1 //===- llvm/ADT/APFloat.h - Arbitrary Precision Floating Point ---*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file declares a class to represent arbitrary precision floating point
11 /// values and provide a variety of arithmetic operations on them.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_ADT_APFLOAT_H
16 #define LLVM_ADT_APFLOAT_H
17 
18 #include "llvm/ADT/APInt.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/FloatingPointMode.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include <memory>
23 
24 #define APFLOAT_DISPATCH_ON_SEMANTICS(METHOD_CALL)                             \
25   do {                                                                         \
26     if (usesLayout<IEEEFloat>(getSemantics()))                                 \
27       return U.IEEE.METHOD_CALL;                                               \
28     if (usesLayout<DoubleAPFloat>(getSemantics()))                             \
29       return U.Double.METHOD_CALL;                                             \
30     llvm_unreachable("Unexpected semantics");                                  \
31   } while (false)
32 
33 namespace llvm {
34 
35 struct fltSemantics;
36 class APSInt;
37 class StringRef;
38 class APFloat;
39 class raw_ostream;
40 
41 template <typename T> class Expected;
42 template <typename T> class SmallVectorImpl;
43 
44 /// Enum that represents what fraction of the LSB truncated bits of an fp number
45 /// represent.
46 ///
47 /// This essentially combines the roles of guard and sticky bits.
48 enum lostFraction { // Example of truncated bits:
49   lfExactlyZero,    // 000000
50   lfLessThanHalf,   // 0xxxxx  x's not all zero
51   lfExactlyHalf,    // 100000
52   lfMoreThanHalf    // 1xxxxx  x's not all zero
53 };
54 
55 /// A self-contained host- and target-independent arbitrary-precision
56 /// floating-point software implementation.
57 ///
58 /// APFloat uses bignum integer arithmetic as provided by static functions in
59 /// the APInt class.  The library will work with bignum integers whose parts are
60 /// any unsigned type at least 16 bits wide, but 64 bits is recommended.
61 ///
62 /// Written for clarity rather than speed, in particular with a view to use in
63 /// the front-end of a cross compiler so that target arithmetic can be correctly
64 /// performed on the host.  Performance should nonetheless be reasonable,
65 /// particularly for its intended use.  It may be useful as a base
66 /// implementation for a run-time library during development of a faster
67 /// target-specific one.
68 ///
69 /// All 5 rounding modes in the IEEE-754R draft are handled correctly for all
70 /// implemented operations.  Currently implemented operations are add, subtract,
71 /// multiply, divide, fused-multiply-add, conversion-to-float,
72 /// conversion-to-integer and conversion-from-integer.  New rounding modes
73 /// (e.g. away from zero) can be added with three or four lines of code.
74 ///
75 /// Four formats are built-in: IEEE single precision, double precision,
76 /// quadruple precision, and x87 80-bit extended double (when operating with
77 /// full extended precision).  Adding a new format that obeys IEEE semantics
78 /// only requires adding two lines of code: a declaration and definition of the
79 /// format.
80 ///
81 /// All operations return the status of that operation as an exception bit-mask,
82 /// so multiple operations can be done consecutively with their results or-ed
83 /// together.  The returned status can be useful for compiler diagnostics; e.g.,
84 /// inexact, underflow and overflow can be easily diagnosed on constant folding,
85 /// and compiler optimizers can determine what exceptions would be raised by
86 /// folding operations and optimize, or perhaps not optimize, accordingly.
87 ///
88 /// At present, underflow tininess is detected after rounding; it should be
89 /// straight forward to add support for the before-rounding case too.
90 ///
91 /// The library reads hexadecimal floating point numbers as per C99, and
92 /// correctly rounds if necessary according to the specified rounding mode.
93 /// Syntax is required to have been validated by the caller.  It also converts
94 /// floating point numbers to hexadecimal text as per the C99 %a and %A
95 /// conversions.  The output precision (or alternatively the natural minimal
96 /// precision) can be specified; if the requested precision is less than the
97 /// natural precision the output is correctly rounded for the specified rounding
98 /// mode.
99 ///
100 /// It also reads decimal floating point numbers and correctly rounds according
101 /// to the specified rounding mode.
102 ///
103 /// Conversion to decimal text is not currently implemented.
104 ///
105 /// Non-zero finite numbers are represented internally as a sign bit, a 16-bit
106 /// signed exponent, and the significand as an array of integer parts.  After
107 /// normalization of a number of precision P the exponent is within the range of
108 /// the format, and if the number is not denormal the P-th bit of the
109 /// significand is set as an explicit integer bit.  For denormals the most
110 /// significant bit is shifted right so that the exponent is maintained at the
111 /// format's minimum, so that the smallest denormal has just the least
112 /// significant bit of the significand set.  The sign of zeroes and infinities
113 /// is significant; the exponent and significand of such numbers is not stored,
114 /// but has a known implicit (deterministic) value: 0 for the significands, 0
115 /// for zero exponent, all 1 bits for infinity exponent.  For NaNs the sign and
116 /// significand are deterministic, although not really meaningful, and preserved
117 /// in non-conversion operations.  The exponent is implicitly all 1 bits.
118 ///
119 /// APFloat does not provide any exception handling beyond default exception
120 /// handling. We represent Signaling NaNs via IEEE-754R 2008 6.2.1 should clause
121 /// by encoding Signaling NaNs with the first bit of its trailing significand as
122 /// 0.
123 ///
124 /// TODO
125 /// ====
126 ///
127 /// Some features that may or may not be worth adding:
128 ///
129 /// Binary to decimal conversion (hard).
130 ///
131 /// Optional ability to detect underflow tininess before rounding.
132 ///
133 /// New formats: x87 in single and double precision mode (IEEE apart from
134 /// extended exponent range) (hard).
135 ///
136 /// New operations: sqrt, IEEE remainder, C90 fmod, nexttoward.
137 ///
138 
139 // This is the common type definitions shared by APFloat and its internal
140 // implementation classes. This struct should not define any non-static data
141 // members.
142 struct APFloatBase {
143   typedef APInt::WordType integerPart;
144   static constexpr unsigned integerPartWidth = APInt::APINT_BITS_PER_WORD;
145 
146   /// A signed type to represent a floating point numbers unbiased exponent.
147   typedef int32_t ExponentType;
148 
149   /// \name Floating Point Semantics.
150   /// @{
151   enum Semantics {
152     S_IEEEhalf,
153     S_BFloat,
154     S_IEEEsingle,
155     S_IEEEdouble,
156     S_x87DoubleExtended,
157     S_IEEEquad,
158     S_PPCDoubleDouble,
159     S_MaxSemantics = S_PPCDoubleDouble
160   };
161 
162   static const llvm::fltSemantics &EnumToSemantics(Semantics S);
163   static Semantics SemanticsToEnum(const llvm::fltSemantics &Sem);
164 
165   static const fltSemantics &IEEEhalf() LLVM_READNONE;
166   static const fltSemantics &BFloat() LLVM_READNONE;
167   static const fltSemantics &IEEEsingle() LLVM_READNONE;
168   static const fltSemantics &IEEEdouble() LLVM_READNONE;
169   static const fltSemantics &IEEEquad() LLVM_READNONE;
170   static const fltSemantics &PPCDoubleDouble() LLVM_READNONE;
171   static const fltSemantics &x87DoubleExtended() LLVM_READNONE;
172 
173   /// A Pseudo fltsemantic used to construct APFloats that cannot conflict with
174   /// anything real.
175   static const fltSemantics &Bogus() LLVM_READNONE;
176 
177   /// @}
178 
179   /// IEEE-754R 5.11: Floating Point Comparison Relations.
180   enum cmpResult {
181     cmpLessThan,
182     cmpEqual,
183     cmpGreaterThan,
184     cmpUnordered
185   };
186 
187   /// IEEE-754R 4.3: Rounding-direction attributes.
188   using roundingMode = llvm::RoundingMode;
189 
190   static constexpr roundingMode rmNearestTiesToEven =
191                                                 RoundingMode::NearestTiesToEven;
192   static constexpr roundingMode rmTowardPositive = RoundingMode::TowardPositive;
193   static constexpr roundingMode rmTowardNegative = RoundingMode::TowardNegative;
194   static constexpr roundingMode rmTowardZero     = RoundingMode::TowardZero;
195   static constexpr roundingMode rmNearestTiesToAway =
196                                                 RoundingMode::NearestTiesToAway;
197 
198   /// IEEE-754R 7: Default exception handling.
199   ///
200   /// opUnderflow or opOverflow are always returned or-ed with opInexact.
201   ///
202   /// APFloat models this behavior specified by IEEE-754:
203   ///   "For operations producing results in floating-point format, the default
204   ///    result of an operation that signals the invalid operation exception
205   ///    shall be a quiet NaN."
206   enum opStatus {
207     opOK = 0x00,
208     opInvalidOp = 0x01,
209     opDivByZero = 0x02,
210     opOverflow = 0x04,
211     opUnderflow = 0x08,
212     opInexact = 0x10
213   };
214 
215   /// Category of internally-represented number.
216   enum fltCategory {
217     fcInfinity,
218     fcNaN,
219     fcNormal,
220     fcZero
221   };
222 
223   /// Convenience enum used to construct an uninitialized APFloat.
224   enum uninitializedTag {
225     uninitialized
226   };
227 
228   /// Enumeration of \c ilogb error results.
229   enum IlogbErrorKinds {
230     IEK_Zero = INT_MIN + 1,
231     IEK_NaN = INT_MIN,
232     IEK_Inf = INT_MAX
233   };
234 
235   static unsigned int semanticsPrecision(const fltSemantics &);
236   static ExponentType semanticsMinExponent(const fltSemantics &);
237   static ExponentType semanticsMaxExponent(const fltSemantics &);
238   static unsigned int semanticsSizeInBits(const fltSemantics &);
239 
240   /// Returns the size of the floating point number (in bits) in the given
241   /// semantics.
242   static unsigned getSizeInBits(const fltSemantics &Sem);
243 };
244 
245 namespace detail {
246 
247 class IEEEFloat final : public APFloatBase {
248 public:
249   /// \name Constructors
250   /// @{
251 
252   IEEEFloat(const fltSemantics &); // Default construct to +0.0
253   IEEEFloat(const fltSemantics &, integerPart);
254   IEEEFloat(const fltSemantics &, uninitializedTag);
255   IEEEFloat(const fltSemantics &, const APInt &);
256   explicit IEEEFloat(double d);
257   explicit IEEEFloat(float f);
258   IEEEFloat(const IEEEFloat &);
259   IEEEFloat(IEEEFloat &&);
260   ~IEEEFloat();
261 
262   /// @}
263 
264   /// Returns whether this instance allocated memory.
265   bool needsCleanup() const { return partCount() > 1; }
266 
267   /// \name Convenience "constructors"
268   /// @{
269 
270   /// @}
271 
272   /// \name Arithmetic
273   /// @{
274 
275   opStatus add(const IEEEFloat &, roundingMode);
276   opStatus subtract(const IEEEFloat &, roundingMode);
277   opStatus multiply(const IEEEFloat &, roundingMode);
278   opStatus divide(const IEEEFloat &, roundingMode);
279   /// IEEE remainder.
280   opStatus remainder(const IEEEFloat &);
281   /// C fmod, or llvm frem.
282   opStatus mod(const IEEEFloat &);
283   opStatus fusedMultiplyAdd(const IEEEFloat &, const IEEEFloat &, roundingMode);
284   opStatus roundToIntegral(roundingMode);
285   /// IEEE-754R 5.3.1: nextUp/nextDown.
286   opStatus next(bool nextDown);
287 
288   /// @}
289 
290   /// \name Sign operations.
291   /// @{
292 
293   void changeSign();
294 
295   /// @}
296 
297   /// \name Conversions
298   /// @{
299 
300   opStatus convert(const fltSemantics &, roundingMode, bool *);
301   opStatus convertToInteger(MutableArrayRef<integerPart>, unsigned int, bool,
302                             roundingMode, bool *) const;
303   opStatus convertFromAPInt(const APInt &, bool, roundingMode);
304   opStatus convertFromSignExtendedInteger(const integerPart *, unsigned int,
305                                           bool, roundingMode);
306   opStatus convertFromZeroExtendedInteger(const integerPart *, unsigned int,
307                                           bool, roundingMode);
308   Expected<opStatus> convertFromString(StringRef, roundingMode);
309   APInt bitcastToAPInt() const;
310   double convertToDouble() const;
311   float convertToFloat() const;
312 
313   /// @}
314 
315   /// The definition of equality is not straightforward for floating point, so
316   /// we won't use operator==.  Use one of the following, or write whatever it
317   /// is you really mean.
318   bool operator==(const IEEEFloat &) const = delete;
319 
320   /// IEEE comparison with another floating point number (NaNs compare
321   /// unordered, 0==-0).
322   cmpResult compare(const IEEEFloat &) const;
323 
324   /// Bitwise comparison for equality (QNaNs compare equal, 0!=-0).
325   bool bitwiseIsEqual(const IEEEFloat &) const;
326 
327   /// Write out a hexadecimal representation of the floating point value to DST,
328   /// which must be of sufficient size, in the C99 form [-]0xh.hhhhp[+-]d.
329   /// Return the number of characters written, excluding the terminating NUL.
330   unsigned int convertToHexString(char *dst, unsigned int hexDigits,
331                                   bool upperCase, roundingMode) const;
332 
333   /// \name IEEE-754R 5.7.2 General operations.
334   /// @{
335 
336   /// IEEE-754R isSignMinus: Returns true if and only if the current value is
337   /// negative.
338   ///
339   /// This applies to zeros and NaNs as well.
340   bool isNegative() const { return sign; }
341 
342   /// IEEE-754R isNormal: Returns true if and only if the current value is normal.
343   ///
344   /// This implies that the current value of the float is not zero, subnormal,
345   /// infinite, or NaN following the definition of normality from IEEE-754R.
346   bool isNormal() const { return !isDenormal() && isFiniteNonZero(); }
347 
348   /// Returns true if and only if the current value is zero, subnormal, or
349   /// normal.
350   ///
351   /// This means that the value is not infinite or NaN.
352   bool isFinite() const { return !isNaN() && !isInfinity(); }
353 
354   /// Returns true if and only if the float is plus or minus zero.
355   bool isZero() const { return category == fcZero; }
356 
357   /// IEEE-754R isSubnormal(): Returns true if and only if the float is a
358   /// denormal.
359   bool isDenormal() const;
360 
361   /// IEEE-754R isInfinite(): Returns true if and only if the float is infinity.
362   bool isInfinity() const { return category == fcInfinity; }
363 
364   /// Returns true if and only if the float is a quiet or signaling NaN.
365   bool isNaN() const { return category == fcNaN; }
366 
367   /// Returns true if and only if the float is a signaling NaN.
368   bool isSignaling() const;
369 
370   /// @}
371 
372   /// \name Simple Queries
373   /// @{
374 
375   fltCategory getCategory() const { return category; }
376   const fltSemantics &getSemantics() const { return *semantics; }
377   bool isNonZero() const { return category != fcZero; }
378   bool isFiniteNonZero() const { return isFinite() && !isZero(); }
379   bool isPosZero() const { return isZero() && !isNegative(); }
380   bool isNegZero() const { return isZero() && isNegative(); }
381 
382   /// Returns true if and only if the number has the smallest possible non-zero
383   /// magnitude in the current semantics.
384   bool isSmallest() const;
385 
386   /// Returns true if and only if the number has the largest possible finite
387   /// magnitude in the current semantics.
388   bool isLargest() const;
389 
390   /// Returns true if and only if the number is an exact integer.
391   bool isInteger() const;
392 
393   /// @}
394 
395   IEEEFloat &operator=(const IEEEFloat &);
396   IEEEFloat &operator=(IEEEFloat &&);
397 
398   /// Overload to compute a hash code for an APFloat value.
399   ///
400   /// Note that the use of hash codes for floating point values is in general
401   /// frought with peril. Equality is hard to define for these values. For
402   /// example, should negative and positive zero hash to different codes? Are
403   /// they equal or not? This hash value implementation specifically
404   /// emphasizes producing different codes for different inputs in order to
405   /// be used in canonicalization and memoization. As such, equality is
406   /// bitwiseIsEqual, and 0 != -0.
407   friend hash_code hash_value(const IEEEFloat &Arg);
408 
409   /// Converts this value into a decimal string.
410   ///
411   /// \param FormatPrecision The maximum number of digits of
412   ///   precision to output.  If there are fewer digits available,
413   ///   zero padding will not be used unless the value is
414   ///   integral and small enough to be expressed in
415   ///   FormatPrecision digits.  0 means to use the natural
416   ///   precision of the number.
417   /// \param FormatMaxPadding The maximum number of zeros to
418   ///   consider inserting before falling back to scientific
419   ///   notation.  0 means to always use scientific notation.
420   ///
421   /// \param TruncateZero Indicate whether to remove the trailing zero in
422   ///   fraction part or not. Also setting this parameter to false forcing
423   ///   producing of output more similar to default printf behavior.
424   ///   Specifically the lower e is used as exponent delimiter and exponent
425   ///   always contains no less than two digits.
426   ///
427   /// Number       Precision    MaxPadding      Result
428   /// ------       ---------    ----------      ------
429   /// 1.01E+4              5             2       10100
430   /// 1.01E+4              4             2       1.01E+4
431   /// 1.01E+4              5             1       1.01E+4
432   /// 1.01E-2              5             2       0.0101
433   /// 1.01E-2              4             2       0.0101
434   /// 1.01E-2              4             1       1.01E-2
435   void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0,
436                 unsigned FormatMaxPadding = 3, bool TruncateZero = true) const;
437 
438   /// If this value has an exact multiplicative inverse, store it in inv and
439   /// return true.
440   bool getExactInverse(APFloat *inv) const;
441 
442   /// Returns the exponent of the internal representation of the APFloat.
443   ///
444   /// Because the radix of APFloat is 2, this is equivalent to floor(log2(x)).
445   /// For special APFloat values, this returns special error codes:
446   ///
447   ///   NaN -> \c IEK_NaN
448   ///   0   -> \c IEK_Zero
449   ///   Inf -> \c IEK_Inf
450   ///
451   friend int ilogb(const IEEEFloat &Arg);
452 
453   /// Returns: X * 2^Exp for integral exponents.
454   friend IEEEFloat scalbn(IEEEFloat X, int Exp, roundingMode);
455 
456   friend IEEEFloat frexp(const IEEEFloat &X, int &Exp, roundingMode);
457 
458   /// \name Special value setters.
459   /// @{
460 
461   void makeLargest(bool Neg = false);
462   void makeSmallest(bool Neg = false);
463   void makeNaN(bool SNaN = false, bool Neg = false,
464                const APInt *fill = nullptr);
465   void makeInf(bool Neg = false);
466   void makeZero(bool Neg = false);
467   void makeQuiet();
468 
469   /// Returns the smallest (by magnitude) normalized finite number in the given
470   /// semantics.
471   ///
472   /// \param Negative - True iff the number should be negative
473   void makeSmallestNormalized(bool Negative = false);
474 
475   /// @}
476 
477   cmpResult compareAbsoluteValue(const IEEEFloat &) const;
478 
479 private:
480   /// \name Simple Queries
481   /// @{
482 
483   integerPart *significandParts();
484   const integerPart *significandParts() const;
485   unsigned int partCount() const;
486 
487   /// @}
488 
489   /// \name Significand operations.
490   /// @{
491 
492   integerPart addSignificand(const IEEEFloat &);
493   integerPart subtractSignificand(const IEEEFloat &, integerPart);
494   lostFraction addOrSubtractSignificand(const IEEEFloat &, bool subtract);
495   lostFraction multiplySignificand(const IEEEFloat &, IEEEFloat);
496   lostFraction multiplySignificand(const IEEEFloat&);
497   lostFraction divideSignificand(const IEEEFloat &);
498   void incrementSignificand();
499   void initialize(const fltSemantics *);
500   void shiftSignificandLeft(unsigned int);
501   lostFraction shiftSignificandRight(unsigned int);
502   unsigned int significandLSB() const;
503   unsigned int significandMSB() const;
504   void zeroSignificand();
505   /// Return true if the significand excluding the integral bit is all ones.
506   bool isSignificandAllOnes() const;
507   /// Return true if the significand excluding the integral bit is all zeros.
508   bool isSignificandAllZeros() const;
509 
510   /// @}
511 
512   /// \name Arithmetic on special values.
513   /// @{
514 
515   opStatus addOrSubtractSpecials(const IEEEFloat &, bool subtract);
516   opStatus divideSpecials(const IEEEFloat &);
517   opStatus multiplySpecials(const IEEEFloat &);
518   opStatus modSpecials(const IEEEFloat &);
519   opStatus remainderSpecials(const IEEEFloat&);
520 
521   /// @}
522 
523   /// \name Miscellany
524   /// @{
525 
526   bool convertFromStringSpecials(StringRef str);
527   opStatus normalize(roundingMode, lostFraction);
528   opStatus addOrSubtract(const IEEEFloat &, roundingMode, bool subtract);
529   opStatus handleOverflow(roundingMode);
530   bool roundAwayFromZero(roundingMode, lostFraction, unsigned int) const;
531   opStatus convertToSignExtendedInteger(MutableArrayRef<integerPart>,
532                                         unsigned int, bool, roundingMode,
533                                         bool *) const;
534   opStatus convertFromUnsignedParts(const integerPart *, unsigned int,
535                                     roundingMode);
536   Expected<opStatus> convertFromHexadecimalString(StringRef, roundingMode);
537   Expected<opStatus> convertFromDecimalString(StringRef, roundingMode);
538   char *convertNormalToHexString(char *, unsigned int, bool,
539                                  roundingMode) const;
540   opStatus roundSignificandWithExponent(const integerPart *, unsigned int, int,
541                                         roundingMode);
542   ExponentType exponentNaN() const;
543   ExponentType exponentInf() const;
544   ExponentType exponentZero() const;
545 
546   /// @}
547 
548   APInt convertHalfAPFloatToAPInt() const;
549   APInt convertBFloatAPFloatToAPInt() const;
550   APInt convertFloatAPFloatToAPInt() const;
551   APInt convertDoubleAPFloatToAPInt() const;
552   APInt convertQuadrupleAPFloatToAPInt() const;
553   APInt convertF80LongDoubleAPFloatToAPInt() const;
554   APInt convertPPCDoubleDoubleAPFloatToAPInt() const;
555   void initFromAPInt(const fltSemantics *Sem, const APInt &api);
556   void initFromHalfAPInt(const APInt &api);
557   void initFromBFloatAPInt(const APInt &api);
558   void initFromFloatAPInt(const APInt &api);
559   void initFromDoubleAPInt(const APInt &api);
560   void initFromQuadrupleAPInt(const APInt &api);
561   void initFromF80LongDoubleAPInt(const APInt &api);
562   void initFromPPCDoubleDoubleAPInt(const APInt &api);
563 
564   void assign(const IEEEFloat &);
565   void copySignificand(const IEEEFloat &);
566   void freeSignificand();
567 
568   /// Note: this must be the first data member.
569   /// The semantics that this value obeys.
570   const fltSemantics *semantics;
571 
572   /// A binary fraction with an explicit integer bit.
573   ///
574   /// The significand must be at least one bit wider than the target precision.
575   union Significand {
576     integerPart part;
577     integerPart *parts;
578   } significand;
579 
580   /// The signed unbiased exponent of the value.
581   ExponentType exponent;
582 
583   /// What kind of floating point number this is.
584   ///
585   /// Only 2 bits are required, but VisualStudio incorrectly sign extends it.
586   /// Using the extra bit keeps it from failing under VisualStudio.
587   fltCategory category : 3;
588 
589   /// Sign bit of the number.
590   unsigned int sign : 1;
591 };
592 
593 hash_code hash_value(const IEEEFloat &Arg);
594 int ilogb(const IEEEFloat &Arg);
595 IEEEFloat scalbn(IEEEFloat X, int Exp, IEEEFloat::roundingMode);
596 IEEEFloat frexp(const IEEEFloat &Val, int &Exp, IEEEFloat::roundingMode RM);
597 
598 // This mode implements more precise float in terms of two APFloats.
599 // The interface and layout is designed for arbitrary underlying semantics,
600 // though currently only PPCDoubleDouble semantics are supported, whose
601 // corresponding underlying semantics are IEEEdouble.
602 class DoubleAPFloat final : public APFloatBase {
603   // Note: this must be the first data member.
604   const fltSemantics *Semantics;
605   std::unique_ptr<APFloat[]> Floats;
606 
607   opStatus addImpl(const APFloat &a, const APFloat &aa, const APFloat &c,
608                    const APFloat &cc, roundingMode RM);
609 
610   opStatus addWithSpecial(const DoubleAPFloat &LHS, const DoubleAPFloat &RHS,
611                           DoubleAPFloat &Out, roundingMode RM);
612 
613 public:
614   DoubleAPFloat(const fltSemantics &S);
615   DoubleAPFloat(const fltSemantics &S, uninitializedTag);
616   DoubleAPFloat(const fltSemantics &S, integerPart);
617   DoubleAPFloat(const fltSemantics &S, const APInt &I);
618   DoubleAPFloat(const fltSemantics &S, APFloat &&First, APFloat &&Second);
619   DoubleAPFloat(const DoubleAPFloat &RHS);
620   DoubleAPFloat(DoubleAPFloat &&RHS);
621 
622   DoubleAPFloat &operator=(const DoubleAPFloat &RHS);
623 
624   DoubleAPFloat &operator=(DoubleAPFloat &&RHS) {
625     if (this != &RHS) {
626       this->~DoubleAPFloat();
627       new (this) DoubleAPFloat(std::move(RHS));
628     }
629     return *this;
630   }
631 
632   bool needsCleanup() const { return Floats != nullptr; }
633 
634   APFloat &getFirst() { return Floats[0]; }
635   const APFloat &getFirst() const { return Floats[0]; }
636   APFloat &getSecond() { return Floats[1]; }
637   const APFloat &getSecond() const { return Floats[1]; }
638 
639   opStatus add(const DoubleAPFloat &RHS, roundingMode RM);
640   opStatus subtract(const DoubleAPFloat &RHS, roundingMode RM);
641   opStatus multiply(const DoubleAPFloat &RHS, roundingMode RM);
642   opStatus divide(const DoubleAPFloat &RHS, roundingMode RM);
643   opStatus remainder(const DoubleAPFloat &RHS);
644   opStatus mod(const DoubleAPFloat &RHS);
645   opStatus fusedMultiplyAdd(const DoubleAPFloat &Multiplicand,
646                             const DoubleAPFloat &Addend, roundingMode RM);
647   opStatus roundToIntegral(roundingMode RM);
648   void changeSign();
649   cmpResult compareAbsoluteValue(const DoubleAPFloat &RHS) const;
650 
651   fltCategory getCategory() const;
652   bool isNegative() const;
653 
654   void makeInf(bool Neg);
655   void makeZero(bool Neg);
656   void makeLargest(bool Neg);
657   void makeSmallest(bool Neg);
658   void makeSmallestNormalized(bool Neg);
659   void makeNaN(bool SNaN, bool Neg, const APInt *fill);
660 
661   cmpResult compare(const DoubleAPFloat &RHS) const;
662   bool bitwiseIsEqual(const DoubleAPFloat &RHS) const;
663   APInt bitcastToAPInt() const;
664   Expected<opStatus> convertFromString(StringRef, roundingMode);
665   opStatus next(bool nextDown);
666 
667   opStatus convertToInteger(MutableArrayRef<integerPart> Input,
668                             unsigned int Width, bool IsSigned, roundingMode RM,
669                             bool *IsExact) const;
670   opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM);
671   opStatus convertFromSignExtendedInteger(const integerPart *Input,
672                                           unsigned int InputSize, bool IsSigned,
673                                           roundingMode RM);
674   opStatus convertFromZeroExtendedInteger(const integerPart *Input,
675                                           unsigned int InputSize, bool IsSigned,
676                                           roundingMode RM);
677   unsigned int convertToHexString(char *DST, unsigned int HexDigits,
678                                   bool UpperCase, roundingMode RM) const;
679 
680   bool isDenormal() const;
681   bool isSmallest() const;
682   bool isLargest() const;
683   bool isInteger() const;
684 
685   void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision,
686                 unsigned FormatMaxPadding, bool TruncateZero = true) const;
687 
688   bool getExactInverse(APFloat *inv) const;
689 
690   friend DoubleAPFloat scalbn(const DoubleAPFloat &X, int Exp, roundingMode);
691   friend DoubleAPFloat frexp(const DoubleAPFloat &X, int &Exp, roundingMode);
692   friend hash_code hash_value(const DoubleAPFloat &Arg);
693 };
694 
695 hash_code hash_value(const DoubleAPFloat &Arg);
696 
697 } // End detail namespace
698 
699 // This is a interface class that is currently forwarding functionalities from
700 // detail::IEEEFloat.
701 class APFloat : public APFloatBase {
702   typedef detail::IEEEFloat IEEEFloat;
703   typedef detail::DoubleAPFloat DoubleAPFloat;
704 
705   static_assert(std::is_standard_layout<IEEEFloat>::value, "");
706 
707   union Storage {
708     const fltSemantics *semantics;
709     IEEEFloat IEEE;
710     DoubleAPFloat Double;
711 
712     explicit Storage(IEEEFloat F, const fltSemantics &S);
713     explicit Storage(DoubleAPFloat F, const fltSemantics &S)
714         : Double(std::move(F)) {
715       assert(&S == &PPCDoubleDouble());
716     }
717 
718     template <typename... ArgTypes>
719     Storage(const fltSemantics &Semantics, ArgTypes &&... Args) {
720       if (usesLayout<IEEEFloat>(Semantics)) {
721         new (&IEEE) IEEEFloat(Semantics, std::forward<ArgTypes>(Args)...);
722         return;
723       }
724       if (usesLayout<DoubleAPFloat>(Semantics)) {
725         new (&Double) DoubleAPFloat(Semantics, std::forward<ArgTypes>(Args)...);
726         return;
727       }
728       llvm_unreachable("Unexpected semantics");
729     }
730 
731     ~Storage() {
732       if (usesLayout<IEEEFloat>(*semantics)) {
733         IEEE.~IEEEFloat();
734         return;
735       }
736       if (usesLayout<DoubleAPFloat>(*semantics)) {
737         Double.~DoubleAPFloat();
738         return;
739       }
740       llvm_unreachable("Unexpected semantics");
741     }
742 
743     Storage(const Storage &RHS) {
744       if (usesLayout<IEEEFloat>(*RHS.semantics)) {
745         new (this) IEEEFloat(RHS.IEEE);
746         return;
747       }
748       if (usesLayout<DoubleAPFloat>(*RHS.semantics)) {
749         new (this) DoubleAPFloat(RHS.Double);
750         return;
751       }
752       llvm_unreachable("Unexpected semantics");
753     }
754 
755     Storage(Storage &&RHS) {
756       if (usesLayout<IEEEFloat>(*RHS.semantics)) {
757         new (this) IEEEFloat(std::move(RHS.IEEE));
758         return;
759       }
760       if (usesLayout<DoubleAPFloat>(*RHS.semantics)) {
761         new (this) DoubleAPFloat(std::move(RHS.Double));
762         return;
763       }
764       llvm_unreachable("Unexpected semantics");
765     }
766 
767     Storage &operator=(const Storage &RHS) {
768       if (usesLayout<IEEEFloat>(*semantics) &&
769           usesLayout<IEEEFloat>(*RHS.semantics)) {
770         IEEE = RHS.IEEE;
771       } else if (usesLayout<DoubleAPFloat>(*semantics) &&
772                  usesLayout<DoubleAPFloat>(*RHS.semantics)) {
773         Double = RHS.Double;
774       } else if (this != &RHS) {
775         this->~Storage();
776         new (this) Storage(RHS);
777       }
778       return *this;
779     }
780 
781     Storage &operator=(Storage &&RHS) {
782       if (usesLayout<IEEEFloat>(*semantics) &&
783           usesLayout<IEEEFloat>(*RHS.semantics)) {
784         IEEE = std::move(RHS.IEEE);
785       } else if (usesLayout<DoubleAPFloat>(*semantics) &&
786                  usesLayout<DoubleAPFloat>(*RHS.semantics)) {
787         Double = std::move(RHS.Double);
788       } else if (this != &RHS) {
789         this->~Storage();
790         new (this) Storage(std::move(RHS));
791       }
792       return *this;
793     }
794   } U;
795 
796   template <typename T> static bool usesLayout(const fltSemantics &Semantics) {
797     static_assert(std::is_same<T, IEEEFloat>::value ||
798                   std::is_same<T, DoubleAPFloat>::value, "");
799     if (std::is_same<T, DoubleAPFloat>::value) {
800       return &Semantics == &PPCDoubleDouble();
801     }
802     return &Semantics != &PPCDoubleDouble();
803   }
804 
805   IEEEFloat &getIEEE() {
806     if (usesLayout<IEEEFloat>(*U.semantics))
807       return U.IEEE;
808     if (usesLayout<DoubleAPFloat>(*U.semantics))
809       return U.Double.getFirst().U.IEEE;
810     llvm_unreachable("Unexpected semantics");
811   }
812 
813   const IEEEFloat &getIEEE() const {
814     if (usesLayout<IEEEFloat>(*U.semantics))
815       return U.IEEE;
816     if (usesLayout<DoubleAPFloat>(*U.semantics))
817       return U.Double.getFirst().U.IEEE;
818     llvm_unreachable("Unexpected semantics");
819   }
820 
821   void makeZero(bool Neg) { APFLOAT_DISPATCH_ON_SEMANTICS(makeZero(Neg)); }
822 
823   void makeInf(bool Neg) { APFLOAT_DISPATCH_ON_SEMANTICS(makeInf(Neg)); }
824 
825   void makeNaN(bool SNaN, bool Neg, const APInt *fill) {
826     APFLOAT_DISPATCH_ON_SEMANTICS(makeNaN(SNaN, Neg, fill));
827   }
828 
829   void makeLargest(bool Neg) {
830     APFLOAT_DISPATCH_ON_SEMANTICS(makeLargest(Neg));
831   }
832 
833   void makeSmallest(bool Neg) {
834     APFLOAT_DISPATCH_ON_SEMANTICS(makeSmallest(Neg));
835   }
836 
837   void makeSmallestNormalized(bool Neg) {
838     APFLOAT_DISPATCH_ON_SEMANTICS(makeSmallestNormalized(Neg));
839   }
840 
841   // FIXME: This is due to clang 3.3 (or older version) always checks for the
842   // default constructor in an array aggregate initialization, even if no
843   // elements in the array is default initialized.
844   APFloat() : U(IEEEdouble()) {
845     llvm_unreachable("This is a workaround for old clang.");
846   }
847 
848   explicit APFloat(IEEEFloat F, const fltSemantics &S) : U(std::move(F), S) {}
849   explicit APFloat(DoubleAPFloat F, const fltSemantics &S)
850       : U(std::move(F), S) {}
851 
852   cmpResult compareAbsoluteValue(const APFloat &RHS) const {
853     assert(&getSemantics() == &RHS.getSemantics() &&
854            "Should only compare APFloats with the same semantics");
855     if (usesLayout<IEEEFloat>(getSemantics()))
856       return U.IEEE.compareAbsoluteValue(RHS.U.IEEE);
857     if (usesLayout<DoubleAPFloat>(getSemantics()))
858       return U.Double.compareAbsoluteValue(RHS.U.Double);
859     llvm_unreachable("Unexpected semantics");
860   }
861 
862 public:
863   APFloat(const fltSemantics &Semantics) : U(Semantics) {}
864   APFloat(const fltSemantics &Semantics, StringRef S);
865   APFloat(const fltSemantics &Semantics, integerPart I) : U(Semantics, I) {}
866   template <typename T,
867             typename = std::enable_if_t<std::is_floating_point<T>::value>>
868   APFloat(const fltSemantics &Semantics, T V) = delete;
869   // TODO: Remove this constructor. This isn't faster than the first one.
870   APFloat(const fltSemantics &Semantics, uninitializedTag)
871       : U(Semantics, uninitialized) {}
872   APFloat(const fltSemantics &Semantics, const APInt &I) : U(Semantics, I) {}
873   explicit APFloat(double d) : U(IEEEFloat(d), IEEEdouble()) {}
874   explicit APFloat(float f) : U(IEEEFloat(f), IEEEsingle()) {}
875   APFloat(const APFloat &RHS) = default;
876   APFloat(APFloat &&RHS) = default;
877 
878   ~APFloat() = default;
879 
880   bool needsCleanup() const { APFLOAT_DISPATCH_ON_SEMANTICS(needsCleanup()); }
881 
882   /// Factory for Positive and Negative Zero.
883   ///
884   /// \param Negative True iff the number should be negative.
885   static APFloat getZero(const fltSemantics &Sem, bool Negative = false) {
886     APFloat Val(Sem, uninitialized);
887     Val.makeZero(Negative);
888     return Val;
889   }
890 
891   /// Factory for Positive and Negative Infinity.
892   ///
893   /// \param Negative True iff the number should be negative.
894   static APFloat getInf(const fltSemantics &Sem, bool Negative = false) {
895     APFloat Val(Sem, uninitialized);
896     Val.makeInf(Negative);
897     return Val;
898   }
899 
900   /// Factory for NaN values.
901   ///
902   /// \param Negative - True iff the NaN generated should be negative.
903   /// \param payload - The unspecified fill bits for creating the NaN, 0 by
904   /// default.  The value is truncated as necessary.
905   static APFloat getNaN(const fltSemantics &Sem, bool Negative = false,
906                         uint64_t payload = 0) {
907     if (payload) {
908       APInt intPayload(64, payload);
909       return getQNaN(Sem, Negative, &intPayload);
910     } else {
911       return getQNaN(Sem, Negative, nullptr);
912     }
913   }
914 
915   /// Factory for QNaN values.
916   static APFloat getQNaN(const fltSemantics &Sem, bool Negative = false,
917                          const APInt *payload = nullptr) {
918     APFloat Val(Sem, uninitialized);
919     Val.makeNaN(false, Negative, payload);
920     return Val;
921   }
922 
923   /// Factory for SNaN values.
924   static APFloat getSNaN(const fltSemantics &Sem, bool Negative = false,
925                          const APInt *payload = nullptr) {
926     APFloat Val(Sem, uninitialized);
927     Val.makeNaN(true, Negative, payload);
928     return Val;
929   }
930 
931   /// Returns the largest finite number in the given semantics.
932   ///
933   /// \param Negative - True iff the number should be negative
934   static APFloat getLargest(const fltSemantics &Sem, bool Negative = false) {
935     APFloat Val(Sem, uninitialized);
936     Val.makeLargest(Negative);
937     return Val;
938   }
939 
940   /// Returns the smallest (by magnitude) finite number in the given semantics.
941   /// Might be denormalized, which implies a relative loss of precision.
942   ///
943   /// \param Negative - True iff the number should be negative
944   static APFloat getSmallest(const fltSemantics &Sem, bool Negative = false) {
945     APFloat Val(Sem, uninitialized);
946     Val.makeSmallest(Negative);
947     return Val;
948   }
949 
950   /// Returns the smallest (by magnitude) normalized finite number in the given
951   /// semantics.
952   ///
953   /// \param Negative - True iff the number should be negative
954   static APFloat getSmallestNormalized(const fltSemantics &Sem,
955                                        bool Negative = false) {
956     APFloat Val(Sem, uninitialized);
957     Val.makeSmallestNormalized(Negative);
958     return Val;
959   }
960 
961   /// Returns a float which is bitcasted from an all one value int.
962   ///
963   /// \param Semantics - type float semantics
964   static APFloat getAllOnesValue(const fltSemantics &Semantics);
965 
966   /// Used to insert APFloat objects, or objects that contain APFloat objects,
967   /// into FoldingSets.
968   void Profile(FoldingSetNodeID &NID) const;
969 
970   opStatus add(const APFloat &RHS, roundingMode RM) {
971     assert(&getSemantics() == &RHS.getSemantics() &&
972            "Should only call on two APFloats with the same semantics");
973     if (usesLayout<IEEEFloat>(getSemantics()))
974       return U.IEEE.add(RHS.U.IEEE, RM);
975     if (usesLayout<DoubleAPFloat>(getSemantics()))
976       return U.Double.add(RHS.U.Double, RM);
977     llvm_unreachable("Unexpected semantics");
978   }
979   opStatus subtract(const APFloat &RHS, roundingMode RM) {
980     assert(&getSemantics() == &RHS.getSemantics() &&
981            "Should only call on two APFloats with the same semantics");
982     if (usesLayout<IEEEFloat>(getSemantics()))
983       return U.IEEE.subtract(RHS.U.IEEE, RM);
984     if (usesLayout<DoubleAPFloat>(getSemantics()))
985       return U.Double.subtract(RHS.U.Double, RM);
986     llvm_unreachable("Unexpected semantics");
987   }
988   opStatus multiply(const APFloat &RHS, roundingMode RM) {
989     assert(&getSemantics() == &RHS.getSemantics() &&
990            "Should only call on two APFloats with the same semantics");
991     if (usesLayout<IEEEFloat>(getSemantics()))
992       return U.IEEE.multiply(RHS.U.IEEE, RM);
993     if (usesLayout<DoubleAPFloat>(getSemantics()))
994       return U.Double.multiply(RHS.U.Double, RM);
995     llvm_unreachable("Unexpected semantics");
996   }
997   opStatus divide(const APFloat &RHS, roundingMode RM) {
998     assert(&getSemantics() == &RHS.getSemantics() &&
999            "Should only call on two APFloats with the same semantics");
1000     if (usesLayout<IEEEFloat>(getSemantics()))
1001       return U.IEEE.divide(RHS.U.IEEE, RM);
1002     if (usesLayout<DoubleAPFloat>(getSemantics()))
1003       return U.Double.divide(RHS.U.Double, RM);
1004     llvm_unreachable("Unexpected semantics");
1005   }
1006   opStatus remainder(const APFloat &RHS) {
1007     assert(&getSemantics() == &RHS.getSemantics() &&
1008            "Should only call on two APFloats with the same semantics");
1009     if (usesLayout<IEEEFloat>(getSemantics()))
1010       return U.IEEE.remainder(RHS.U.IEEE);
1011     if (usesLayout<DoubleAPFloat>(getSemantics()))
1012       return U.Double.remainder(RHS.U.Double);
1013     llvm_unreachable("Unexpected semantics");
1014   }
1015   opStatus mod(const APFloat &RHS) {
1016     assert(&getSemantics() == &RHS.getSemantics() &&
1017            "Should only call on two APFloats with the same semantics");
1018     if (usesLayout<IEEEFloat>(getSemantics()))
1019       return U.IEEE.mod(RHS.U.IEEE);
1020     if (usesLayout<DoubleAPFloat>(getSemantics()))
1021       return U.Double.mod(RHS.U.Double);
1022     llvm_unreachable("Unexpected semantics");
1023   }
1024   opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend,
1025                             roundingMode RM) {
1026     assert(&getSemantics() == &Multiplicand.getSemantics() &&
1027            "Should only call on APFloats with the same semantics");
1028     assert(&getSemantics() == &Addend.getSemantics() &&
1029            "Should only call on APFloats with the same semantics");
1030     if (usesLayout<IEEEFloat>(getSemantics()))
1031       return U.IEEE.fusedMultiplyAdd(Multiplicand.U.IEEE, Addend.U.IEEE, RM);
1032     if (usesLayout<DoubleAPFloat>(getSemantics()))
1033       return U.Double.fusedMultiplyAdd(Multiplicand.U.Double, Addend.U.Double,
1034                                        RM);
1035     llvm_unreachable("Unexpected semantics");
1036   }
1037   opStatus roundToIntegral(roundingMode RM) {
1038     APFLOAT_DISPATCH_ON_SEMANTICS(roundToIntegral(RM));
1039   }
1040 
1041   // TODO: bool parameters are not readable and a source of bugs.
1042   // Do something.
1043   opStatus next(bool nextDown) {
1044     APFLOAT_DISPATCH_ON_SEMANTICS(next(nextDown));
1045   }
1046 
1047   /// Negate an APFloat.
1048   APFloat operator-() const {
1049     APFloat Result(*this);
1050     Result.changeSign();
1051     return Result;
1052   }
1053 
1054   /// Add two APFloats, rounding ties to the nearest even.
1055   /// No error checking.
1056   APFloat operator+(const APFloat &RHS) const {
1057     APFloat Result(*this);
1058     (void)Result.add(RHS, rmNearestTiesToEven);
1059     return Result;
1060   }
1061 
1062   /// Subtract two APFloats, rounding ties to the nearest even.
1063   /// No error checking.
1064   APFloat operator-(const APFloat &RHS) const {
1065     APFloat Result(*this);
1066     (void)Result.subtract(RHS, rmNearestTiesToEven);
1067     return Result;
1068   }
1069 
1070   /// Multiply two APFloats, rounding ties to the nearest even.
1071   /// No error checking.
1072   APFloat operator*(const APFloat &RHS) const {
1073     APFloat Result(*this);
1074     (void)Result.multiply(RHS, rmNearestTiesToEven);
1075     return Result;
1076   }
1077 
1078   /// Divide the first APFloat by the second, rounding ties to the nearest even.
1079   /// No error checking.
1080   APFloat operator/(const APFloat &RHS) const {
1081     APFloat Result(*this);
1082     (void)Result.divide(RHS, rmNearestTiesToEven);
1083     return Result;
1084   }
1085 
1086   void changeSign() { APFLOAT_DISPATCH_ON_SEMANTICS(changeSign()); }
1087   void clearSign() {
1088     if (isNegative())
1089       changeSign();
1090   }
1091   void copySign(const APFloat &RHS) {
1092     if (isNegative() != RHS.isNegative())
1093       changeSign();
1094   }
1095 
1096   /// A static helper to produce a copy of an APFloat value with its sign
1097   /// copied from some other APFloat.
1098   static APFloat copySign(APFloat Value, const APFloat &Sign) {
1099     Value.copySign(Sign);
1100     return Value;
1101   }
1102 
1103   opStatus convert(const fltSemantics &ToSemantics, roundingMode RM,
1104                    bool *losesInfo);
1105   opStatus convertToInteger(MutableArrayRef<integerPart> Input,
1106                             unsigned int Width, bool IsSigned, roundingMode RM,
1107                             bool *IsExact) const {
1108     APFLOAT_DISPATCH_ON_SEMANTICS(
1109         convertToInteger(Input, Width, IsSigned, RM, IsExact));
1110   }
1111   opStatus convertToInteger(APSInt &Result, roundingMode RM,
1112                             bool *IsExact) const;
1113   opStatus convertFromAPInt(const APInt &Input, bool IsSigned,
1114                             roundingMode RM) {
1115     APFLOAT_DISPATCH_ON_SEMANTICS(convertFromAPInt(Input, IsSigned, RM));
1116   }
1117   opStatus convertFromSignExtendedInteger(const integerPart *Input,
1118                                           unsigned int InputSize, bool IsSigned,
1119                                           roundingMode RM) {
1120     APFLOAT_DISPATCH_ON_SEMANTICS(
1121         convertFromSignExtendedInteger(Input, InputSize, IsSigned, RM));
1122   }
1123   opStatus convertFromZeroExtendedInteger(const integerPart *Input,
1124                                           unsigned int InputSize, bool IsSigned,
1125                                           roundingMode RM) {
1126     APFLOAT_DISPATCH_ON_SEMANTICS(
1127         convertFromZeroExtendedInteger(Input, InputSize, IsSigned, RM));
1128   }
1129   Expected<opStatus> convertFromString(StringRef, roundingMode);
1130   APInt bitcastToAPInt() const {
1131     APFLOAT_DISPATCH_ON_SEMANTICS(bitcastToAPInt());
1132   }
1133 
1134   /// Converts this APFloat to host double value.
1135   ///
1136   /// \pre The APFloat must be built using semantics, that can be represented by
1137   /// the host double type without loss of precision. It can be IEEEdouble and
1138   /// shorter semantics, like IEEEsingle and others.
1139   double convertToDouble() const;
1140 
1141   /// Converts this APFloat to host float value.
1142   ///
1143   /// \pre The APFloat must be built using semantics, that can be represented by
1144   /// the host float type without loss of precision. It can be IEEEsingle and
1145   /// shorter semantics, like IEEEhalf.
1146   float convertToFloat() const;
1147 
1148   bool operator==(const APFloat &RHS) const { return compare(RHS) == cmpEqual; }
1149 
1150   bool operator!=(const APFloat &RHS) const { return compare(RHS) != cmpEqual; }
1151 
1152   bool operator<(const APFloat &RHS) const {
1153     return compare(RHS) == cmpLessThan;
1154   }
1155 
1156   bool operator>(const APFloat &RHS) const {
1157     return compare(RHS) == cmpGreaterThan;
1158   }
1159 
1160   bool operator<=(const APFloat &RHS) const {
1161     cmpResult Res = compare(RHS);
1162     return Res == cmpLessThan || Res == cmpEqual;
1163   }
1164 
1165   bool operator>=(const APFloat &RHS) const {
1166     cmpResult Res = compare(RHS);
1167     return Res == cmpGreaterThan || Res == cmpEqual;
1168   }
1169 
1170   cmpResult compare(const APFloat &RHS) const {
1171     assert(&getSemantics() == &RHS.getSemantics() &&
1172            "Should only compare APFloats with the same semantics");
1173     if (usesLayout<IEEEFloat>(getSemantics()))
1174       return U.IEEE.compare(RHS.U.IEEE);
1175     if (usesLayout<DoubleAPFloat>(getSemantics()))
1176       return U.Double.compare(RHS.U.Double);
1177     llvm_unreachable("Unexpected semantics");
1178   }
1179 
1180   bool bitwiseIsEqual(const APFloat &RHS) const {
1181     if (&getSemantics() != &RHS.getSemantics())
1182       return false;
1183     if (usesLayout<IEEEFloat>(getSemantics()))
1184       return U.IEEE.bitwiseIsEqual(RHS.U.IEEE);
1185     if (usesLayout<DoubleAPFloat>(getSemantics()))
1186       return U.Double.bitwiseIsEqual(RHS.U.Double);
1187     llvm_unreachable("Unexpected semantics");
1188   }
1189 
1190   /// We don't rely on operator== working on double values, as
1191   /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1192   /// As such, this method can be used to do an exact bit-for-bit comparison of
1193   /// two floating point values.
1194   ///
1195   /// We leave the version with the double argument here because it's just so
1196   /// convenient to write "2.0" and the like.  Without this function we'd
1197   /// have to duplicate its logic everywhere it's called.
1198   bool isExactlyValue(double V) const {
1199     bool ignored;
1200     APFloat Tmp(V);
1201     Tmp.convert(getSemantics(), APFloat::rmNearestTiesToEven, &ignored);
1202     return bitwiseIsEqual(Tmp);
1203   }
1204 
1205   unsigned int convertToHexString(char *DST, unsigned int HexDigits,
1206                                   bool UpperCase, roundingMode RM) const {
1207     APFLOAT_DISPATCH_ON_SEMANTICS(
1208         convertToHexString(DST, HexDigits, UpperCase, RM));
1209   }
1210 
1211   bool isZero() const { return getCategory() == fcZero; }
1212   bool isInfinity() const { return getCategory() == fcInfinity; }
1213   bool isNaN() const { return getCategory() == fcNaN; }
1214 
1215   bool isNegative() const { return getIEEE().isNegative(); }
1216   bool isDenormal() const { APFLOAT_DISPATCH_ON_SEMANTICS(isDenormal()); }
1217   bool isSignaling() const { return getIEEE().isSignaling(); }
1218 
1219   bool isNormal() const { return !isDenormal() && isFiniteNonZero(); }
1220   bool isFinite() const { return !isNaN() && !isInfinity(); }
1221 
1222   fltCategory getCategory() const { return getIEEE().getCategory(); }
1223   const fltSemantics &getSemantics() const { return *U.semantics; }
1224   bool isNonZero() const { return !isZero(); }
1225   bool isFiniteNonZero() const { return isFinite() && !isZero(); }
1226   bool isPosZero() const { return isZero() && !isNegative(); }
1227   bool isNegZero() const { return isZero() && isNegative(); }
1228   bool isSmallest() const { APFLOAT_DISPATCH_ON_SEMANTICS(isSmallest()); }
1229   bool isLargest() const { APFLOAT_DISPATCH_ON_SEMANTICS(isLargest()); }
1230   bool isInteger() const { APFLOAT_DISPATCH_ON_SEMANTICS(isInteger()); }
1231   bool isIEEE() const { return usesLayout<IEEEFloat>(getSemantics()); }
1232 
1233   APFloat &operator=(const APFloat &RHS) = default;
1234   APFloat &operator=(APFloat &&RHS) = default;
1235 
1236   void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0,
1237                 unsigned FormatMaxPadding = 3, bool TruncateZero = true) const {
1238     APFLOAT_DISPATCH_ON_SEMANTICS(
1239         toString(Str, FormatPrecision, FormatMaxPadding, TruncateZero));
1240   }
1241 
1242   void print(raw_ostream &) const;
1243   void dump() const;
1244 
1245   bool getExactInverse(APFloat *inv) const {
1246     APFLOAT_DISPATCH_ON_SEMANTICS(getExactInverse(inv));
1247   }
1248 
1249   friend hash_code hash_value(const APFloat &Arg);
1250   friend int ilogb(const APFloat &Arg) { return ilogb(Arg.getIEEE()); }
1251   friend APFloat scalbn(APFloat X, int Exp, roundingMode RM);
1252   friend APFloat frexp(const APFloat &X, int &Exp, roundingMode RM);
1253   friend IEEEFloat;
1254   friend DoubleAPFloat;
1255 };
1256 
1257 /// See friend declarations above.
1258 ///
1259 /// These additional declarations are required in order to compile LLVM with IBM
1260 /// xlC compiler.
1261 hash_code hash_value(const APFloat &Arg);
1262 inline APFloat scalbn(APFloat X, int Exp, APFloat::roundingMode RM) {
1263   if (APFloat::usesLayout<detail::IEEEFloat>(X.getSemantics()))
1264     return APFloat(scalbn(X.U.IEEE, Exp, RM), X.getSemantics());
1265   if (APFloat::usesLayout<detail::DoubleAPFloat>(X.getSemantics()))
1266     return APFloat(scalbn(X.U.Double, Exp, RM), X.getSemantics());
1267   llvm_unreachable("Unexpected semantics");
1268 }
1269 
1270 /// Equivalent of C standard library function.
1271 ///
1272 /// While the C standard says Exp is an unspecified value for infinity and nan,
1273 /// this returns INT_MAX for infinities, and INT_MIN for NaNs.
1274 inline APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM) {
1275   if (APFloat::usesLayout<detail::IEEEFloat>(X.getSemantics()))
1276     return APFloat(frexp(X.U.IEEE, Exp, RM), X.getSemantics());
1277   if (APFloat::usesLayout<detail::DoubleAPFloat>(X.getSemantics()))
1278     return APFloat(frexp(X.U.Double, Exp, RM), X.getSemantics());
1279   llvm_unreachable("Unexpected semantics");
1280 }
1281 /// Returns the absolute value of the argument.
1282 inline APFloat abs(APFloat X) {
1283   X.clearSign();
1284   return X;
1285 }
1286 
1287 /// Returns the negated value of the argument.
1288 inline APFloat neg(APFloat X) {
1289   X.changeSign();
1290   return X;
1291 }
1292 
1293 /// Implements IEEE minNum semantics. Returns the smaller of the 2 arguments if
1294 /// both are not NaN. If either argument is a NaN, returns the other argument.
1295 LLVM_READONLY
1296 inline APFloat minnum(const APFloat &A, const APFloat &B) {
1297   if (A.isNaN())
1298     return B;
1299   if (B.isNaN())
1300     return A;
1301   return B < A ? B : A;
1302 }
1303 
1304 /// Implements IEEE maxNum semantics. Returns the larger of the 2 arguments if
1305 /// both are not NaN. If either argument is a NaN, returns the other argument.
1306 LLVM_READONLY
1307 inline APFloat maxnum(const APFloat &A, const APFloat &B) {
1308   if (A.isNaN())
1309     return B;
1310   if (B.isNaN())
1311     return A;
1312   return A < B ? B : A;
1313 }
1314 
1315 /// Implements IEEE 754-2018 minimum semantics. Returns the smaller of 2
1316 /// arguments, propagating NaNs and treating -0 as less than +0.
1317 LLVM_READONLY
1318 inline APFloat minimum(const APFloat &A, const APFloat &B) {
1319   if (A.isNaN())
1320     return A;
1321   if (B.isNaN())
1322     return B;
1323   if (A.isZero() && B.isZero() && (A.isNegative() != B.isNegative()))
1324     return A.isNegative() ? A : B;
1325   return B < A ? B : A;
1326 }
1327 
1328 /// Implements IEEE 754-2018 maximum semantics. Returns the larger of 2
1329 /// arguments, propagating NaNs and treating -0 as less than +0.
1330 LLVM_READONLY
1331 inline APFloat maximum(const APFloat &A, const APFloat &B) {
1332   if (A.isNaN())
1333     return A;
1334   if (B.isNaN())
1335     return B;
1336   if (A.isZero() && B.isZero() && (A.isNegative() != B.isNegative()))
1337     return A.isNegative() ? B : A;
1338   return A < B ? B : A;
1339 }
1340 
1341 } // namespace llvm
1342 
1343 #undef APFLOAT_DISPATCH_ON_SEMANTICS
1344 #endif // LLVM_ADT_APFLOAT_H
1345