1 //===-- ConstString.cpp ---------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "lldb/Utility/ConstString.h"
10 
11 #include "lldb/Utility/Stream.h"
12 
13 #include "llvm/ADT/StringMap.h"
14 #include "llvm/ADT/iterator.h"
15 #include "llvm/Support/Allocator.h"
16 #include "llvm/Support/DJB.h"
17 #include "llvm/Support/FormatProviders.h"
18 #include "llvm/Support/RWMutex.h"
19 #include "llvm/Support/Threading.h"
20 
21 #include <array>
22 #include <utility>
23 
24 #include <cinttypes>
25 #include <cstdint>
26 #include <cstring>
27 
28 using namespace lldb_private;
29 
30 class Pool {
31 public:
32   /// The default BumpPtrAllocatorImpl slab size.
33   static const size_t AllocatorSlabSize = 4096;
34   static const size_t SizeThreshold = AllocatorSlabSize;
35   /// Every Pool has its own allocator which receives an equal share of
36   /// the ConstString allocations. This means that when allocating many
37   /// ConstStrings, every allocator sees only its small share of allocations and
38   /// assumes LLDB only allocated a small amount of memory so far. In reality
39   /// LLDB allocated a total memory that is N times as large as what the
40   /// allocator sees (where N is the number of string pools). This causes that
41   /// the BumpPtrAllocator continues a long time to allocate memory in small
42   /// chunks which only makes sense when allocating a small amount of memory
43   /// (which is true from the perspective of a single allocator). On some
44   /// systems doing all these small memory allocations causes LLDB to spend
45   /// a lot of time in malloc, so we need to force all these allocators to
46   /// behave like one allocator in terms of scaling their memory allocations
47   /// with increased demand. To do this we set the growth delay for each single
48   /// allocator to a rate so that our pool of allocators scales their memory
49   /// allocations similar to a single BumpPtrAllocatorImpl.
50   ///
51   /// Currently we have 256 string pools and the normal growth delay of the
52   /// BumpPtrAllocatorImpl is 128 (i.e., the memory allocation size increases
53   /// every 128 full chunks), so by changing the delay to 1 we get a
54   /// total growth delay in our allocator collection of 256/1 = 256. This is
55   /// still only half as fast as a normal allocator but we can't go any faster
56   /// without decreasing the number of string pools.
57   static const size_t AllocatorGrowthDelay = 1;
58   typedef llvm::BumpPtrAllocatorImpl<llvm::MallocAllocator, AllocatorSlabSize,
59                                      SizeThreshold, AllocatorGrowthDelay>
60       Allocator;
61   typedef const char *StringPoolValueType;
62   typedef llvm::StringMap<StringPoolValueType, Allocator> StringPool;
63   typedef llvm::StringMapEntry<StringPoolValueType> StringPoolEntryType;
64 
65   static StringPoolEntryType &
66   GetStringMapEntryFromKeyData(const char *keyData) {
67     return StringPoolEntryType::GetStringMapEntryFromKeyData(keyData);
68   }
69 
70   static size_t GetConstCStringLength(const char *ccstr) {
71     if (ccstr != nullptr) {
72       // Since the entry is read only, and we derive the entry entirely from
73       // the pointer, we don't need the lock.
74       const StringPoolEntryType &entry = GetStringMapEntryFromKeyData(ccstr);
75       return entry.getKey().size();
76     }
77     return 0;
78   }
79 
80   StringPoolValueType GetMangledCounterpart(const char *ccstr) const {
81     if (ccstr != nullptr) {
82       const uint8_t h = hash(llvm::StringRef(ccstr));
83       llvm::sys::SmartScopedReader<false> rlock(m_string_pools[h].m_mutex);
84       return GetStringMapEntryFromKeyData(ccstr).getValue();
85     }
86     return nullptr;
87   }
88 
89   const char *GetConstCString(const char *cstr) {
90     if (cstr != nullptr)
91       return GetConstCStringWithLength(cstr, strlen(cstr));
92     return nullptr;
93   }
94 
95   const char *GetConstCStringWithLength(const char *cstr, size_t cstr_len) {
96     if (cstr != nullptr)
97       return GetConstCStringWithStringRef(llvm::StringRef(cstr, cstr_len));
98     return nullptr;
99   }
100 
101   const char *GetConstCStringWithStringRef(const llvm::StringRef &string_ref) {
102     if (string_ref.data()) {
103       const uint8_t h = hash(string_ref);
104 
105       {
106         llvm::sys::SmartScopedReader<false> rlock(m_string_pools[h].m_mutex);
107         auto it = m_string_pools[h].m_string_map.find(string_ref);
108         if (it != m_string_pools[h].m_string_map.end())
109           return it->getKeyData();
110       }
111 
112       llvm::sys::SmartScopedWriter<false> wlock(m_string_pools[h].m_mutex);
113       StringPoolEntryType &entry =
114           *m_string_pools[h]
115                .m_string_map.insert(std::make_pair(string_ref, nullptr))
116                .first;
117       return entry.getKeyData();
118     }
119     return nullptr;
120   }
121 
122   const char *
123   GetConstCStringAndSetMangledCounterPart(llvm::StringRef demangled,
124                                           const char *mangled_ccstr) {
125     const char *demangled_ccstr = nullptr;
126 
127     {
128       const uint8_t h = hash(demangled);
129       llvm::sys::SmartScopedWriter<false> wlock(m_string_pools[h].m_mutex);
130 
131       // Make or update string pool entry with the mangled counterpart
132       StringPool &map = m_string_pools[h].m_string_map;
133       StringPoolEntryType &entry = *map.try_emplace(demangled).first;
134 
135       entry.second = mangled_ccstr;
136 
137       // Extract the const version of the demangled_cstr
138       demangled_ccstr = entry.getKeyData();
139     }
140 
141     {
142       // Now assign the demangled const string as the counterpart of the
143       // mangled const string...
144       const uint8_t h = hash(llvm::StringRef(mangled_ccstr));
145       llvm::sys::SmartScopedWriter<false> wlock(m_string_pools[h].m_mutex);
146       GetStringMapEntryFromKeyData(mangled_ccstr).setValue(demangled_ccstr);
147     }
148 
149     // Return the constant demangled C string
150     return demangled_ccstr;
151   }
152 
153   const char *GetConstTrimmedCStringWithLength(const char *cstr,
154                                                size_t cstr_len) {
155     if (cstr != nullptr) {
156       const size_t trimmed_len = strnlen(cstr, cstr_len);
157       return GetConstCStringWithLength(cstr, trimmed_len);
158     }
159     return nullptr;
160   }
161 
162   // Return the size in bytes that this object and any items in its collection
163   // of uniqued strings + data count values takes in memory.
164   size_t MemorySize() const {
165     size_t mem_size = sizeof(Pool);
166     for (const auto &pool : m_string_pools) {
167       llvm::sys::SmartScopedReader<false> rlock(pool.m_mutex);
168       for (const auto &entry : pool.m_string_map)
169         mem_size += sizeof(StringPoolEntryType) + entry.getKey().size();
170     }
171     return mem_size;
172   }
173 
174 protected:
175   uint8_t hash(const llvm::StringRef &s) const {
176     uint32_t h = llvm::djbHash(s);
177     return ((h >> 24) ^ (h >> 16) ^ (h >> 8) ^ h) & 0xff;
178   }
179 
180   struct PoolEntry {
181     mutable llvm::sys::SmartRWMutex<false> m_mutex;
182     StringPool m_string_map;
183   };
184 
185   std::array<PoolEntry, 256> m_string_pools;
186 };
187 
188 // Frameworks and dylibs aren't supposed to have global C++ initializers so we
189 // hide the string pool in a static function so that it will get initialized on
190 // the first call to this static function.
191 //
192 // Note, for now we make the string pool a pointer to the pool, because we
193 // can't guarantee that some objects won't get destroyed after the global
194 // destructor chain is run, and trying to make sure no destructors touch
195 // ConstStrings is difficult.  So we leak the pool instead.
196 static Pool &StringPool() {
197   static llvm::once_flag g_pool_initialization_flag;
198   static Pool *g_string_pool = nullptr;
199 
200   llvm::call_once(g_pool_initialization_flag,
201                  []() { g_string_pool = new Pool(); });
202 
203   return *g_string_pool;
204 }
205 
206 ConstString::ConstString(const char *cstr)
207     : m_string(StringPool().GetConstCString(cstr)) {}
208 
209 ConstString::ConstString(const char *cstr, size_t cstr_len)
210     : m_string(StringPool().GetConstCStringWithLength(cstr, cstr_len)) {}
211 
212 ConstString::ConstString(const llvm::StringRef &s)
213     : m_string(StringPool().GetConstCStringWithStringRef(s)) {}
214 
215 bool ConstString::operator<(ConstString rhs) const {
216   if (m_string == rhs.m_string)
217     return false;
218 
219   llvm::StringRef lhs_string_ref(GetStringRef());
220   llvm::StringRef rhs_string_ref(rhs.GetStringRef());
221 
222   // If both have valid C strings, then return the comparison
223   if (lhs_string_ref.data() && rhs_string_ref.data())
224     return lhs_string_ref < rhs_string_ref;
225 
226   // Else one of them was nullptr, so if LHS is nullptr then it is less than
227   return lhs_string_ref.data() == nullptr;
228 }
229 
230 Stream &lldb_private::operator<<(Stream &s, ConstString str) {
231   const char *cstr = str.GetCString();
232   if (cstr != nullptr)
233     s << cstr;
234 
235   return s;
236 }
237 
238 size_t ConstString::GetLength() const {
239   return Pool::GetConstCStringLength(m_string);
240 }
241 
242 bool ConstString::Equals(ConstString lhs, ConstString rhs,
243                          const bool case_sensitive) {
244   if (lhs.m_string == rhs.m_string)
245     return true;
246 
247   // Since the pointers weren't equal, and identical ConstStrings always have
248   // identical pointers, the result must be false for case sensitive equality
249   // test.
250   if (case_sensitive)
251     return false;
252 
253   // perform case insensitive equality test
254   llvm::StringRef lhs_string_ref(lhs.GetStringRef());
255   llvm::StringRef rhs_string_ref(rhs.GetStringRef());
256   return lhs_string_ref.equals_insensitive(rhs_string_ref);
257 }
258 
259 int ConstString::Compare(ConstString lhs, ConstString rhs,
260                          const bool case_sensitive) {
261   // If the iterators are the same, this is the same string
262   const char *lhs_cstr = lhs.m_string;
263   const char *rhs_cstr = rhs.m_string;
264   if (lhs_cstr == rhs_cstr)
265     return 0;
266   if (lhs_cstr && rhs_cstr) {
267     llvm::StringRef lhs_string_ref(lhs.GetStringRef());
268     llvm::StringRef rhs_string_ref(rhs.GetStringRef());
269 
270     if (case_sensitive) {
271       return lhs_string_ref.compare(rhs_string_ref);
272     } else {
273       return lhs_string_ref.compare_insensitive(rhs_string_ref);
274     }
275   }
276 
277   if (lhs_cstr)
278     return +1; // LHS isn't nullptr but RHS is
279   else
280     return -1; // LHS is nullptr but RHS isn't
281 }
282 
283 void ConstString::Dump(Stream *s, const char *fail_value) const {
284   if (s != nullptr) {
285     const char *cstr = AsCString(fail_value);
286     if (cstr != nullptr)
287       s->PutCString(cstr);
288   }
289 }
290 
291 void ConstString::DumpDebug(Stream *s) const {
292   const char *cstr = GetCString();
293   size_t cstr_len = GetLength();
294   // Only print the parens if we have a non-nullptr string
295   const char *parens = cstr ? "\"" : "";
296   s->Printf("%*p: ConstString, string = %s%s%s, length = %" PRIu64,
297             static_cast<int>(sizeof(void *) * 2),
298             static_cast<const void *>(this), parens, cstr, parens,
299             static_cast<uint64_t>(cstr_len));
300 }
301 
302 void ConstString::SetCString(const char *cstr) {
303   m_string = StringPool().GetConstCString(cstr);
304 }
305 
306 void ConstString::SetString(const llvm::StringRef &s) {
307   m_string = StringPool().GetConstCStringWithLength(s.data(), s.size());
308 }
309 
310 void ConstString::SetStringWithMangledCounterpart(llvm::StringRef demangled,
311                                                   ConstString mangled) {
312   m_string = StringPool().GetConstCStringAndSetMangledCounterPart(
313       demangled, mangled.m_string);
314 }
315 
316 bool ConstString::GetMangledCounterpart(ConstString &counterpart) const {
317   counterpart.m_string = StringPool().GetMangledCounterpart(m_string);
318   return (bool)counterpart;
319 }
320 
321 void ConstString::SetCStringWithLength(const char *cstr, size_t cstr_len) {
322   m_string = StringPool().GetConstCStringWithLength(cstr, cstr_len);
323 }
324 
325 void ConstString::SetTrimmedCStringWithLength(const char *cstr,
326                                               size_t cstr_len) {
327   m_string = StringPool().GetConstTrimmedCStringWithLength(cstr, cstr_len);
328 }
329 
330 size_t ConstString::StaticMemorySize() {
331   // Get the size of the static string pool
332   return StringPool().MemorySize();
333 }
334 
335 void llvm::format_provider<ConstString>::format(const ConstString &CS,
336                                                 llvm::raw_ostream &OS,
337                                                 llvm::StringRef Options) {
338   format_provider<StringRef>::format(CS.GetStringRef(), OS, Options);
339 }
340 
341 void llvm::yaml::ScalarTraits<ConstString>::output(const ConstString &Val,
342                                                    void *, raw_ostream &Out) {
343   Out << Val.GetStringRef();
344 }
345 
346 llvm::StringRef
347 llvm::yaml::ScalarTraits<ConstString>::input(llvm::StringRef Scalar, void *,
348                                              ConstString &Val) {
349   Val = ConstString(Scalar);
350   return {};
351 }
352