_state != eStateExited) {
3658         // FIXME: should cons up an exited event, and discard this one.
3659         SetExitStatus(0, m_next_event_action_up->GetExitString());
3660         SetNextEventAction(nullptr);
3661         return;
3662       }
3663       SetNextEventAction(nullptr);
3664       break;
3665     }
3666   }
3667 
3668   // See if we should broadcast this state to external clients?
3669   const bool should_broadcast = ShouldBroadcastEvent(event_sp.get());
3670 
3671   if (should_broadcast) {
3672     const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged);
3673     if (log) {
3674       LLDB_LOGF(log,
3675                 "Process::%s (pid = %" PRIu64
3676                 ") broadcasting new state %s (old state %s) to %s",
3677                 __FUNCTION__, GetID(), StateAsCString(new_state),
3678                 StateAsCString(GetState()),
3679                 is_hijacked ? "hijacked" : "public");
3680     }
3681     Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get());
3682     if (StateIsRunningState(new_state)) {
3683       // Only push the input handler if we aren't fowarding events, as this
3684       // means the curses GUI is in use... Or don't push it if we are launching
3685       // since it will come up stopped.
3686       if (!GetTarget().GetDebugger().IsForwardingEvents() &&
3687           new_state != eStateLaunching && new_state != eStateAttaching) {
3688         PushProcessIOHandler();
3689         m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1,
3690                                   eBroadcastAlways);
3691         LLDB_LOGF(log, "Process::%s updated m_iohandler_sync to %d",
3692                   __FUNCTION__, m_iohandler_sync.GetValue());
3693       }
3694     } else if (StateIsStoppedState(new_state, false)) {
3695       if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) {
3696         // If the lldb_private::Debugger is handling the events, we don't want
3697         // to pop the process IOHandler here, we want to do it when we receive
3698         // the stopped event so we can carefully control when the process
3699         // IOHandler is popped because when we stop we want to display some
3700         // text stating how and why we stopped, then maybe some
3701         // process/thread/frame info, and then we want the "(lldb) " prompt to
3702         // show up. If we pop the process IOHandler here, then we will cause
3703         // the command interpreter to become the top IOHandler after the
3704         // process pops off and it will update its prompt right away... See the
3705         // Debugger.cpp file where it calls the function as
3706         // "process_sp->PopProcessIOHandler()" to see where I am talking about.
3707         // Otherwise we end up getting overlapping "(lldb) " prompts and
3708         // garbled output.
3709         //
3710         // If we aren't handling the events in the debugger (which is indicated
3711         // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or
3712         // we are hijacked, then we always pop the process IO handler manually.
3713         // Hijacking happens when the internal process state thread is running
3714         // thread plans, or when commands want to run in synchronous mode and
3715         // they call "process->WaitForProcessToStop()". An example of something
3716         // that will hijack the events is a simple expression:
3717         //
3718         //  (lldb) expr (int)puts("hello")
3719         //
3720         // This will cause the internal process state thread to resume and halt
3721         // the process (and _it_ will hijack the eBroadcastBitStateChanged
3722         // events) and we do need the IO handler to be pushed and popped
3723         // correctly.
3724 
3725         if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents())
3726           PopProcessIOHandler();
3727       }
3728     }
3729 
3730     BroadcastEvent(event_sp);
3731   } else {
3732     if (log) {
3733       LLDB_LOGF(
3734           log,
3735           "Process::%s (pid = %" PRIu64
3736           ") suppressing state %s (old state %s): should_broadcast == false",
3737           __FUNCTION__, GetID(), StateAsCString(new_state),
3738           StateAsCString(GetState()));
3739     }
3740   }
3741 }
3742 
3743 Status Process::HaltPrivate() {
3744   EventSP event_sp;
3745   Status error(WillHalt());
3746   if (error.Fail())
3747     return error;
3748 
3749   // Ask the process subclass to actually halt our process
3750   bool caused_stop;
3751   error = DoHalt(caused_stop);
3752 
3753   DidHalt();
3754   return error;
3755 }
3756 
3757 thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) {
3758   bool control_only = true;
3759 
3760   Log *log = GetLog(LLDBLog::Process);
3761   LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...",
3762             __FUNCTION__, static_cast<void *>(this), GetID());
3763 
3764   bool exit_now = false;
3765   bool interrupt_requested = false;
3766   while (!exit_now) {
3767     EventSP event_sp;
3768     GetEventsPrivate(event_sp, llvm::None, control_only);
3769     if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) {
3770       LLDB_LOGF(log,
3771                 "Process::%s (arg = %p, pid = %" PRIu64
3772                 ") got a control event: %d",
3773                 __FUNCTION__, static_cast<void *>(this), GetID(),
3774                 event_sp->GetType());
3775 
3776       switch (event_sp->GetType()) {
3777       case eBroadcastInternalStateControlStop:
3778         exit_now = true;
3779         break; // doing any internal state management below
3780 
3781       case eBroadcastInternalStateControlPause:
3782         control_only = true;
3783         break;
3784 
3785       case eBroadcastInternalStateControlResume:
3786         control_only = false;
3787         break;
3788       }
3789 
3790       continue;
3791     } else if (event_sp->GetType() == eBroadcastBitInterrupt) {
3792       if (m_public_state.GetValue() == eStateAttaching) {
3793         LLDB_LOGF(log,
3794                   "Process::%s (arg = %p, pid = %" PRIu64
3795                   ") woke up with an interrupt while attaching - "
3796                   "forwarding interrupt.",
3797                   __FUNCTION__, static_cast<void *>(this), GetID());
3798         BroadcastEvent(eBroadcastBitInterrupt, nullptr);
3799       } else if (StateIsRunningState(m_last_broadcast_state)) {
3800         LLDB_LOGF(log,
3801                   "Process::%s (arg = %p, pid = %" PRIu64
3802                   ") woke up with an interrupt - Halting.",
3803                   __FUNCTION__, static_cast<void *>(this), GetID());
3804         Status error = HaltPrivate();
3805         if (error.Fail() && log)
3806           LLDB_LOGF(log,
3807                     "Process::%s (arg = %p, pid = %" PRIu64
3808                     ") failed to halt the process: %s",
3809                     __FUNCTION__, static_cast<void *>(this), GetID(),
3810                     error.AsCString());
3811         // Halt should generate a stopped event. Make a note of the fact that
3812         // we were doing the interrupt, so we can set the interrupted flag
3813         // after we receive the event. We deliberately set this to true even if
3814         // HaltPrivate failed, so that we can interrupt on the next natural
3815         // stop.
3816         interrupt_requested = true;
3817       } else {
3818         // This can happen when someone (e.g. Process::Halt) sees that we are
3819         // running and sends an interrupt request, but the process actually
3820         // stops before we receive it. In that case, we can just ignore the
3821         // request. We use m_last_broadcast_state, because the Stopped event
3822         // may not have been popped of the event queue yet, which is when the
3823         // public state gets updated.
3824         LLDB_LOGF(log,
3825                   "Process::%s ignoring interrupt as we have already stopped.",
3826                   __FUNCTION__);
3827       }
3828       continue;
3829     }
3830 
3831     const StateType internal_state =
3832         Process::ProcessEventData::GetStateFromEvent(event_sp.get());
3833 
3834     if (internal_state != eStateInvalid) {
3835       if (m_clear_thread_plans_on_stop &&
3836           StateIsStoppedState(internal_state, true)) {
3837         m_clear_thread_plans_on_stop = false;
3838         m_thread_list.DiscardThreadPlans();
3839       }
3840 
3841       if (interrupt_requested) {
3842         if (StateIsStoppedState(internal_state, true)) {
3843           // We requested the interrupt, so mark this as such in the stop event
3844           // so clients can tell an interrupted process from a natural stop
3845           ProcessEventData::SetInterruptedInEvent(event_sp.get(), true);
3846           interrupt_requested = false;
3847         } else if (log) {
3848           LLDB_LOGF(log,
3849                     "Process::%s interrupt_requested, but a non-stopped "
3850                     "state '%s' received.",
3851                     __FUNCTION__, StateAsCString(internal_state));
3852         }
3853       }
3854 
3855       HandlePrivateEvent(event_sp);
3856     }
3857 
3858     if (internal_state == eStateInvalid || internal_state == eStateExited ||
3859         internal_state == eStateDetached) {
3860       LLDB_LOGF(log,
3861                 "Process::%s (arg = %p, pid = %" PRIu64
3862                 ") about to exit with internal state %s...",
3863                 __FUNCTION__, static_cast<void *>(this), GetID(),
3864                 StateAsCString(internal_state));
3865 
3866       break;
3867     }
3868   }
3869 
3870   // Verify log is still enabled before attempting to write to it...
3871   LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...",
3872             __FUNCTION__, static_cast<void *>(this), GetID());
3873 
3874   // If we are a secondary thread, then the primary thread we are working for
3875   // will have already acquired the public_run_lock, and isn't done with what
3876   // it was doing yet, so don't try to change it on the way out.
3877   if (!is_secondary_thread)
3878     m_public_run_lock.SetStopped();
3879   return {};
3880 }
3881 
3882 // Process Event Data
3883 
3884 Process::ProcessEventData::ProcessEventData() : EventData(), m_process_wp() {}
3885 
3886 Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp,
3887                                             StateType state)
3888     : EventData(), m_process_wp(), m_state(state) {
3889   if (process_sp)
3890     m_process_wp = process_sp;
3891 }
3892 
3893 Process::ProcessEventData::~ProcessEventData() = default;
3894 
3895 ConstString Process::ProcessEventData::GetFlavorString() {
3896   static ConstString g_flavor("Process::ProcessEventData");
3897   return g_flavor;
3898 }
3899 
3900 ConstString Process::ProcessEventData::GetFlavor() const {
3901   return ProcessEventData::GetFlavorString();
3902 }
3903 
3904 bool Process::ProcessEventData::ShouldStop(Event *event_ptr,
3905                                            bool &found_valid_stopinfo) {
3906   found_valid_stopinfo = false;
3907 
3908   ProcessSP process_sp(m_process_wp.lock());
3909   if (!process_sp)
3910     return false;
3911 
3912   ThreadList &curr_thread_list = process_sp->GetThreadList();
3913   uint32_t num_threads = curr_thread_list.GetSize();
3914   uint32_t idx;
3915 
3916   // The actions might change one of the thread's stop_info's opinions about
3917   // whether we should stop the process, so we need to query that as we go.
3918 
3919   // One other complication here, is that we try to catch any case where the
3920   // target has run (except for expressions) and immediately exit, but if we
3921   // get that wrong (which is possible) then the thread list might have
3922   // changed, and that would cause our iteration here to crash.  We could
3923   // make a copy of the thread list, but we'd really like to also know if it
3924   // has changed at all, so we make up a vector of the thread ID's and check
3925   // what we get back against this list & bag out if anything differs.
3926   ThreadList not_suspended_thread_list(process_sp.get());
3927   std::vector<uint32_t> thread_index_array(num_threads);
3928   uint32_t not_suspended_idx = 0;
3929   for (idx = 0; idx < num_threads; ++idx) {
3930     lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx);
3931 
3932     /*
3933      Filter out all suspended threads, they could not be the reason
3934      of stop and no need to perform any actions on them.
3935      */
3936     if (thread_sp->GetResumeState() != eStateSuspended) {
3937       not_suspended_thread_list.AddThread(thread_sp);
3938       thread_index_array[not_suspended_idx] = thread_sp->GetIndexID();
3939       not_suspended_idx++;
3940     }
3941   }
3942 
3943   // Use this to track whether we should continue from here.  We will only
3944   // continue the target running if no thread says we should stop.  Of course
3945   // if some thread's PerformAction actually sets the target running, then it
3946   // doesn't matter what the other threads say...
3947 
3948   bool still_should_stop = false;
3949 
3950   // Sometimes - for instance if we have a bug in the stub we are talking to,
3951   // we stop but no thread has a valid stop reason.  In that case we should
3952   // just stop, because we have no way of telling what the right thing to do
3953   // is, and it's better to let the user decide than continue behind their
3954   // backs.
3955 
3956   for (idx = 0; idx < not_suspended_thread_list.GetSize(); ++idx) {
3957     curr_thread_list = process_sp->GetThreadList();
3958     if (curr_thread_list.GetSize() != num_threads) {
3959       Log *log(GetLog(LLDBLog::Step | LLDBLog::Process));
3960       LLDB_LOGF(
3961           log,
3962           "Number of threads changed from %u to %u while processing event.",
3963           num_threads, curr_thread_list.GetSize());
3964       break;
3965     }
3966 
3967     lldb::ThreadSP thread_sp = not_suspended_thread_list.GetThreadAtIndex(idx);
3968 
3969     if (thread_sp->GetIndexID() != thread_index_array[idx]) {
3970       Log *log(GetLog(LLDBLog::Step | LLDBLog::Process));
3971       LLDB_LOGF(log,
3972                 "The thread at position %u changed from %u to %u while "
3973                 "processing event.",
3974                 idx, thread_index_array[idx], thread_sp->GetIndexID());
3975       break;
3976     }
3977 
3978     StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
3979     if (stop_info_sp && stop_info_sp->IsValid()) {
3980       found_valid_stopinfo = true;
3981       bool this_thread_wants_to_stop;
3982       if (stop_info_sp->GetOverrideShouldStop()) {
3983         this_thread_wants_to_stop =
3984             stop_info_sp->GetOverriddenShouldStopValue();
3985       } else {
3986         stop_info_sp->PerformAction(event_ptr);
3987         // The stop action might restart the target.  If it does, then we
3988         // want to mark that in the event so that whoever is receiving it
3989         // will know to wait for the running event and reflect that state
3990         // appropriately. We also need to stop processing actions, since they
3991         // aren't expecting the target to be running.
3992 
3993         // FIXME: we might have run.
3994         if (stop_info_sp->HasTargetRunSinceMe()) {
3995           SetRestarted(true);
3996           break;
3997         }
3998 
3999         this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr);
4000       }
4001 
4002       if (!still_should_stop)
4003         still_should_stop = this_thread_wants_to_stop;
4004     }
4005   }
4006 
4007   return still_should_stop;
4008 }
4009 
4010 void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) {
4011   ProcessSP process_sp(m_process_wp.lock());
4012 
4013   if (!process_sp)
4014     return;
4015 
4016   // This function gets called twice for each event, once when the event gets
4017   // pulled off of the private process event queue, and then any number of
4018   // times, first when it gets pulled off of the public event queue, then other
4019   // times when we're pretending that this is where we stopped at the end of
4020   // expression evaluation.  m_update_state is used to distinguish these three
4021   // cases; it is 0 when we're just pulling it off for private handling, and >
4022   // 1 for expression evaluation, and we don't want to do the breakpoint
4023   // command handling then.
4024   if (m_update_state != 1)
4025     return;
4026 
4027   process_sp->SetPublicState(
4028       m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr));
4029 
4030   if (m_state == eStateStopped && !m_restarted) {
4031     // Let process subclasses know we are about to do a public stop and do
4032     // anything they might need to in order to speed up register and memory
4033     // accesses.
4034     process_sp->WillPublicStop();
4035   }
4036 
4037   // If this is a halt event, even if the halt stopped with some reason other
4038   // than a plain interrupt (e.g. we had already stopped for a breakpoint when
4039   // the halt request came through) don't do the StopInfo actions, as they may
4040   // end up restarting the process.
4041   if (m_interrupted)
4042     return;
4043 
4044   // If we're not stopped or have restarted, then skip the StopInfo actions:
4045   if (m_state != eStateStopped || m_restarted) {
4046     return;
4047   }
4048 
4049   bool does_anybody_have_an_opinion = false;
4050   bool still_should_stop = ShouldStop(event_ptr, does_anybody_have_an_opinion);
4051 
4052   if (GetRestarted()) {
4053     return;
4054   }
4055 
4056   if (!still_should_stop && does_anybody_have_an_opinion) {
4057     // We've been asked to continue, so do that here.
4058     SetRestarted(true);
4059     // Use the public resume method here, since this is just extending a
4060     // public resume.
4061     process_sp->PrivateResume();
4062   } else {
4063     bool hijacked = process_sp->IsHijackedForEvent(eBroadcastBitStateChanged) &&
4064                     !process_sp->StateChangedIsHijackedForSynchronousResume();
4065 
4066     if (!hijacked) {
4067       // If we didn't restart, run the Stop Hooks here.
4068       // Don't do that if state changed events aren't hooked up to the
4069       // public (or SyncResume) broadcasters.  StopHooks are just for
4070       // real public stops.  They might also restart the target,
4071       // so watch for that.
4072       if (process_sp->GetTarget().RunStopHooks())
4073         SetRestarted(true);
4074     }
4075   }
4076 }
4077 
4078 void Process::ProcessEventData::Dump(Stream *s) const {
4079   ProcessSP process_sp(m_process_wp.lock());
4080 
4081   if (process_sp)
4082     s->Printf(" process = %p (pid = %" PRIu64 "), ",
4083               static_cast<void *>(process_sp.get()), process_sp->GetID());
4084   else
4085     s->PutCString(" process = NULL, ");
4086 
4087   s->Printf("state = %s", StateAsCString(GetState()));
4088 }
4089 
4090 const Process::ProcessEventData *
4091 Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) {
4092   if (event_ptr) {
4093     const EventData *event_data = event_ptr->GetData();
4094     if (event_data &&
4095         event_data->GetFlavor() == ProcessEventData::GetFlavorString())
4096       return static_cast<const ProcessEventData *>(event_ptr->GetData());
4097   }
4098   return nullptr;
4099 }
4100 
4101 ProcessSP
4102 Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) {
4103   ProcessSP process_sp;
4104   const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4105   if (data)
4106     process_sp = data->GetProcessSP();
4107   return process_sp;
4108 }
4109 
4110 StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) {
4111   const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4112   if (data == nullptr)
4113     return eStateInvalid;
4114   else
4115     return data->GetState();
4116 }
4117 
4118 bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) {
4119   const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4120   if (data == nullptr)
4121     return false;
4122   else
4123     return data->GetRestarted();
4124 }
4125 
4126 void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr,
4127                                                     bool new_value) {
4128   ProcessEventData *data =
4129       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4130   if (data != nullptr)
4131     data->SetRestarted(new_value);
4132 }
4133 
4134 size_t
4135 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) {
4136   ProcessEventData *data =
4137       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4138   if (data != nullptr)
4139     return data->GetNumRestartedReasons();
4140   else
4141     return 0;
4142 }
4143 
4144 const char *
4145 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr,
4146                                                      size_t idx) {
4147   ProcessEventData *data =
4148       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4149   if (data != nullptr)
4150     return data->GetRestartedReasonAtIndex(idx);
4151   else
4152     return nullptr;
4153 }
4154 
4155 void Process::ProcessEventData::AddRestartedReason(Event *event_ptr,
4156                                                    const char *reason) {
4157   ProcessEventData *data =
4158       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4159   if (data != nullptr)
4160     data->AddRestartedReason(reason);
4161 }
4162 
4163 bool Process::ProcessEventData::GetInterruptedFromEvent(
4164     const Event *event_ptr) {
4165   const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4166   if (data == nullptr)
4167     return false;
4168   else
4169     return data->GetInterrupted();
4170 }
4171 
4172 void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr,
4173                                                       bool new_value) {
4174   ProcessEventData *data =
4175       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4176   if (data != nullptr)
4177     data->SetInterrupted(new_value);
4178 }
4179 
4180 bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) {
4181   ProcessEventData *data =
4182       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4183   if (data) {
4184     data->SetUpdateStateOnRemoval();
4185     return true;
4186   }
4187   return false;
4188 }
4189 
4190 lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); }
4191 
4192 void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) {
4193   exe_ctx.SetTargetPtr(&GetTarget());
4194   exe_ctx.SetProcessPtr(this);
4195   exe_ctx.SetThreadPtr(nullptr);
4196   exe_ctx.SetFramePtr(nullptr);
4197 }
4198 
4199 // uint32_t
4200 // Process::ListProcessesMatchingName (const char *name, StringList &matches,
4201 // std::vector<lldb::pid_t> &pids)
4202 //{
4203 //    return 0;
4204 //}
4205 //
4206 // ArchSpec
4207 // Process::GetArchSpecForExistingProcess (lldb::pid_t pid)
4208 //{
4209 //    return Host::GetArchSpecForExistingProcess (pid);
4210 //}
4211 //
4212 // ArchSpec
4213 // Process::GetArchSpecForExistingProcess (const char *process_name)
4214 //{
4215 //    return Host::GetArchSpecForExistingProcess (process_name);
4216 //}
4217 
4218 void Process::AppendSTDOUT(const char *s, size_t len) {
4219   std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4220   m_stdout_data.append(s, len);
4221   BroadcastEventIfUnique(eBroadcastBitSTDOUT,
4222                          new ProcessEventData(shared_from_this(), GetState()));
4223 }
4224 
4225 void Process::AppendSTDERR(const char *s, size_t len) {
4226   std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4227   m_stderr_data.append(s, len);
4228   BroadcastEventIfUnique(eBroadcastBitSTDERR,
4229                          new ProcessEventData(shared_from_this(), GetState()));
4230 }
4231 
4232 void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) {
4233   std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex);
4234   m_profile_data.push_back(one_profile_data);
4235   BroadcastEventIfUnique(eBroadcastBitProfileData,
4236                          new ProcessEventData(shared_from_this(), GetState()));
4237 }
4238 
4239 void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp,
4240                                       const StructuredDataPluginSP &plugin_sp) {
4241   BroadcastEvent(
4242       eBroadcastBitStructuredData,
4243       new EventDataStructuredData(shared_from_this(), object_sp, plugin_sp));
4244 }
4245 
4246 StructuredDataPluginSP
4247 Process::GetStructuredDataPlugin(ConstString type_name) const {
4248   auto find_it = m_structured_data_plugin_map.find(type_name);
4249   if (find_it != m_structured_data_plugin_map.end())
4250     return find_it->second;
4251   else
4252     return StructuredDataPluginSP();
4253 }
4254 
4255 size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) {
4256   std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex);
4257   if (m_profile_data.empty())
4258     return 0;
4259 
4260   std::string &one_profile_data = m_profile_data.front();
4261   size_t bytes_available = one_profile_data.size();
4262   if (bytes_available > 0) {
4263     Log *log = GetLog(LLDBLog::Process);
4264     LLDB_LOGF(log, "Process::GetProfileData (buf = %p, size = %" PRIu64 ")",
4265               static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4266     if (bytes_available > buf_size) {
4267       memcpy(buf, one_profile_data.c_str(), buf_size);
4268       one_profile_data.erase(0, buf_size);
4269       bytes_available = buf_size;
4270     } else {
4271       memcpy(buf, one_profile_data.c_str(), bytes_available);
4272       m_profile_data.erase(m_profile_data.begin());
4273     }
4274   }
4275   return bytes_available;
4276 }
4277 
4278 // Process STDIO
4279 
4280 size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) {
4281   std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4282   size_t bytes_available = m_stdout_data.size();
4283   if (bytes_available > 0) {
4284     Log *log = GetLog(LLDBLog::Process);
4285     LLDB_LOGF(log, "Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")",
4286               static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4287     if (bytes_available > buf_size) {
4288       memcpy(buf, m_stdout_data.c_str(), buf_size);
4289       m_stdout_data.erase(0, buf_size);
4290       bytes_available = buf_size;
4291     } else {
4292       memcpy(buf, m_stdout_data.c_str(), bytes_available);
4293       m_stdout_data.clear();
4294     }
4295   }
4296   return bytes_available;
4297 }
4298 
4299 size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) {
4300   std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex);
4301   size_t bytes_available = m_stderr_data.size();
4302   if (bytes_available > 0) {
4303     Log *log = GetLog(LLDBLog::Process);
4304     LLDB_LOGF(log, "Process::GetSTDERR (buf = %p, size = %" PRIu64 ")",
4305               static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4306     if (bytes_available > buf_size) {
4307       memcpy(buf, m_stderr_data.c_str(), buf_size);
4308       m_stderr_data.erase(0, buf_size);
4309       bytes_available = buf_size;
4310     } else {
4311       memcpy(buf, m_stderr_data.c_str(), bytes_available);
4312       m_stderr_data.clear();
4313     }
4314   }
4315   return bytes_available;
4316 }
4317 
4318 void Process::STDIOReadThreadBytesReceived(void *baton, const void *src,
4319                                            size_t src_len) {
4320   Process *process = (Process *)baton;
4321   process->AppendSTDOUT(static_cast<const char *>(src), src_len);
4322 }
4323 
4324 class IOHandlerProcessSTDIO : public IOHandler {
4325 public:
4326   IOHandlerProcessSTDIO(Process *process, int write_fd)
4327       : IOHandler(process->GetTarget().GetDebugger(),
4328                   IOHandler::Type::ProcessIO),
4329         m_process(process),
4330         m_read_file(GetInputFD(), File::eOpenOptionReadOnly, false),
4331         m_write_file(write_fd, File::eOpenOptionWriteOnly, false) {
4332     m_pipe.CreateNew(false);
4333   }
4334 
4335   ~IOHandlerProcessSTDIO() override = default;
4336 
4337   void SetIsRunning(bool running) {
4338     std::lock_guard<std::mutex> guard(m_mutex);
4339     SetIsDone(!running);
4340     m_is_running = running;
4341   }
4342 
4343   // Each IOHandler gets to run until it is done. It should read data from the
4344   // "in" and place output into "out" and "err and return when done.
4345   void Run() override {
4346     if (!m_read_file.IsValid() || !m_write_file.IsValid() ||
4347         !m_pipe.CanRead() || !m_pipe.CanWrite()) {
4348       SetIsDone(true);
4349       return;
4350     }
4351 
4352     SetIsDone(false);
4353     const int read_fd = m_read_file.GetDescriptor();
4354     Terminal terminal(read_fd);
4355     TerminalState terminal_state(terminal, false);
4356     // FIXME: error handling?
4357     llvm::consumeError(terminal.SetCanonical(false));
4358     llvm::consumeError(terminal.SetEcho(false));
4359 // FD_ZERO, FD_SET are not supported on windows
4360 #ifndef _WIN32
4361     const int pipe_read_fd = m_pipe.GetReadFileDescriptor();
4362     SetIsRunning(true);
4363     while (true) {
4364       {
4365         std::lock_guard<std::mutex> guard(m_mutex);
4366         if (GetIsDone())
4367           break;
4368       }
4369 
4370       SelectHelper select_helper;
4371       select_helper.FDSetRead(read_fd);
4372       select_helper.FDSetRead(pipe_read_fd);
4373       Status error = select_helper.Select();
4374 
4375       if (error.Fail())
4376         break;
4377 
4378       char ch = 0;
4379       size_t n;
4380       if (select_helper.FDIsSetRead(read_fd)) {
4381         n = 1;
4382         if (m_read_file.Read(&ch, n).Success() && n == 1) {
4383           if (m_write_file.Write(&ch, n).Fail() || n != 1)
4384             break;
4385         } else
4386           break;
4387       }
4388 
4389       if (select_helper.FDIsSetRead(pipe_read_fd)) {
4390         size_t bytes_read;
4391         // Consume the interrupt byte
4392         Status error = m_pipe.Read(&ch, 1, bytes_read);
4393         if (error.Success()) {
4394           if (ch == 'q')
4395             break;
4396           if (ch == 'i')
4397             if (StateIsRunningState(m_process->GetState()))
4398               m_process->SendAsyncInterrupt();
4399         }
4400       }
4401     }
4402     SetIsRunning(false);
4403 #endif
4404   }
4405 
4406   void Cancel() override {
4407     std::lock_guard<std::mutex> guard(m_mutex);
4408     SetIsDone(true);
4409     // Only write to our pipe to cancel if we are in
4410     // IOHandlerProcessSTDIO::Run(). We can end up with a python command that
4411     // is being run from the command interpreter:
4412     //
4413     // (lldb) step_process_thousands_of_times
4414     //
4415     // In this case the command interpreter will be in the middle of handling
4416     // the command and if the process pushes and pops the IOHandler thousands
4417     // of times, we can end up writing to m_pipe without ever consuming the
4418     // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up
4419     // deadlocking when the pipe gets fed up and blocks until data is consumed.
4420     if (m_is_running) {
4421       char ch = 'q'; // Send 'q' for quit
4422       size_t bytes_written = 0;
4423       m_pipe.Write(&ch, 1, bytes_written);
4424     }
4425   }
4426 
4427   bool Interrupt() override {
4428     // Do only things that are safe to do in an interrupt context (like in a
4429     // SIGINT handler), like write 1 byte to a file descriptor. This will
4430     // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte
4431     // that was written to the pipe and then call
4432     // m_process->SendAsyncInterrupt() from a much safer location in code.
4433     if (m_active) {
4434       char ch = 'i'; // Send 'i' for interrupt
4435       size_t bytes_written = 0;
4436       Status result = m_pipe.Write(&ch, 1, bytes_written);
4437       return result.Success();
4438     } else {
4439       // This IOHandler might be pushed on the stack, but not being run
4440       // currently so do the right thing if we aren't actively watching for
4441       // STDIN by sending the interrupt to the process. Otherwise the write to
4442       // the pipe above would do nothing. This can happen when the command
4443       // interpreter is running and gets a "expression ...". It will be on the
4444       // IOHandler thread and sending the input is complete to the delegate
4445       // which will cause the expression to run, which will push the process IO
4446       // handler, but not run it.
4447 
4448       if (StateIsRunningState(m_process->GetState())) {
4449         m_process->SendAsyncInterrupt();
4450         return true;
4451       }
4452     }
4453     return false;
4454   }
4455 
4456   void GotEOF() override {}
4457 
4458 protected:
4459   Process *m_process;
4460   NativeFile m_read_file;  // Read from this file (usually actual STDIN for LLDB
4461   NativeFile m_write_file; // Write to this file (usually the primary pty for
4462                            // getting io to debuggee)
4463   Pipe m_pipe;
4464   std::mutex m_mutex;
4465   bool m_is_running = false;
4466 };
4467 
4468 void Process::SetSTDIOFileDescriptor(int fd) {
4469   // First set up the Read Thread for reading/handling process I/O
4470   m_stdio_communication.SetConnection(
4471       std::make_unique<ConnectionFileDescriptor>(fd, true));
4472   if (m_stdio_communication.IsConnected()) {
4473     m_stdio_communication.SetReadThreadBytesReceivedCallback(
4474         STDIOReadThreadBytesReceived, this);
4475     m_stdio_communication.StartReadThread();
4476 
4477     // Now read thread is set up, set up input reader.
4478 
4479     if (!m_process_input_reader)
4480       m_process_input_reader =
4481           std::make_shared<IOHandlerProcessSTDIO>(this, fd);
4482   }
4483 }
4484 
4485 bool Process::ProcessIOHandlerIsActive() {
4486   IOHandlerSP io_handler_sp(m_process_input_reader);
4487   if (io_handler_sp)
4488     return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp);
4489   return false;
4490 }
4491 bool Process::PushProcessIOHandler() {
4492   IOHandlerSP io_handler_sp(m_process_input_reader);
4493   if (io_handler_sp) {
4494     Log *log = GetLog(LLDBLog::Process);
4495     LLDB_LOGF(log, "Process::%s pushing IO handler", __FUNCTION__);
4496 
4497     io_handler_sp->SetIsDone(false);
4498     // If we evaluate an utility function, then we don't cancel the current
4499     // IOHandler. Our IOHandler is non-interactive and shouldn't disturb the
4500     // existing IOHandler that potentially provides the user interface (e.g.
4501     // the IOHandler for Editline).
4502     bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction();
4503     GetTarget().GetDebugger().RunIOHandlerAsync(io_handler_sp,
4504                                                 cancel_top_handler);
4505     return true;
4506   }
4507   return false;
4508 }
4509 
4510 bool Process::PopProcessIOHandler() {
4511   IOHandlerSP io_handler_sp(m_process_input_reader);
4512   if (io_handler_sp)
4513     return GetTarget().GetDebugger().RemoveIOHandler(io_handler_sp);
4514   return false;
4515 }
4516 
4517 // The process needs to know about installed plug-ins
4518 void Process::SettingsInitialize() { Thread::SettingsInitialize(); }
4519 
4520 void Process::SettingsTerminate() { Thread::SettingsTerminate(); }
4521 
4522 namespace {
4523 // RestorePlanState is used to record the "is private", "is controlling" and
4524 // "okay
4525 // to discard" fields of the plan we are running, and reset it on Clean or on
4526 // destruction. It will only reset the state once, so you can call Clean and
4527 // then monkey with the state and it won't get reset on you again.
4528 
4529 class RestorePlanState {
4530 public:
4531   RestorePlanState(lldb::ThreadPlanSP thread_plan_sp)
4532       : m_thread_plan_sp(thread_plan_sp) {
4533     if (m_thread_plan_sp) {
4534       m_private = m_thread_plan_sp->GetPrivate();
4535       m_is_controlling = m_thread_plan_sp->IsControllingPlan();
4536       m_okay_to_discard = m_thread_plan_sp->OkayToDiscard();
4537     }
4538   }
4539 
4540   ~RestorePlanState() { Clean(); }
4541 
4542   void Clean() {
4543     if (!m_already_reset && m_thread_plan_sp) {
4544       m_already_reset = true;
4545       m_thread_plan_sp->SetPrivate(m_private);
4546       m_thread_plan_sp->SetIsControllingPlan(m_is_controlling);
4547       m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard);
4548     }
4549   }
4550 
4551 private:
4552   lldb::ThreadPlanSP m_thread_plan_sp;
4553   bool m_already_reset = false;
4554   bool m_private = false;
4555   bool m_is_controlling = false;
4556   bool m_okay_to_discard = false;
4557 };
4558 } // anonymous namespace
4559 
4560 static microseconds
4561 GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) {
4562   const milliseconds default_one_thread_timeout(250);
4563 
4564   // If the overall wait is forever, then we don't need to worry about it.
4565   if (!options.GetTimeout()) {
4566     return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout()
4567                                          : default_one_thread_timeout;
4568   }
4569 
4570   // If the one thread timeout is set, use it.
4571   if (options.GetOneThreadTimeout())
4572     return *options.GetOneThreadTimeout();
4573 
4574   // Otherwise use half the total timeout, bounded by the
4575   // default_one_thread_timeout.
4576   return std::min<microseconds>(default_one_thread_timeout,
4577                                 *options.GetTimeout() / 2);
4578 }
4579 
4580 static Timeout<std::micro>
4581 GetExpressionTimeout(const EvaluateExpressionOptions &options,
4582                      bool before_first_timeout) {
4583   // If we are going to run all threads the whole time, or if we are only going
4584   // to run one thread, we can just return the overall timeout.
4585   if (!options.GetStopOthers() || !options.GetTryAllThreads())
4586     return options.GetTimeout();
4587 
4588   if (before_first_timeout)
4589     return GetOneThreadExpressionTimeout(options);
4590 
4591   if (!options.GetTimeout())
4592     return llvm::None;
4593   else
4594     return *options.GetTimeout() - GetOneThreadExpressionTimeout(options);
4595 }
4596 
4597 static llvm::Optional<ExpressionResults>
4598 HandleStoppedEvent(lldb::tid_t thread_id, const ThreadPlanSP &thread_plan_sp,
4599                    RestorePlanState &restorer, const EventSP &event_sp,
4600                    EventSP &event_to_broadcast_sp,
4601                    const EvaluateExpressionOptions &options,
4602                    bool handle_interrupts) {
4603   Log *log = GetLog(LLDBLog::Step | LLDBLog::Process);
4604 
4605   ThreadSP thread_sp = thread_plan_sp->GetTarget()
4606                            .GetProcessSP()
4607                            ->GetThreadList()
4608                            .FindThreadByID(thread_id);
4609   if (!thread_sp) {
4610     LLDB_LOG(log,
4611              "The thread on which we were running the "
4612              "expression: tid = {0}, exited while "
4613              "the expression was running.",
4614              thread_id);
4615     return eExpressionThreadVanished;
4616   }
4617 
4618   ThreadPlanSP plan = thread_sp->GetCompletedPlan();
4619   if (plan == thread_plan_sp && plan->PlanSucceeded()) {
4620     LLDB_LOG(log, "execution completed successfully");
4621 
4622     // Restore the plan state so it will get reported as intended when we are
4623     // done.
4624     restorer.Clean();
4625     return eExpressionCompleted;
4626   }
4627 
4628   StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
4629   if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint &&
4630       stop_info_sp->ShouldNotify(event_sp.get())) {
4631     LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription());
4632     if (!options.DoesIgnoreBreakpoints()) {
4633       // Restore the plan state and then force Private to false.  We are going
4634       // to stop because of this plan so we need it to become a public plan or
4635       // it won't report correctly when we continue to its termination later
4636       // on.
4637       restorer.Clean();
4638       thread_plan_sp->SetPrivate(false);
4639       event_to_broadcast_sp = event_sp;
4640     }
4641     return eExpressionHitBreakpoint;
4642   }
4643 
4644   if (!handle_interrupts &&
4645       Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get()))
4646     return llvm::None;
4647 
4648   LLDB_LOG(log, "thread plan did not successfully complete");
4649   if (!options.DoesUnwindOnError())
4650     event_to_broadcast_sp = event_sp;
4651   return eExpressionInterrupted;
4652 }
4653 
4654 ExpressionResults
4655 Process::RunThreadPlan(ExecutionContext &exe_ctx,
4656                        lldb::ThreadPlanSP &thread_plan_sp,
4657                        const EvaluateExpressionOptions &options,
4658                        DiagnosticManager &diagnostic_manager) {
4659   ExpressionResults return_value = eExpressionSetupError;
4660 
4661   std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock);
4662 
4663   if (!thread_plan_sp) {
4664     diagnostic_manager.PutString(
4665         eDiagnosticSeverityError,
4666         "RunThreadPlan called with empty thread plan.");
4667     return eExpressionSetupError;
4668   }
4669 
4670   if (!thread_plan_sp->ValidatePlan(nullptr)) {
4671     diagnostic_manager.PutString(
4672         eDiagnosticSeverityError,
4673         "RunThreadPlan called with an invalid thread plan.");
4674     return eExpressionSetupError;
4675   }
4676 
4677   if (exe_ctx.GetProcessPtr() != this) {
4678     diagnostic_manager.PutString(eDiagnosticSeverityError,
4679                                  "RunThreadPlan called on wrong process.");
4680     return eExpressionSetupError;
4681   }
4682 
4683   Thread *thread = exe_ctx.GetThreadPtr();
4684   if (thread == nullptr) {
4685     diagnostic_manager.PutString(eDiagnosticSeverityError,
4686                                  "RunThreadPlan called with invalid thread.");
4687     return eExpressionSetupError;
4688   }
4689 
4690   // Record the thread's id so we can tell when a thread we were using
4691   // to run the expression exits during the expression evaluation.
4692   lldb::tid_t expr_thread_id = thread->GetID();
4693 
4694   // We need to change some of the thread plan attributes for the thread plan
4695   // runner.  This will restore them when we are done:
4696 
4697   RestorePlanState thread_plan_restorer(thread_plan_sp);
4698 
4699   // We rely on the thread plan we are running returning "PlanCompleted" if
4700   // when it successfully completes. For that to be true the plan can't be
4701   // private - since private plans suppress themselves in the GetCompletedPlan
4702   // call.
4703 
4704   thread_plan_sp->SetPrivate(false);
4705 
4706   // The plans run with RunThreadPlan also need to be terminal controlling plans
4707   // or when they are done we will end up asking the plan above us whether we
4708   // should stop, which may give the wrong answer.
4709 
4710   thread_plan_sp->SetIsControllingPlan(true);
4711   thread_plan_sp->SetOkayToDiscard(false);
4712 
4713   // If we are running some utility expression for LLDB, we now have to mark
4714   // this in the ProcesModID of this process. This RAII takes care of marking
4715   // and reverting the mark it once we are done running the expression.
4716   UtilityFunctionScope util_scope(options.IsForUtilityExpr() ? this : nullptr);
4717 
4718   if (m_private_state.GetValue() != eStateStopped) {
4719     diagnostic_manager.PutString(
4720         eDiagnosticSeverityError,
4721         "RunThreadPlan called while the private state was not stopped.");
4722     return eExpressionSetupError;
4723   }
4724 
4725   // Save the thread & frame from the exe_ctx for restoration after we run
4726   const uint32_t thread_idx_id = thread->GetIndexID();
4727   StackFrameSP selected_frame_sp = thread->GetSelectedFrame();
4728   if (!selected_frame_sp) {
4729     thread->SetSelectedFrame(nullptr);
4730     selected_frame_sp = thread->GetSelectedFrame();
4731     if (!selected_frame_sp) {
4732       diagnostic_manager.Printf(
4733           eDiagnosticSeverityError,
4734           "RunThreadPlan called without a selected frame on thread %d",
4735           thread_idx_id);
4736       return eExpressionSetupError;
4737     }
4738   }
4739 
4740   // Make sure the timeout values make sense. The one thread timeout needs to
4741   // be smaller than the overall timeout.
4742   if (options.GetOneThreadTimeout() && options.GetTimeout() &&
4743       *options.GetTimeout() < *options.GetOneThreadTimeout()) {
4744     diagnostic_manager.PutString(eDiagnosticSeverityError,
4745                                  "RunThreadPlan called with one thread "
4746                                  "timeout greater than total timeout");
4747     return eExpressionSetupError;
4748   }
4749 
4750   StackID ctx_frame_id = selected_frame_sp->GetStackID();
4751 
4752   // N.B. Running the target may unset the currently selected thread and frame.
4753   // We don't want to do that either, so we should arrange to reset them as
4754   // well.
4755 
4756   lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread();
4757 
4758   uint32_t selected_tid;
4759   StackID selected_stack_id;
4760   if (selected_thread_sp) {
4761     selected_tid = selected_thread_sp->GetIndexID();
4762     selected_stack_id = selected_thread_sp->GetSelectedFrame()->GetStackID();
4763   } else {
4764     selected_tid = LLDB_INVALID_THREAD_ID;
4765   }
4766 
4767   HostThread backup_private_state_thread;
4768   lldb::StateType old_state = eStateInvalid;
4769   lldb::ThreadPlanSP stopper_base_plan_sp;
4770 
4771   Log *log(GetLog(LLDBLog::Step | LLDBLog::Process));
4772   if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) {
4773     // Yikes, we are running on the private state thread!  So we can't wait for
4774     // public events on this thread, since we are the thread that is generating
4775     // public events. The simplest thing to do is to spin up a temporary thread
4776     // to handle private state thread events while we are fielding public
4777     // events here.
4778     LLDB_LOGF(log, "Running thread plan on private state thread, spinning up "
4779                    "another state thread to handle the events.");
4780 
4781     backup_private_state_thread = m_private_state_thread;
4782 
4783     // One other bit of business: we want to run just this thread plan and
4784     // anything it pushes, and then stop, returning control here. But in the
4785     // normal course of things, the plan above us on the stack would be given a
4786     // shot at the stop event before deciding to stop, and we don't want that.
4787     // So we insert a "stopper" base plan on the stack before the plan we want
4788     // to run.  Since base plans always stop and return control to the user,
4789     // that will do just what we want.
4790     stopper_base_plan_sp.reset(new ThreadPlanBase(*thread));
4791     thread->QueueThreadPlan(stopper_base_plan_sp, false);
4792     // Have to make sure our public state is stopped, since otherwise the
4793     // reporting logic below doesn't work correctly.
4794     old_state = m_public_state.GetValue();
4795     m_public_state.SetValueNoLock(eStateStopped);
4796 
4797     // Now spin up the private state thread:
4798     StartPrivateStateThread(true);
4799   }
4800 
4801   thread->QueueThreadPlan(
4802       thread_plan_sp, false); // This used to pass "true" does that make sense?
4803 
4804   if (options.GetDebug()) {
4805     // In this case, we aren't actually going to run, we just want to stop
4806     // right away. Flush this thread so we will refetch the stacks and show the
4807     // correct backtrace.
4808     // FIXME: To make this prettier we should invent some stop reason for this,
4809     // but that
4810     // is only cosmetic, and this functionality is only of use to lldb
4811     // developers who can live with not pretty...
4812     thread->Flush();
4813     return eExpressionStoppedForDebug;
4814   }
4815 
4816   ListenerSP listener_sp(
4817       Listener::MakeListener("lldb.process.listener.run-thread-plan"));
4818 
4819   lldb::EventSP event_to_broadcast_sp;
4820 
4821   {
4822     // This process event hijacker Hijacks the Public events and its destructor
4823     // makes sure that the process events get restored on exit to the function.
4824     //
4825     // If the event needs to propagate beyond the hijacker (e.g., the process
4826     // exits during execution), then the event is put into
4827     // event_to_broadcast_sp for rebroadcasting.
4828 
4829     ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp);
4830 
4831     if (log) {
4832       StreamString s;
4833       thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose);
4834       LLDB_LOGF(log,
4835                 "Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64
4836                 " to run thread plan \"%s\".",
4837                 thread_idx_id, expr_thread_id, s.GetData());
4838     }
4839 
4840     bool got_event;
4841     lldb::EventSP event_sp;
4842     lldb::StateType stop_state = lldb::eStateInvalid;
4843 
4844     bool before_first_timeout = true; // This is set to false the first time
4845                                       // that we have to halt the target.
4846     bool do_resume = true;
4847     bool handle_running_event = true;
4848 
4849     // This is just for accounting:
4850     uint32_t num_resumes = 0;
4851 
4852     // If we are going to run all threads the whole time, or if we are only
4853     // going to run one thread, then we don't need the first timeout.  So we
4854     // pretend we are after the first timeout already.
4855     if (!options.GetStopOthers() || !options.GetTryAllThreads())
4856       before_first_timeout = false;
4857 
4858     LLDB_LOGF(log, "Stop others: %u, try all: %u, before_first: %u.\n",
4859               options.GetStopOthers(), options.GetTryAllThreads(),
4860               before_first_timeout);
4861 
4862     // This isn't going to work if there are unfetched events on the queue. Are
4863     // there cases where we might want to run the remaining events here, and
4864     // then try to call the function?  That's probably being too tricky for our
4865     // own good.
4866 
4867     Event *other_events = listener_sp->PeekAtNextEvent();
4868     if (other_events != nullptr) {
4869       diagnostic_manager.PutString(
4870           eDiagnosticSeverityError,
4871           "RunThreadPlan called with pending events on the queue.");
4872       return eExpressionSetupError;
4873     }
4874 
4875     // We also need to make sure that the next event is delivered.  We might be
4876     // calling a function as part of a thread plan, in which case the last
4877     // delivered event could be the running event, and we don't want event
4878     // coalescing to cause us to lose OUR running event...
4879     ForceNextEventDelivery();
4880 
4881 // This while loop must exit out the bottom, there's cleanup that we need to do
4882 // when we are done. So don't call return anywhere within it.
4883 
4884 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT
4885     // It's pretty much impossible to write test cases for things like: One
4886     // thread timeout expires, I go to halt, but the process already stopped on
4887     // the function call stop breakpoint.  Turning on this define will make us
4888     // not fetch the first event till after the halt.  So if you run a quick
4889     // function, it will have completed, and the completion event will be
4890     // waiting, when you interrupt for halt. The expression evaluation should
4891     // still succeed.
4892     bool miss_first_event = true;
4893 #endif
4894     while (true) {
4895       // We usually want to resume the process if we get to the top of the
4896       // loop. The only exception is if we get two running events with no
4897       // intervening stop, which can happen, we will just wait for then next
4898       // stop event.
4899       LLDB_LOGF(log,
4900                 "Top of while loop: do_resume: %i handle_running_event: %i "
4901                 "before_first_timeout: %i.",
4902                 do_resume, handle_running_event, before_first_timeout);
4903 
4904       if (do_resume || handle_running_event) {
4905         // Do the initial resume and wait for the running event before going
4906         // further.
4907 
4908         if (do_resume) {
4909           num_resumes++;
4910           Status resume_error = PrivateResume();
4911           if (!resume_error.Success()) {
4912             diagnostic_manager.Printf(
4913                 eDiagnosticSeverityError,
4914                 "couldn't resume inferior the %d time: \"%s\".", num_resumes,
4915                 resume_error.AsCString());
4916             return_value = eExpressionSetupError;
4917             break;
4918           }
4919         }
4920 
4921         got_event =
4922             listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout());
4923         if (!got_event) {
4924           LLDB_LOGF(log,
4925                     "Process::RunThreadPlan(): didn't get any event after "
4926                     "resume %" PRIu32 ", exiting.",
4927                     num_resumes);
4928 
4929           diagnostic_manager.Printf(eDiagnosticSeverityError,
4930                                     "didn't get any event after resume %" PRIu32
4931                                     ", exiting.",
4932                                     num_resumes);
4933           return_value = eExpressionSetupError;
4934           break;
4935         }
4936 
4937         stop_state =
4938             Process::ProcessEventData::GetStateFromEvent(event_sp.get());
4939 
4940         if (stop_state != eStateRunning) {
4941           bool restarted = false;
4942 
4943           if (stop_state == eStateStopped) {
4944             restarted = Process::ProcessEventData::GetRestartedFromEvent(
4945                 event_sp.get());
4946             LLDB_LOGF(
4947                 log,
4948                 "Process::RunThreadPlan(): didn't get running event after "
4949                 "resume %d, got %s instead (restarted: %i, do_resume: %i, "
4950                 "handle_running_event: %i).",
4951                 num_resumes, StateAsCString(stop_state), restarted, do_resume,
4952                 handle_running_event);
4953           }
4954 
4955           if (restarted) {
4956             // This is probably an overabundance of caution, I don't think I
4957             // should ever get a stopped & restarted event here.  But if I do,
4958             // the best thing is to Halt and then get out of here.
4959             const bool clear_thread_plans = false;
4960             const bool use_run_lock = false;
4961             Halt(clear_thread_plans, use_run_lock);
4962           }
4963 
4964           diagnostic_manager.Printf(
4965               eDiagnosticSeverityError,
4966               "didn't get running event after initial resume, got %s instead.",
4967               StateAsCString(stop_state));
4968           return_value = eExpressionSetupError;
4969           break;
4970         }
4971 
4972         if (log)
4973           log->PutCString("Process::RunThreadPlan(): resuming succeeded.");
4974         // We need to call the function synchronously, so spin waiting for it
4975         // to return. If we get interrupted while executing, we're going to
4976         // lose our context, and won't be able to gather the result at this
4977         // point. We set the timeout AFTER the resume, since the resume takes
4978         // some time and we don't want to charge that to the timeout.
4979       } else {
4980         if (log)
4981           log->PutCString("Process::RunThreadPlan(): waiting for next event.");
4982       }
4983 
4984       do_resume = true;
4985       handle_running_event = true;
4986 
4987       // Now wait for the process to stop again:
4988       event_sp.reset();
4989 
4990       Timeout<std::micro> timeout =
4991           GetExpressionTimeout(options, before_first_timeout);
4992       if (log) {
4993         if (timeout) {
4994           auto now = system_clock::now();
4995           LLDB_LOGF(log,
4996                     "Process::RunThreadPlan(): about to wait - now is %s - "
4997                     "endpoint is %s",
4998                     llvm::to_string(now).c_str(),
4999                     llvm::to_string(now + *timeout).c_str());
5000         } else {
5001           LLDB_LOGF(log, "Process::RunThreadPlan(): about to wait forever.");
5002         }
5003       }
5004 
5005 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT
5006       // See comment above...
5007       if (miss_first_event) {
5008         std::this_thread::sleep_for(std::chrono::milliseconds(1));
5009         miss_first_event = false;
5010         got_event = false;
5011       } else
5012 #endif
5013         got_event = listener_sp->GetEvent(event_sp, timeout);
5014 
5015       if (got_event) {
5016         if (event_sp) {
5017           bool keep_going = false;
5018           if (event_sp->GetType() == eBroadcastBitInterrupt) {
5019             const bool clear_thread_plans = false;
5020             const bool use_run_lock = false;
5021             Halt(clear_thread_plans, use_run_lock);
5022             return_value = eExpressionInterrupted;
5023             diagnostic_manager.PutString(eDiagnosticSeverityRemark,
5024                                          "execution halted by user interrupt.");
5025             LLDB_LOGF(log, "Process::RunThreadPlan(): Got  interrupted by "
5026                            "eBroadcastBitInterrupted, exiting.");
5027             break;
5028           } else {
5029             stop_state =
5030                 Process::ProcessEventData::GetStateFromEvent(event_sp.get());
5031             LLDB_LOGF(log,
5032                       "Process::RunThreadPlan(): in while loop, got event: %s.",
5033                       StateAsCString(stop_state));
5034 
5035             switch (stop_state) {
5036             case lldb::eStateStopped: {
5037               if (Process::ProcessEventData::GetRestartedFromEvent(
5038                       event_sp.get())) {
5039                 // If we were restarted, we just need to go back up to fetch
5040                 // another event.
5041                 LLDB_LOGF(log, "Process::RunThreadPlan(): Got a stop and "
5042                                "restart, so we'll continue waiting.");
5043                 keep_going = true;
5044                 do_resume = false;
5045                 handle_running_event = true;
5046               } else {
5047                 const bool handle_interrupts = true;
5048                 return_value = *HandleStoppedEvent(
5049                     expr_thread_id, thread_plan_sp, thread_plan_restorer,
5050                     event_sp, event_to_broadcast_sp, options,
5051                     handle_interrupts);
5052                 if (return_value == eExpressionThreadVanished)
5053                   keep_going = false;
5054               }
5055             } break;
5056 
5057             case lldb::eStateRunning:
5058               // This shouldn't really happen, but sometimes we do get two
5059               // running events without an intervening stop, and in that case
5060               // we should just go back to waiting for the stop.
5061               do_resume = false;
5062               keep_going = true;
5063               handle_running_event = false;
5064               break;
5065 
5066             default:
5067               LLDB_LOGF(log,
5068                         "Process::RunThreadPlan(): execution stopped with "
5069                         "unexpected state: %s.",
5070                         StateAsCString(stop_state));
5071 
5072               if (stop_state == eStateExited)
5073                 event_to_broadcast_sp = event_sp;
5074 
5075               diagnostic_manager.PutString(
5076                   eDiagnosticSeverityError,
5077                   "execution stopped with unexpected state.");
5078               return_value = eExpressionInterrupted;
5079               break;
5080             }
5081           }
5082 
5083           if (keep_going)
5084             continue;
5085           else
5086             break;
5087         } else {
5088           if (log)
5089             log->PutCString("Process::RunThreadPlan(): got_event was true, but "
5090                             "the event pointer was null.  How odd...");
5091           return_value = eExpressionInterrupted;
5092           break;
5093         }
5094       } else {
5095         // If we didn't get an event that means we've timed out... We will
5096         // interrupt the process here.  Depending on what we were asked to do
5097         // we will either exit, or try with all threads running for the same
5098         // timeout.
5099 
5100         if (log) {
5101           if (options.GetTryAllThreads()) {
5102             if (before_first_timeout) {
5103               LLDB_LOG(log,
5104                        "Running function with one thread timeout timed out.");
5105             } else
5106               LLDB_LOG(log, "Restarting function with all threads enabled and "
5107                             "timeout: {0} timed out, abandoning execution.",
5108                        timeout);
5109           } else
5110             LLDB_LOG(log, "Running function with timeout: {0} timed out, "
5111                           "abandoning execution.",
5112                      timeout);
5113         }
5114 
5115         // It is possible that between the time we issued the Halt, and we get
5116         // around to calling Halt the target could have stopped.  That's fine,
5117         // Halt will figure that out and send the appropriate Stopped event.
5118         // BUT it is also possible that we stopped & restarted (e.g. hit a
5119         // signal with "stop" set to false.)  In
5120         // that case, we'll get the stopped & restarted event, and we should go
5121         // back to waiting for the Halt's stopped event.  That's what this
5122         // while loop does.
5123 
5124         bool back_to_top = true;
5125         uint32_t try_halt_again = 0;
5126         bool do_halt = true;
5127         const uint32_t num_retries = 5;
5128         while (try_halt_again < num_retries) {
5129           Status halt_error;
5130           if (do_halt) {
5131             LLDB_LOGF(log, "Process::RunThreadPlan(): Running Halt.");
5132             const bool clear_thread_plans = false;
5133             const bool use_run_lock = false;
5134             Halt(clear_thread_plans, use_run_lock);
5135           }
5136           if (halt_error.Success()) {
5137             if (log)
5138               log->PutCString("Process::RunThreadPlan(): Halt succeeded.");
5139 
5140             got_event =
5141                 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout());
5142 
5143             if (got_event) {
5144               stop_state =
5145                   Process::ProcessEventData::GetStateFromEvent(event_sp.get());
5146               if (log) {
5147                 LLDB_LOGF(log,
5148                           "Process::RunThreadPlan(): Stopped with event: %s",
5149                           StateAsCString(stop_state));
5150                 if (stop_state == lldb::eStateStopped &&
5151                     Process::ProcessEventData::GetInterruptedFromEvent(
5152                         event_sp.get()))
5153                   log->PutCString("    Event was the Halt interruption event.");
5154               }
5155 
5156               if (stop_state == lldb::eStateStopped) {
5157                 if (Process::ProcessEventData::GetRestartedFromEvent(
5158                         event_sp.get())) {
5159                   if (log)
5160                     log->PutCString("Process::RunThreadPlan(): Went to halt "
5161                                     "but got a restarted event, there must be "
5162                                     "an un-restarted stopped event so try "
5163                                     "again...  "
5164                                     "Exiting wait loop.");
5165                   try_halt_again++;
5166                   do_halt = false;
5167                   continue;
5168                 }
5169 
5170                 // Between the time we initiated the Halt and the time we
5171                 // delivered it, the process could have already finished its
5172                 // job.  Check that here:
5173                 const bool handle_interrupts = false;
5174                 if (auto result = HandleStoppedEvent(
5175                         expr_thread_id, thread_plan_sp, thread_plan_restorer,
5176                         event_sp, event_to_broadcast_sp, options,
5177                         handle_interrupts)) {
5178                   return_value = *result;
5179                   back_to_top = false;
5180                   break;
5181                 }
5182 
5183                 if (!options.GetTryAllThreads()) {
5184                   if (log)
5185                     log->PutCString("Process::RunThreadPlan(): try_all_threads "
5186                                     "was false, we stopped so now we're "
5187                                     "quitting.");
5188                   return_value = eExpressionInterrupted;
5189                   back_to_top = false;
5190                   break;
5191                 }
5192 
5193                 if (before_first_timeout) {
5194                   // Set all the other threads to run, and return to the top of
5195                   // the loop, which will continue;
5196                   before_first_timeout = false;
5197                   thread_plan_sp->SetStopOthers(false);
5198                   if (log)
5199                     log->PutCString(
5200                         "Process::RunThreadPlan(): about to resume.");
5201 
5202                   back_to_top = true;
5203                   break;
5204                 } else {
5205                   // Running all threads failed, so return Interrupted.
5206                   if (log)
5207                     log->PutCString("Process::RunThreadPlan(): running all "
5208                                     "threads timed out.");
5209                   return_value = eExpressionInterrupted;
5210                   back_to_top = false;
5211                   break;
5212                 }
5213               }
5214             } else {
5215               if (log)
5216                 log->PutCString("Process::RunThreadPlan(): halt said it "
5217                                 "succeeded, but I got no event.  "
5218                                 "I'm getting out of here passing Interrupted.");
5219               return_value = eExpressionInterrupted;
5220               back_to_top = false;
5221               break;
5222             }
5223           } else {
5224             try_halt_again++;
5225             continue;
5226           }
5227         }
5228 
5229         if (!back_to_top || try_halt_again > num_retries)
5230           break;
5231         else
5232           continue;
5233       }
5234     } // END WAIT LOOP
5235 
5236     // If we had to start up a temporary private state thread to run this
5237     // thread plan, shut it down now.
5238     if (backup_private_state_thread.IsJoinable()) {
5239       StopPrivateStateThread();
5240       Status error;
5241       m_private_state_thread = backup_private_state_thread;
5242       if (stopper_base_plan_sp) {
5243         thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp);
5244       }
5245       if (old_state != eStateInvalid)
5246         m_public_state.SetValueNoLock(old_state);
5247     }
5248 
5249     // If our thread went away on us, we need to get out of here without
5250     // doing any more work.  We don't have to clean up the thread plan, that
5251     // will have happened when the Thread was destroyed.
5252     if (return_value == eExpressionThreadVanished) {
5253       return return_value;
5254     }
5255 
5256     if (return_value != eExpressionCompleted && log) {
5257       // Print a backtrace into the log so we can figure out where we are:
5258       StreamString s;
5259       s.PutCString("Thread state after unsuccessful completion: \n");
5260       thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX);
5261       log->PutString(s.GetString());
5262     }
5263     // Restore the thread state if we are going to discard the plan execution.
5264     // There are three cases where this could happen: 1) The execution
5265     // successfully completed 2) We hit a breakpoint, and ignore_breakpoints
5266     // was true 3) We got some other error, and discard_on_error was true
5267     bool should_unwind = (return_value == eExpressionInterrupted &&
5268                           options.DoesUnwindOnError()) ||
5269                          (return_value == eExpressionHitBreakpoint &&
5270                           options.DoesIgnoreBreakpoints());
5271 
5272     if (return_value == eExpressionCompleted || should_unwind) {
5273       thread_plan_sp->RestoreThreadState();
5274     }
5275 
5276     // Now do some processing on the results of the run:
5277     if (return_value == eExpressionInterrupted ||
5278         return_value == eExpressionHitBreakpoint) {
5279       if (log) {
5280         StreamString s;
5281         if (event_sp)
5282           event_sp->Dump(&s);
5283         else {
5284           log->PutCString("Process::RunThreadPlan(): Stop event that "
5285                           "interrupted us is NULL.");
5286         }
5287 
5288         StreamString ts;
5289 
5290         const char *event_explanation = nullptr;
5291 
5292         do {
5293           if (!event_sp) {
5294             event_explanation = "<no event>";
5295             break;
5296           } else if (event_sp->GetType() == eBroadcastBitInterrupt) {
5297             event_explanation = "<user interrupt>";
5298             break;
5299           } else {
5300             const Process::ProcessEventData *event_data =
5301                 Process::ProcessEventData::GetEventDataFromEvent(
5302                     event_sp.get());
5303 
5304             if (!event_data) {
5305               event_explanation = "<no event data>";
5306               break;
5307             }
5308 
5309             Process *process = event_data->GetProcessSP().get();
5310 
5311             if (!process) {
5312               event_explanation = "<no process>";
5313               break;
5314             }
5315 
5316             ThreadList &thread_list = process->GetThreadList();
5317 
5318             uint32_t num_threads = thread_list.GetSize();
5319             uint32_t thread_index;
5320 
5321             ts.Printf("<%u threads> ", num_threads);
5322 
5323             for (thread_index = 0; thread_index < num_threads; ++thread_index) {
5324               Thread *thread = thread_list.GetThreadAtIndex(thread_index).get();
5325 
5326               if (!thread) {
5327                 ts.Printf("<?> ");
5328                 continue;
5329               }
5330 
5331               ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID());
5332               RegisterContext *register_context =
5333                   thread->GetRegisterContext().get();
5334 
5335               if (register_context)
5336                 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC());
5337               else
5338                 ts.Printf("[ip unknown] ");
5339 
5340               // Show the private stop info here, the public stop info will be
5341               // from the last natural stop.
5342               lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo();
5343               if (stop_info_sp) {
5344                 const char *stop_desc = stop_info_sp->GetDescription();
5345                 if (stop_desc)
5346                   ts.PutCString(stop_desc);
5347               }
5348               ts.Printf(">");
5349             }
5350 
5351             event_explanation = ts.GetData();
5352           }
5353         } while (false);
5354 
5355         if (event_explanation)
5356           LLDB_LOGF(log,
5357                     "Process::RunThreadPlan(): execution interrupted: %s %s",
5358                     s.GetData(), event_explanation);
5359         else
5360           LLDB_LOGF(log, "Process::RunThreadPlan(): execution interrupted: %s",
5361                     s.GetData());
5362       }
5363 
5364       if (should_unwind) {
5365         LLDB_LOGF(log,
5366                   "Process::RunThreadPlan: ExecutionInterrupted - "
5367                   "discarding thread plans up to %p.",
5368                   static_cast<void *>(thread_plan_sp.get()));
5369         thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5370       } else {
5371         LLDB_LOGF(log,
5372                   "Process::RunThreadPlan: ExecutionInterrupted - for "
5373                   "plan: %p not discarding.",
5374                   static_cast<void *>(thread_plan_sp.get()));
5375       }
5376     } else if (return_value == eExpressionSetupError) {
5377       if (log)
5378         log->PutCString("Process::RunThreadPlan(): execution set up error.");
5379 
5380       if (options.DoesUnwindOnError()) {
5381         thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5382       }
5383     } else {
5384       if (thread->IsThreadPlanDone(thread_plan_sp.get())) {
5385         if (log)
5386           log->PutCString("Process::RunThreadPlan(): thread plan is done");
5387         return_value = eExpressionCompleted;
5388       } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) {
5389         if (log)
5390           log->PutCString(
5391               "Process::RunThreadPlan(): thread plan was discarded");
5392         return_value = eExpressionDiscarded;
5393       } else {
5394         if (log)
5395           log->PutCString(
5396               "Process::RunThreadPlan(): thread plan stopped in mid course");
5397         if (options.DoesUnwindOnError() && thread_plan_sp) {
5398           if (log)
5399             log->PutCString("Process::RunThreadPlan(): discarding thread plan "
5400                             "'cause unwind_on_error is set.");
5401           thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5402         }
5403       }
5404     }
5405 
5406     // Thread we ran the function in may have gone away because we ran the
5407     // target Check that it's still there, and if it is put it back in the
5408     // context. Also restore the frame in the context if it is still present.
5409     thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get();
5410     if (thread) {
5411       exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id));
5412     }
5413 
5414     // Also restore the current process'es selected frame & thread, since this
5415     // function calling may be done behind the user's back.
5416 
5417     if (selected_tid != LLDB_INVALID_THREAD_ID) {
5418       if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) &&
5419           selected_stack_id.IsValid()) {
5420         // We were able to restore the selected thread, now restore the frame:
5421         std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex());
5422         StackFrameSP old_frame_sp =
5423             GetThreadList().GetSelectedThread()->GetFrameWithStackID(
5424                 selected_stack_id);
5425         if (old_frame_sp)
5426           GetThreadList().GetSelectedThread()->SetSelectedFrame(
5427               old_frame_sp.get());
5428       }
5429     }
5430   }
5431 
5432   // If the process exited during the run of the thread plan, notify everyone.
5433 
5434   if (event_to_broadcast_sp) {
5435     if (log)
5436       log->PutCString("Process::RunThreadPlan(): rebroadcasting event.");
5437     BroadcastEvent(event_to_broadcast_sp);
5438   }
5439 
5440   return return_value;
5441 }
5442 
5443 const char *Process::ExecutionResultAsCString(ExpressionResults result) {
5444   const char *result_name = "<unknown>";
5445 
5446   switch (result) {
5447   case eExpressionCompleted:
5448     result_name = "eExpressionCompleted";
5449     break;
5450   case eExpressionDiscarded:
5451     result_name = "eExpressionDiscarded";
5452     break;
5453   case eExpressionInterrupted:
5454     result_name = "eExpressionInterrupted";
5455     break;
5456   case eExpressionHitBreakpoint:
5457     result_name = "eExpressionHitBreakpoint";
5458     break;
5459   case eExpressionSetupError:
5460     result_name = "eExpressionSetupError";
5461     break;
5462   case eExpressionParseError:
5463     result_name = "eExpressionParseError";
5464     break;
5465   case eExpressionResultUnavailable:
5466     result_name = "eExpressionResultUnavailable";
5467     break;
5468   case eExpressionTimedOut:
5469     result_name = "eExpressionTimedOut";
5470     break;
5471   case eExpressionStoppedForDebug:
5472     result_name = "eExpressionStoppedForDebug";
5473     break;
5474   case eExpressionThreadVanished:
5475     result_name = "eExpressionThreadVanished";
5476   }
5477   return result_name;
5478 }
5479 
5480 void Process::GetStatus(Stream &strm) {
5481   const StateType state = GetState();
5482   if (StateIsStoppedState(state, false)) {
5483     if (state == eStateExited) {
5484       int exit_status = GetExitStatus();
5485       const char *exit_description = GetExitDescription();
5486       strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n",
5487                   GetID(), exit_status, exit_status,
5488                   exit_description ? exit_description : "");
5489     } else {
5490       if (state == eStateConnected)
5491         strm.Printf("Connected to remote target.\n");
5492       else
5493         strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state));
5494     }
5495   } else {
5496     strm.Printf("Process %" PRIu64 " is running.\n", GetID());
5497   }
5498 }
5499 
5500 size_t Process::GetThreadStatus(Stream &strm,
5501                                 bool only_threads_with_stop_reason,
5502                                 uint32_t start_frame, uint32_t num_frames,
5503                                 uint32_t num_frames_with_source,
5504                                 bool stop_format) {
5505   size_t num_thread_infos_dumped = 0;
5506 
5507   // You can't hold the thread list lock while calling Thread::GetStatus.  That
5508   // very well might run code (e.g. if we need it to get return values or
5509   // arguments.)  For that to work the process has to be able to acquire it.
5510   // So instead copy the thread ID's, and look them up one by one:
5511 
5512   uint32_t num_threads;
5513   std::vector<lldb::tid_t> thread_id_array;
5514   // Scope for thread list locker;
5515   {
5516     std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex());
5517     ThreadList &curr_thread_list = GetThreadList();
5518     num_threads = curr_thread_list.GetSize();
5519     uint32_t idx;
5520     thread_id_array.resize(num_threads);
5521     for (idx = 0; idx < num_threads; ++idx)
5522       thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID();
5523   }
5524 
5525   for (uint32_t i = 0; i < num_threads; i++) {
5526     ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i]));
5527     if (thread_sp) {
5528       if (only_threads_with_stop_reason) {
5529         StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
5530         if (!stop_info_sp || !stop_info_sp->IsValid())
5531           continue;
5532       }
5533       thread_sp->GetStatus(strm, start_frame, num_frames,
5534                            num_frames_with_source,
5535                            stop_format);
5536       ++num_thread_infos_dumped;
5537     } else {
5538       Log *log = GetLog(LLDBLog::Process);
5539       LLDB_LOGF(log, "Process::GetThreadStatus - thread 0x" PRIu64
5540                      " vanished while running Thread::GetStatus.");
5541     }
5542   }
5543   return num_thread_infos_dumped;
5544 }
5545 
5546 void Process::AddInvalidMemoryRegion(const LoadRange &region) {
5547   m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize());
5548 }
5549 
5550 bool Process::RemoveInvalidMemoryRange(const LoadRange &region) {
5551   return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(),
5552                                            region.GetByteSize());
5553 }
5554 
5555 void Process::AddPreResumeAction(PreResumeActionCallback callback,
5556                                  void *baton) {
5557   m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton));
5558 }
5559 
5560 bool Process::RunPreResumeActions() {
5561   bool result = true;
5562   while (!m_pre_resume_actions.empty()) {
5563     struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back();
5564     m_pre_resume_actions.pop_back();
5565     bool this_result = action.callback(action.baton);
5566     if (result)
5567       result = this_result;
5568   }
5569   return result;
5570 }
5571 
5572 void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); }
5573 
5574 void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton)
5575 {
5576     PreResumeCallbackAndBaton element(callback, baton);
5577     auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element);
5578     if (found_iter != m_pre_resume_actions.end())
5579     {
5580         m_pre_resume_actions.erase(found_iter);
5581     }
5582 }
5583 
5584 ProcessRunLock &Process::GetRunLock() {
5585   if (m_private_state_thread.EqualsThread(Host::GetCurrentThread()))
5586     return m_private_run_lock;
5587   else
5588     return m_public_run_lock;
5589 }
5590 
5591 bool Process::CurrentThreadIsPrivateStateThread()
5592 {
5593   return m_private_state_thread.EqualsThread(Host::GetCurrentThread());
5594 }
5595 
5596 
5597 void Process::Flush() {
5598   m_thread_list.Flush();
5599   m_extended_thread_list.Flush();
5600   m_extended_thread_stop_id = 0;
5601   m_queue_list.Clear();
5602   m_queue_list_stop_id = 0;
5603 }
5604 
5605 lldb::addr_t Process::GetCodeAddressMask() {
5606   if (m_code_address_mask == 0) {
5607     if (uint32_t number_of_addressable_bits = GetVirtualAddressableBits()) {
5608       lldb::addr_t address_mask = ~((1ULL << number_of_addressable_bits) - 1);
5609       SetCodeAddressMask(address_mask);
5610     }
5611   }
5612   return m_code_address_mask;
5613 }
5614 
5615 lldb::addr_t Process::GetDataAddressMask() {
5616   if (m_data_address_mask == 0) {
5617     if (uint32_t number_of_addressable_bits = GetVirtualAddressableBits()) {
5618       lldb::addr_t address_mask = ~((1ULL << number_of_addressable_bits) - 1);
5619       SetDataAddressMask(address_mask);
5620     }
5621   }
5622   return m_data_address_mask;
5623 }
5624 
5625 void Process::DidExec() {
5626   Log *log = GetLog(LLDBLog::Process);
5627   LLDB_LOGF(log, "Process::%s()", __FUNCTION__);
5628 
5629   Target &target = GetTarget();
5630   target.CleanupProcess();
5631   target.ClearModules(false);
5632   m_dynamic_checkers_up.reset();
5633   m_abi_sp.reset();
5634   m_system_runtime_up.reset();
5635   m_os_up.reset();
5636   m_dyld_up.reset();
5637   m_jit_loaders_up.reset();
5638   m_image_tokens.clear();
5639   m_allocated_memory_cache.Clear();
5640   {
5641     std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
5642     m_language_runtimes.clear();
5643   }
5644   m_instrumentation_runtimes.clear();
5645   m_thread_list.DiscardThreadPlans();
5646   m_memory_cache.Clear(true);
5647   DoDidExec();
5648   CompleteAttach();
5649   // Flush the process (threads and all stack frames) after running
5650   // CompleteAttach() in case the dynamic loader loaded things in new
5651   // locations.
5652   Flush();
5653 
5654   // After we figure out what was loaded/unloaded in CompleteAttach, we need to
5655   // let the target know so it can do any cleanup it needs to.
5656   target.DidExec();
5657 }
5658 
5659 addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) {
5660   if (address == nullptr) {
5661     error.SetErrorString("Invalid address argument");
5662     return LLDB_INVALID_ADDRESS;
5663   }
5664 
5665   addr_t function_addr = LLDB_INVALID_ADDRESS;
5666 
5667   addr_t addr = address->GetLoadAddress(&GetTarget());
5668   std::map<addr_t, addr_t>::const_iterator iter =
5669       m_resolved_indirect_addresses.find(addr);
5670   if (iter != m_resolved_indirect_addresses.end()) {
5671     function_addr = (*iter).second;
5672   } else {
5673     if (!CallVoidArgVoidPtrReturn(address, function_addr)) {
5674       Symbol *symbol = address->CalculateSymbolContextSymbol();
5675       error.SetErrorStringWithFormat(
5676           "Unable to call resolver for indirect function %s",
5677           symbol ? symbol->GetName().AsCString() : "<UNKNOWN>");
5678       function_addr = LLDB_INVALID_ADDRESS;
5679     } else {
5680       if (ABISP abi_sp = GetABI())
5681         function_addr = abi_sp->FixCodeAddress(function_addr);
5682       m_resolved_indirect_addresses.insert(
5683           std::pair<addr_t, addr_t>(addr, function_addr));
5684     }
5685   }
5686   return function_addr;
5687 }
5688 
5689 void Process::ModulesDidLoad(ModuleList &module_list) {
5690   // Inform the system runtime of the modified modules.
5691   SystemRuntime *sys_runtime = GetSystemRuntime();
5692   if (sys_runtime)
5693     sys_runtime->ModulesDidLoad(module_list);
5694 
5695   GetJITLoaders().ModulesDidLoad(module_list);
5696 
5697   // Give the instrumentation runtimes a chance to be created before informing
5698   // them of the modified modules.
5699   InstrumentationRuntime::ModulesDidLoad(module_list, this,
5700                                          m_instrumentation_runtimes);
5701   for (auto &runtime : m_instrumentation_runtimes)
5702     runtime.second->ModulesDidLoad(module_list);
5703 
5704   // Give the language runtimes a chance to be created before informing them of
5705   // the modified modules.
5706   for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) {
5707     if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type))
5708       runtime->ModulesDidLoad(module_list);
5709   }
5710 
5711   // If we don't have an operating system plug-in, try to load one since
5712   // loading shared libraries might cause a new one to try and load
5713   if (!m_os_up)
5714     LoadOperatingSystemPlugin(false);
5715 
5716   // Inform the structured-data plugins of the modified modules.
5717   for (auto pair : m_structured_data_plugin_map) {
5718     if (pair.second)
5719       pair.second->ModulesDidLoad(*this, module_list);
5720   }
5721 }
5722 
5723 void Process::PrintWarningOptimization(const SymbolContext &sc) {
5724   if (!GetWarningsOptimization())
5725     return;
5726   if (!sc.module_sp || !sc.function || !sc.function->GetIsOptimized())
5727     return;
5728   sc.module_sp->ReportWarningOptimization(GetTarget().GetDebugger().GetID());
5729 }
5730 
5731 void Process::PrintWarningUnsupportedLanguage(const SymbolContext &sc) {
5732   if (!GetWarningsUnsupportedLanguage())
5733     return;
5734   if (!sc.module_sp)
5735     return;
5736   LanguageType language = sc.GetLanguage();
5737   if (language == eLanguageTypeUnknown)
5738     return;
5739   LanguageSet plugins =
5740       PluginManager::GetAllTypeSystemSupportedLanguagesForTypes();
5741   if (plugins[language])
5742     return;
5743   sc.module_sp->ReportWarningUnsupportedLanguage(
5744       language, GetTarget().GetDebugger().GetID());
5745 }
5746 
5747 bool Process::GetProcessInfo(ProcessInstanceInfo &info) {
5748   info.Clear();
5749 
5750   PlatformSP platform_sp = GetTarget().GetPlatform();
5751   if (!platform_sp)
5752     return false;
5753 
5754   return platform_sp->GetProcessInfo(GetID(), info);
5755 }
5756 
5757 ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) {
5758   ThreadCollectionSP threads;
5759 
5760   const MemoryHistorySP &memory_history =
5761       MemoryHistory::FindPlugin(shared_from_this());
5762 
5763   if (!memory_history) {
5764     return threads;
5765   }
5766 
5767   threads = std::make_shared<ThreadCollection>(
5768       memory_history->GetHistoryThreads(addr));
5769 
5770   return threads;
5771 }
5772 
5773 InstrumentationRuntimeSP
5774 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) {
5775   InstrumentationRuntimeCollection::iterator pos;
5776   pos = m_instrumentation_runtimes.find(type);
5777   if (pos == m_instrumentation_runtimes.end()) {
5778     return InstrumentationRuntimeSP();
5779   } else
5780     return (*pos).second;
5781 }
5782 
5783 bool Process::GetModuleSpec(const FileSpec &module_file_spec,
5784                             const ArchSpec &arch, ModuleSpec &module_spec) {
5785   module_spec.Clear();
5786   return false;
5787 }
5788 
5789 size_t Process::AddImageToken(lldb::addr_t image_ptr) {
5790   m_image_tokens.push_back(image_ptr);
5791   return m_image_tokens.size() - 1;
5792 }
5793 
5794 lldb::addr_t Process::GetImagePtrFromToken(size_t token) const {
5795   if (token < m_image_tokens.size())
5796     return m_image_tokens[token];
5797   return LLDB_INVALID_ADDRESS;
5798 }
5799 
5800 void Process::ResetImageToken(size_t token) {
5801   if (token < m_image_tokens.size())
5802     m_image_tokens[token] = LLDB_INVALID_ADDRESS;
5803 }
5804 
5805 Address
5806 Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr,
5807                                                AddressRange range_bounds) {
5808   Target &target = GetTarget();
5809   DisassemblerSP disassembler_sp;
5810   InstructionList *insn_list = nullptr;
5811 
5812   Address retval = default_stop_addr;
5813 
5814   if (!target.GetUseFastStepping())
5815     return retval;
5816   if (!default_stop_addr.IsValid())
5817     return retval;
5818 
5819   const char *plugin_name = nullptr;
5820   const char *flavor = nullptr;
5821   disassembler_sp = Disassembler::DisassembleRange(
5822       target.GetArchitecture(), plugin_name, flavor, GetTarget(), range_bounds);
5823   if (disassembler_sp)
5824     insn_list = &disassembler_sp->GetInstructionList();
5825 
5826   if (insn_list == nullptr) {
5827     return retval;
5828   }
5829 
5830   size_t insn_offset =
5831       insn_list->GetIndexOfInstructionAtAddress(default_stop_addr);
5832   if (insn_offset == UINT32_MAX) {
5833     return retval;
5834   }
5835 
5836   uint32_t branch_index = insn_list->GetIndexOfNextBranchInstruction(
5837       insn_offset, false /* ignore_calls*/, nullptr);
5838   if (branch_index == UINT32_MAX) {
5839     return retval;
5840   }
5841 
5842   if (branch_index > insn_offset) {
5843     Address next_branch_insn_address =
5844         insn_list->GetInstructionAtIndex(branch_index)->GetAddress();
5845     if (next_branch_insn_address.IsValid() &&
5846         range_bounds.ContainsFileAddress(next_branch_insn_address)) {
5847       retval = next_branch_insn_address;
5848     }
5849   }
5850 
5851   return retval;
5852 }
5853 
5854 Status Process::GetMemoryRegionInfo(lldb::addr_t load_addr,
5855                                     MemoryRegionInfo &range_info) {
5856   if (const lldb::ABISP &abi = GetABI())
5857     load_addr = abi->FixAnyAddress(load_addr);
5858   return DoGetMemoryRegionInfo(load_addr, range_info);
5859 }
5860 
5861 Status Process::GetMemoryRegions(lldb_private::MemoryRegionInfos &region_list) {
5862   Status error;
5863 
5864   lldb::addr_t range_end = 0;
5865   const lldb::ABISP &abi = GetABI();
5866 
5867   region_list.clear();
5868   do {
5869     lldb_private::MemoryRegionInfo region_info;
5870     error = GetMemoryRegionInfo(range_end, region_info);
5871     // GetMemoryRegionInfo should only return an error if it is unimplemented.
5872     if (error.Fail()) {
5873       region_list.clear();
5874       break;
5875     }
5876 
5877     // We only check the end address, not start and end, because we assume that
5878     // the start will not have non-address bits until the first unmappable
5879     // region. We will have exited the loop by that point because the previous
5880     // region, the last mappable region, will have non-address bits in its end
5881     // address.
5882     range_end = region_info.GetRange().GetRangeEnd();
5883     if (region_info.GetMapped() == MemoryRegionInfo::eYes) {
5884       region_list.push_back(std::move(region_info));
5885     }
5886   } while (
5887       // For a process with no non-address bits, all address bits
5888       // set means the end of memory.
5889       range_end != LLDB_INVALID_ADDRESS &&
5890       // If we have non-address bits and some are set then the end
5891       // is at or beyond the end of mappable memory.
5892       !(abi && (abi->FixAnyAddress(range_end) != range_end)));
5893 
5894   return error;
5895 }
5896 
5897 Status
5898 Process::ConfigureStructuredData(ConstString type_name,
5899                                  const StructuredData::ObjectSP &config_sp) {
5900   // If you get this, the Process-derived class needs to implement a method to
5901   // enable an already-reported asynchronous structured data feature. See
5902   // ProcessGDBRemote for an example implementation over gdb-remote.
5903   return Status("unimplemented");
5904 }
5905 
5906 void Process::MapSupportedStructuredDataPlugins(
5907     const StructuredData::Array &supported_type_names) {
5908   Log *log = GetLog(LLDBLog::Process);
5909 
5910   // Bail out early if there are no type names to map.
5911   if (supported_type_names.GetSize() == 0) {
5912     LLDB_LOGF(log, "Process::%s(): no structured data types supported",
5913               __FUNCTION__);
5914     return;
5915   }
5916 
5917   // Convert StructuredData type names to ConstString instances.
5918   std::set<ConstString> const_type_names;
5919 
5920   LLDB_LOGF(log,
5921             "Process::%s(): the process supports the following async "
5922             "structured data types:",
5923             __FUNCTION__);
5924 
5925   supported_type_names.ForEach(
5926       [&const_type_names, &log](StructuredData::Object *object) {
5927         if (!object) {
5928           // Invalid - shouldn't be null objects in the array.
5929           return false;
5930         }
5931 
5932         auto type_name = object->GetAsString();
5933         if (!type_name) {
5934           // Invalid format - all type names should be strings.
5935           return false;
5936         }
5937 
5938         const_type_names.insert(ConstString(type_name->GetValue()));
5939         LLDB_LOG(log, "- {0}", type_name->GetValue());
5940         return true;
5941       });
5942 
5943   // For each StructuredDataPlugin, if the plugin handles any of the types in
5944   // the supported_type_names, map that type name to that plugin. Stop when
5945   // we've consumed all the type names.
5946   // FIXME: should we return an error if there are type names nobody
5947   // supports?
5948   for (uint32_t plugin_index = 0; !const_type_names.empty(); plugin_index++) {
5949     auto create_instance =
5950            PluginManager::GetStructuredDataPluginCreateCallbackAtIndex(
5951                plugin_index);
5952     if (!create_instance)
5953       break;
5954 
5955     // Create the plugin.
5956     StructuredDataPluginSP plugin_sp = (*create_instance)(*this);
5957     if (!plugin_sp) {
5958       // This plugin doesn't think it can work with the process. Move on to the
5959       // next.
5960       continue;
5961     }
5962 
5963     // For any of the remaining type names, map any that this plugin supports.
5964     std::vector<ConstString> names_to_remove;
5965     for (auto &type_name : const_type_names) {
5966       if (plugin_sp->SupportsStructuredDataType(type_name)) {
5967         m_structured_data_plugin_map.insert(
5968             std::make_pair(type_name, plugin_sp));
5969         names_to_remove.push_back(type_name);
5970         LLDB_LOG(log, "using plugin {0} for type name {1}",
5971                  plugin_sp->GetPluginName(), type_name);
5972       }
5973     }
5974 
5975     // Remove the type names that were consumed by this plugin.
5976     for (auto &type_name : names_to_remove)
5977       const_type_names.erase(type_name);
5978   }
5979 }
5980 
5981 bool Process::RouteAsyncStructuredData(
5982     const StructuredData::ObjectSP object_sp) {
5983   // Nothing to do if there's no data.
5984   if (!object_sp)
5985     return false;
5986 
5987   // The contract is this must be a dictionary, so we can look up the routing
5988   // key via the top-level 'type' string value within the dictionary.
5989   StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary();
5990   if (!dictionary)
5991     return false;
5992 
5993   // Grab the async structured type name (i.e. the feature/plugin name).
5994   ConstString type_name;
5995   if (!dictionary->GetValueForKeyAsString("type", type_name))
5996     return false;
5997 
5998   // Check if there's a plugin registered for this type name.
5999   auto find_it = m_structured_data_plugin_map.find(type_name);
6000   if (find_it == m_structured_data_plugin_map.end()) {
6001     // We don't have a mapping for this structured data type.
6002     return false;
6003   }
6004 
6005   // Route the structured data to the plugin.
6006   find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp);
6007   return true;
6008 }
6009 
6010 Status Process::UpdateAutomaticSignalFiltering() {
6011   // Default implementation does nothign.
6012   // No automatic signal filtering to speak of.
6013   return Status();
6014 }
6015 
6016 UtilityFunction *Process::GetLoadImageUtilityFunction(
6017     Platform *platform,
6018     llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory) {
6019   if (platform != GetTarget().GetPlatform().get())
6020     return nullptr;
6021   llvm::call_once(m_dlopen_utility_func_flag_once,
6022                   [&] { m_dlopen_utility_func_up = factory(); });
6023   return m_dlopen_utility_func_up.get();
6024 }
6025 
6026 llvm::Expected<TraceSupportedResponse> Process::TraceSupported() {
6027   if (!IsLiveDebugSession())
6028     return llvm::createStringError(llvm::inconvertibleErrorCode(),
6029                                    "Can't trace a non-live process.");
6030   return llvm::make_error<UnimplementedError>();
6031 }
6032 
6033 bool Process::CallVoidArgVoidPtrReturn(const Address *address,
6034                                        addr_t &returned_func,
6035                                        bool trap_exceptions) {
6036   Thread *thread = GetThreadList().GetExpressionExecutionThread().get();
6037   if (thread == nullptr || address == nullptr)
6038     return false;
6039 
6040   EvaluateExpressionOptions options;
6041   options.SetStopOthers(true);
6042   options.SetUnwindOnError(true);
6043   options.SetIgnoreBreakpoints(true);
6044   options.SetTryAllThreads(true);
6045   options.SetDebug(false);
6046   options.SetTimeout(GetUtilityExpressionTimeout());
6047   options.SetTrapExceptions(trap_exceptions);
6048 
6049   auto type_system_or_err =
6050       GetTarget().GetScratchTypeSystemForLanguage(eLanguageTypeC);
6051   if (!type_system_or_err) {
6052     llvm::consumeError(type_system_or_err.takeError());
6053     return false;
6054   }
6055   CompilerType void_ptr_type =
6056       type_system_or_err->GetBasicTypeFromAST(eBasicTypeVoid).GetPointerType();
6057   lldb::ThreadPlanSP call_plan_sp(new ThreadPlanCallFunction(
6058       *thread, *address, void_ptr_type, llvm::ArrayRef<addr_t>(), options));
6059   if (call_plan_sp) {
6060     DiagnosticManager diagnostics;
6061 
6062     StackFrame *frame = thread->GetStackFrameAtIndex(0).get();
6063     if (frame) {
6064       ExecutionContext exe_ctx;
6065       frame->CalculateExecutionContext(exe_ctx);
6066       ExpressionResults result =
6067           RunThreadPlan(exe_ctx, call_plan_sp, options, diagnostics);
6068       if (result == eExpressionCompleted) {
6069         returned_func =
6070             call_plan_sp->GetReturnValueObject()->GetValueAsUnsigned(
6071                 LLDB_INVALID_ADDRESS);
6072 
6073         if (GetAddressByteSize() == 4) {
6074           if (returned_func == UINT32_MAX)
6075             return false;
6076         } else if (GetAddressByteSize() == 8) {
6077           if (returned_func == UINT64_MAX)
6078             return false;
6079         }
6080         return true;
6081       }
6082     }
6083   }
6084 
6085   return false;
6086 }
6087 
6088 llvm::Expected<const MemoryTagManager *> Process::GetMemoryTagManager() {
6089   Architecture *arch = GetTarget().GetArchitecturePlugin();
6090   const MemoryTagManager *tag_manager =
6091       arch ? arch->GetMemoryTagManager() : nullptr;
6092   if (!arch || !tag_manager) {
6093     return llvm::createStringError(
6094         llvm::inconvertibleErrorCode(),
6095         "This architecture does not support memory tagging");
6096   }
6097 
6098   if (!SupportsMemoryTagging()) {
6099     return llvm::createStringError(llvm::inconvertibleErrorCode(),
6100                                    "Process does not support memory tagging");
6101   }
6102 
6103   return tag_manager;
6104 }
6105 
6106 llvm::Expected<std::vector<lldb::addr_t>>
6107 Process::ReadMemoryTags(lldb::addr_t addr, size_t len) {
6108   llvm::Expected<const MemoryTagManager *> tag_manager_or_err =
6109       GetMemoryTagManager();
6110   if (!tag_manager_or_err)
6111     return tag_manager_or_err.takeError();
6112 
6113   const MemoryTagManager *tag_manager = *tag_manager_or_err;
6114   llvm::Expected<std::vector<uint8_t>> tag_data =
6115       DoReadMemoryTags(addr, len, tag_manager->GetAllocationTagType());
6116   if (!tag_data)
6117     return tag_data.takeError();
6118 
6119   return tag_manager->UnpackTagsData(*tag_data,
6120                                      len / tag_manager->GetGranuleSize());
6121 }
6122 
6123 Status Process::WriteMemoryTags(lldb::addr_t addr, size_t len,
6124                                 const std::vector<lldb::addr_t> &tags) {
6125   llvm::Expected<const MemoryTagManager *> tag_manager_or_err =
6126       GetMemoryTagManager();
6127   if (!tag_manager_or_err)
6128     return Status(tag_manager_or_err.takeError());
6129 
6130   const MemoryTagManager *tag_manager = *tag_manager_or_err;
6131   llvm::Expected<std::vector<uint8_t>> packed_tags =
6132       tag_manager->PackTags(tags);
6133   if (!packed_tags) {
6134     return Status(packed_tags.takeError());
6135   }
6136 
6137   return DoWriteMemoryTags(addr, len, tag_manager->GetAllocationTagType(),
6138                            *packed_tags);
6139 }
6140