1 //===-- ConstString.cpp ---------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "lldb/Utility/ConstString.h"
10 
11 #include "lldb/Utility/Stream.h"
12 
13 #include "llvm/ADT/StringMap.h"
14 #include "llvm/ADT/iterator.h"
15 #include "llvm/Support/Allocator.h"
16 #include "llvm/Support/DJB.h"
17 #include "llvm/Support/FormatProviders.h"
18 #include "llvm/Support/RWMutex.h"
19 #include "llvm/Support/Threading.h"
20 
21 #include <array>
22 #include <utility>
23 
24 #include <cinttypes>
25 #include <cstdint>
26 #include <cstring>
27 
28 using namespace lldb_private;
29 
30 class Pool {
31 public:
32   /// The default BumpPtrAllocatorImpl slab size.
33   static const size_t AllocatorSlabSize = 4096;
34   static const size_t SizeThreshold = AllocatorSlabSize;
35   /// Every Pool has its own allocator which receives an equal share of
36   /// the ConstString allocations. This means that when allocating many
37   /// ConstStrings, every allocator sees only its small share of allocations and
38   /// assumes LLDB only allocated a small amount of memory so far. In reality
39   /// LLDB allocated a total memory that is N times as large as what the
40   /// allocator sees (where N is the number of string pools). This causes that
41   /// the BumpPtrAllocator continues a long time to allocate memory in small
42   /// chunks which only makes sense when allocating a small amount of memory
43   /// (which is true from the perspective of a single allocator). On some
44   /// systems doing all these small memory allocations causes LLDB to spend
45   /// a lot of time in malloc, so we need to force all these allocators to
46   /// behave like one allocator in terms of scaling their memory allocations
47   /// with increased demand. To do this we set the growth delay for each single
48   /// allocator to a rate so that our pool of allocators scales their memory
49   /// allocations similar to a single BumpPtrAllocatorImpl.
50   ///
51   /// Currently we have 256 string pools and the normal growth delay of the
52   /// BumpPtrAllocatorImpl is 128 (i.e., the memory allocation size increases
53   /// every 128 full chunks), so by changing the delay to 1 we get a
54   /// total growth delay in our allocator collection of 256/1 = 256. This is
55   /// still only half as fast as a normal allocator but we can't go any faster
56   /// without decreasing the number of string pools.
57   static const size_t AllocatorGrowthDelay = 1;
58   typedef llvm::BumpPtrAllocatorImpl<llvm::MallocAllocator, AllocatorSlabSize,
59                                      SizeThreshold, AllocatorGrowthDelay>
60       Allocator;
61   typedef const char *StringPoolValueType;
62   typedef llvm::StringMap<StringPoolValueType, Allocator> StringPool;
63   typedef llvm::StringMapEntry<StringPoolValueType> StringPoolEntryType;
64 
65   static StringPoolEntryType &
66   GetStringMapEntryFromKeyData(const char *keyData) {
67     return StringPoolEntryType::GetStringMapEntryFromKeyData(keyData);
68   }
69 
70   static size_t GetConstCStringLength(const char *ccstr) {
71     if (ccstr != nullptr) {
72       // Since the entry is read only, and we derive the entry entirely from
73       // the pointer, we don't need the lock.
74       const StringPoolEntryType &entry = GetStringMapEntryFromKeyData(ccstr);
75       return entry.getKey().size();
76     }
77     return 0;
78   }
79 
80   StringPoolValueType GetMangledCounterpart(const char *ccstr) const {
81     if (ccstr != nullptr) {
82       const uint8_t h = hash(llvm::StringRef(ccstr));
83       llvm::sys::SmartScopedReader<false> rlock(m_string_pools[h].m_mutex);
84       return GetStringMapEntryFromKeyData(ccstr).getValue();
85     }
86     return nullptr;
87   }
88 
89   const char *GetConstCString(const char *cstr) {
90     if (cstr != nullptr)
91       return GetConstCStringWithLength(cstr, strlen(cstr));
92     return nullptr;
93   }
94 
95   const char *GetConstCStringWithLength(const char *cstr, size_t cstr_len) {
96     if (cstr != nullptr)
97       return GetConstCStringWithStringRef(llvm::StringRef(cstr, cstr_len));
98     return nullptr;
99   }
100 
101   const char *GetConstCStringWithStringRef(llvm::StringRef string_ref) {
102     if (string_ref.data()) {
103       const uint8_t h = hash(string_ref);
104 
105       {
106         llvm::sys::SmartScopedReader<false> rlock(m_string_pools[h].m_mutex);
107         auto it = m_string_pools[h].m_string_map.find(string_ref);
108         if (it != m_string_pools[h].m_string_map.end())
109           return it->getKeyData();
110       }
111 
112       llvm::sys::SmartScopedWriter<false> wlock(m_string_pools[h].m_mutex);
113       StringPoolEntryType &entry =
114           *m_string_pools[h]
115                .m_string_map.insert(std::make_pair(string_ref, nullptr))
116                .first;
117       return entry.getKeyData();
118     }
119     return nullptr;
120   }
121 
122   const char *
123   GetConstCStringAndSetMangledCounterPart(llvm::StringRef demangled,
124                                           const char *mangled_ccstr) {
125     const char *demangled_ccstr = nullptr;
126 
127     {
128       const uint8_t h = hash(demangled);
129       llvm::sys::SmartScopedWriter<false> wlock(m_string_pools[h].m_mutex);
130 
131       // Make or update string pool entry with the mangled counterpart
132       StringPool &map = m_string_pools[h].m_string_map;
133       StringPoolEntryType &entry = *map.try_emplace(demangled).first;
134 
135       entry.second = mangled_ccstr;
136 
137       // Extract the const version of the demangled_cstr
138       demangled_ccstr = entry.getKeyData();
139     }
140 
141     {
142       // Now assign the demangled const string as the counterpart of the
143       // mangled const string...
144       const uint8_t h = hash(llvm::StringRef(mangled_ccstr));
145       llvm::sys::SmartScopedWriter<false> wlock(m_string_pools[h].m_mutex);
146       GetStringMapEntryFromKeyData(mangled_ccstr).setValue(demangled_ccstr);
147     }
148 
149     // Return the constant demangled C string
150     return demangled_ccstr;
151   }
152 
153   const char *GetConstTrimmedCStringWithLength(const char *cstr,
154                                                size_t cstr_len) {
155     if (cstr != nullptr) {
156       const size_t trimmed_len = strnlen(cstr, cstr_len);
157       return GetConstCStringWithLength(cstr, trimmed_len);
158     }
159     return nullptr;
160   }
161 
162   ConstString::MemoryStats GetMemoryStats() const {
163     ConstString::MemoryStats stats;
164     for (const auto &pool : m_string_pools) {
165       llvm::sys::SmartScopedReader<false> rlock(pool.m_mutex);
166       const Allocator &alloc = pool.m_string_map.getAllocator();
167       stats.bytes_total += alloc.getTotalMemory();
168       stats.bytes_used += alloc.getBytesAllocated();
169     }
170     return stats;
171   }
172 
173 protected:
174   uint8_t hash(llvm::StringRef s) const {
175     uint32_t h = llvm::djbHash(s);
176     return ((h >> 24) ^ (h >> 16) ^ (h >> 8) ^ h) & 0xff;
177   }
178 
179   struct PoolEntry {
180     mutable llvm::sys::SmartRWMutex<false> m_mutex;
181     StringPool m_string_map;
182   };
183 
184   std::array<PoolEntry, 256> m_string_pools;
185 };
186 
187 // Frameworks and dylibs aren't supposed to have global C++ initializers so we
188 // hide the string pool in a static function so that it will get initialized on
189 // the first call to this static function.
190 //
191 // Note, for now we make the string pool a pointer to the pool, because we
192 // can't guarantee that some objects won't get destroyed after the global
193 // destructor chain is run, and trying to make sure no destructors touch
194 // ConstStrings is difficult.  So we leak the pool instead.
195 static Pool &StringPool() {
196   static llvm::once_flag g_pool_initialization_flag;
197   static Pool *g_string_pool = nullptr;
198 
199   llvm::call_once(g_pool_initialization_flag,
200                  []() { g_string_pool = new Pool(); });
201 
202   return *g_string_pool;
203 }
204 
205 ConstString::ConstString(const char *cstr)
206     : m_string(StringPool().GetConstCString(cstr)) {}
207 
208 ConstString::ConstString(const char *cstr, size_t cstr_len)
209     : m_string(StringPool().GetConstCStringWithLength(cstr, cstr_len)) {}
210 
211 ConstString::ConstString(llvm::StringRef s)
212     : m_string(StringPool().GetConstCStringWithStringRef(s)) {}
213 
214 bool ConstString::operator<(ConstString rhs) const {
215   if (m_string == rhs.m_string)
216     return false;
217 
218   llvm::StringRef lhs_string_ref(GetStringRef());
219   llvm::StringRef rhs_string_ref(rhs.GetStringRef());
220 
221   // If both have valid C strings, then return the comparison
222   if (lhs_string_ref.data() && rhs_string_ref.data())
223     return lhs_string_ref < rhs_string_ref;
224 
225   // Else one of them was nullptr, so if LHS is nullptr then it is less than
226   return lhs_string_ref.data() == nullptr;
227 }
228 
229 Stream &lldb_private::operator<<(Stream &s, ConstString str) {
230   const char *cstr = str.GetCString();
231   if (cstr != nullptr)
232     s << cstr;
233 
234   return s;
235 }
236 
237 size_t ConstString::GetLength() const {
238   return Pool::GetConstCStringLength(m_string);
239 }
240 
241 bool ConstString::Equals(ConstString lhs, ConstString rhs,
242                          const bool case_sensitive) {
243   if (lhs.m_string == rhs.m_string)
244     return true;
245 
246   // Since the pointers weren't equal, and identical ConstStrings always have
247   // identical pointers, the result must be false for case sensitive equality
248   // test.
249   if (case_sensitive)
250     return false;
251 
252   // perform case insensitive equality test
253   llvm::StringRef lhs_string_ref(lhs.GetStringRef());
254   llvm::StringRef rhs_string_ref(rhs.GetStringRef());
255   return lhs_string_ref.equals_insensitive(rhs_string_ref);
256 }
257 
258 int ConstString::Compare(ConstString lhs, ConstString rhs,
259                          const bool case_sensitive) {
260   // If the iterators are the same, this is the same string
261   const char *lhs_cstr = lhs.m_string;
262   const char *rhs_cstr = rhs.m_string;
263   if (lhs_cstr == rhs_cstr)
264     return 0;
265   if (lhs_cstr && rhs_cstr) {
266     llvm::StringRef lhs_string_ref(lhs.GetStringRef());
267     llvm::StringRef rhs_string_ref(rhs.GetStringRef());
268 
269     if (case_sensitive) {
270       return lhs_string_ref.compare(rhs_string_ref);
271     } else {
272       return lhs_string_ref.compare_insensitive(rhs_string_ref);
273     }
274   }
275 
276   if (lhs_cstr)
277     return +1; // LHS isn't nullptr but RHS is
278   else
279     return -1; // LHS is nullptr but RHS isn't
280 }
281 
282 void ConstString::Dump(Stream *s, const char *fail_value) const {
283   if (s != nullptr) {
284     const char *cstr = AsCString(fail_value);
285     if (cstr != nullptr)
286       s->PutCString(cstr);
287   }
288 }
289 
290 void ConstString::DumpDebug(Stream *s) const {
291   const char *cstr = GetCString();
292   size_t cstr_len = GetLength();
293   // Only print the parens if we have a non-nullptr string
294   const char *parens = cstr ? "\"" : "";
295   s->Printf("%*p: ConstString, string = %s%s%s, length = %" PRIu64,
296             static_cast<int>(sizeof(void *) * 2),
297             static_cast<const void *>(this), parens, cstr, parens,
298             static_cast<uint64_t>(cstr_len));
299 }
300 
301 void ConstString::SetCString(const char *cstr) {
302   m_string = StringPool().GetConstCString(cstr);
303 }
304 
305 void ConstString::SetString(llvm::StringRef s) {
306   m_string = StringPool().GetConstCStringWithStringRef(s);
307 }
308 
309 void ConstString::SetStringWithMangledCounterpart(llvm::StringRef demangled,
310                                                   ConstString mangled) {
311   m_string = StringPool().GetConstCStringAndSetMangledCounterPart(
312       demangled, mangled.m_string);
313 }
314 
315 bool ConstString::GetMangledCounterpart(ConstString &counterpart) const {
316   counterpart.m_string = StringPool().GetMangledCounterpart(m_string);
317   return (bool)counterpart;
318 }
319 
320 void ConstString::SetCStringWithLength(const char *cstr, size_t cstr_len) {
321   m_string = StringPool().GetConstCStringWithLength(cstr, cstr_len);
322 }
323 
324 void ConstString::SetTrimmedCStringWithLength(const char *cstr,
325                                               size_t cstr_len) {
326   m_string = StringPool().GetConstTrimmedCStringWithLength(cstr, cstr_len);
327 }
328 
329 ConstString::MemoryStats ConstString::GetMemoryStats() {
330   return StringPool().GetMemoryStats();
331 }
332 
333 void llvm::format_provider<ConstString>::format(const ConstString &CS,
334                                                 llvm::raw_ostream &OS,
335                                                 llvm::StringRef Options) {
336   format_provider<StringRef>::format(CS.GetStringRef(), OS, Options);
337 }
338