1 //===- llvm/ADT/APFloat.h - Arbitrary Precision Floating Point ---*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file declares a class to represent arbitrary precision floating point
11 /// values and provide a variety of arithmetic operations on them.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_ADT_APFLOAT_H
16 #define LLVM_ADT_APFLOAT_H
17 
18 #include "llvm/ADT/APInt.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/FloatingPointMode.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include <memory>
23 
24 #define APFLOAT_DISPATCH_ON_SEMANTICS(METHOD_CALL)                             \
25   do {                                                                         \
26     if (usesLayout<IEEEFloat>(getSemantics()))                                 \
27       return U.IEEE.METHOD_CALL;                                               \
28     if (usesLayout<DoubleAPFloat>(getSemantics()))                             \
29       return U.Double.METHOD_CALL;                                             \
30     llvm_unreachable("Unexpected semantics");                                  \
31   } while (false)
32 
33 namespace llvm {
34 
35 struct fltSemantics;
36 class APSInt;
37 class StringRef;
38 class APFloat;
39 class raw_ostream;
40 
41 template <typename T> class Expected;
42 template <typename T> class SmallVectorImpl;
43 
44 /// Enum that represents what fraction of the LSB truncated bits of an fp number
45 /// represent.
46 ///
47 /// This essentially combines the roles of guard and sticky bits.
48 enum lostFraction { // Example of truncated bits:
49   lfExactlyZero,    // 000000
50   lfLessThanHalf,   // 0xxxxx  x's not all zero
51   lfExactlyHalf,    // 100000
52   lfMoreThanHalf    // 1xxxxx  x's not all zero
53 };
54 
55 /// A self-contained host- and target-independent arbitrary-precision
56 /// floating-point software implementation.
57 ///
58 /// APFloat uses bignum integer arithmetic as provided by static functions in
59 /// the APInt class.  The library will work with bignum integers whose parts are
60 /// any unsigned type at least 16 bits wide, but 64 bits is recommended.
61 ///
62 /// Written for clarity rather than speed, in particular with a view to use in
63 /// the front-end of a cross compiler so that target arithmetic can be correctly
64 /// performed on the host.  Performance should nonetheless be reasonable,
65 /// particularly for its intended use.  It may be useful as a base
66 /// implementation for a run-time library during development of a faster
67 /// target-specific one.
68 ///
69 /// All 5 rounding modes in the IEEE-754R draft are handled correctly for all
70 /// implemented operations.  Currently implemented operations are add, subtract,
71 /// multiply, divide, fused-multiply-add, conversion-to-float,
72 /// conversion-to-integer and conversion-from-integer.  New rounding modes
73 /// (e.g. away from zero) can be added with three or four lines of code.
74 ///
75 /// Four formats are built-in: IEEE single precision, double precision,
76 /// quadruple precision, and x87 80-bit extended double (when operating with
77 /// full extended precision).  Adding a new format that obeys IEEE semantics
78 /// only requires adding two lines of code: a declaration and definition of the
79 /// format.
80 ///
81 /// All operations return the status of that operation as an exception bit-mask,
82 /// so multiple operations can be done consecutively with their results or-ed
83 /// together.  The returned status can be useful for compiler diagnostics; e.g.,
84 /// inexact, underflow and overflow can be easily diagnosed on constant folding,
85 /// and compiler optimizers can determine what exceptions would be raised by
86 /// folding operations and optimize, or perhaps not optimize, accordingly.
87 ///
88 /// At present, underflow tininess is detected after rounding; it should be
89 /// straight forward to add support for the before-rounding case too.
90 ///
91 /// The library reads hexadecimal floating point numbers as per C99, and
92 /// correctly rounds if necessary according to the specified rounding mode.
93 /// Syntax is required to have been validated by the caller.  It also converts
94 /// floating point numbers to hexadecimal text as per the C99 %a and %A
95 /// conversions.  The output precision (or alternatively the natural minimal
96 /// precision) can be specified; if the requested precision is less than the
97 /// natural precision the output is correctly rounded for the specified rounding
98 /// mode.
99 ///
100 /// It also reads decimal floating point numbers and correctly rounds according
101 /// to the specified rounding mode.
102 ///
103 /// Conversion to decimal text is not currently implemented.
104 ///
105 /// Non-zero finite numbers are represented internally as a sign bit, a 16-bit
106 /// signed exponent, and the significand as an array of integer parts.  After
107 /// normalization of a number of precision P the exponent is within the range of
108 /// the format, and if the number is not denormal the P-th bit of the
109 /// significand is set as an explicit integer bit.  For denormals the most
110 /// significant bit is shifted right so that the exponent is maintained at the
111 /// format's minimum, so that the smallest denormal has just the least
112 /// significant bit of the significand set.  The sign of zeroes and infinities
113 /// is significant; the exponent and significand of such numbers is not stored,
114 /// but has a known implicit (deterministic) value: 0 for the significands, 0
115 /// for zero exponent, all 1 bits for infinity exponent.  For NaNs the sign and
116 /// significand are deterministic, although not really meaningful, and preserved
117 /// in non-conversion operations.  The exponent is implicitly all 1 bits.
118 ///
119 /// APFloat does not provide any exception handling beyond default exception
120 /// handling. We represent Signaling NaNs via IEEE-754R 2008 6.2.1 should clause
121 /// by encoding Signaling NaNs with the first bit of its trailing significand as
122 /// 0.
123 ///
124 /// TODO
125 /// ====
126 ///
127 /// Some features that may or may not be worth adding:
128 ///
129 /// Binary to decimal conversion (hard).
130 ///
131 /// Optional ability to detect underflow tininess before rounding.
132 ///
133 /// New formats: x87 in single and double precision mode (IEEE apart from
134 /// extended exponent range) (hard).
135 ///
136 /// New operations: sqrt, IEEE remainder, C90 fmod, nexttoward.
137 ///
138 
139 // This is the common type definitions shared by APFloat and its internal
140 // implementation classes. This struct should not define any non-static data
141 // members.
142 struct APFloatBase {
143   typedef APInt::WordType integerPart;
144   static constexpr unsigned integerPartWidth = APInt::APINT_BITS_PER_WORD;
145 
146   /// A signed type to represent a floating point numbers unbiased exponent.
147   typedef int32_t ExponentType;
148 
149   /// \name Floating Point Semantics.
150   /// @{
151   enum Semantics {
152     S_IEEEhalf,
153     S_BFloat,
154     S_IEEEsingle,
155     S_IEEEdouble,
156     S_IEEEquad,
157     S_PPCDoubleDouble,
158     // 8-bit floating point number following IEEE-754 conventions with bit
159     // layout S1E5M2 as described in https://arxiv.org/abs/2209.05433.
160     S_Float8E5M2,
161     // 8-bit floating point number mostly following IEEE-754 conventions
162     // and bit layout S1E5M2 described in https://arxiv.org/abs/2206.02915,
163     // with expanded range and with no infinity or signed zero.
164     // NaN is represented as negative zero. (FN -> Finite, UZ -> unsigned zero).
165     // This format's exponent bias is 16, instead of the 15 (2 ** (5 - 1) - 1)
166     // that IEEE precedent would imply.
167     S_Float8E5M2FNUZ,
168     // 8-bit floating point number mostly following IEEE-754 conventions with
169     // bit layout S1E4M3 as described in https://arxiv.org/abs/2209.05433.
170     // Unlike IEEE-754 types, there are no infinity values, and NaN is
171     // represented with the exponent and mantissa bits set to all 1s.
172     S_Float8E4M3FN,
173     // 8-bit floating point number mostly following IEEE-754 conventions
174     // and bit layout S1E4M3 described in https://arxiv.org/abs/2206.02915,
175     // with expanded range and with no infinity or signed zero.
176     // NaN is represented as negative zero. (FN -> Finite, UZ -> unsigned zero).
177     // This format's exponent bias is 8, instead of the 7 (2 ** (4 - 1) - 1)
178     // that IEEE precedent would imply.
179     S_Float8E4M3FNUZ,
180     // 8-bit floating point number mostly following IEEE-754 conventions
181     // and bit layout S1E4M3 with expanded range and with no infinity or signed
182     // zero.
183     // NaN is represented as negative zero. (FN -> Finite, UZ -> unsigned zero).
184     // This format's exponent bias is 11, instead of the 7 (2 ** (4 - 1) - 1)
185     // that IEEE precedent would imply.
186     S_Float8E4M3B11FNUZ,
187     // Floating point number that occupies 32 bits or less of storage, providing
188     // improved range compared to half (16-bit) formats, at (potentially)
189     // greater throughput than single precision (32-bit) formats.
190     S_FloatTF32,
191 
192     S_x87DoubleExtended,
193     S_MaxSemantics = S_x87DoubleExtended,
194   };
195 
196   static const llvm::fltSemantics &EnumToSemantics(Semantics S);
197   static Semantics SemanticsToEnum(const llvm::fltSemantics &Sem);
198 
199   static const fltSemantics &IEEEhalf() LLVM_READNONE;
200   static const fltSemantics &BFloat() LLVM_READNONE;
201   static const fltSemantics &IEEEsingle() LLVM_READNONE;
202   static const fltSemantics &IEEEdouble() LLVM_READNONE;
203   static const fltSemantics &IEEEquad() LLVM_READNONE;
204   static const fltSemantics &PPCDoubleDouble() LLVM_READNONE;
205   static const fltSemantics &Float8E5M2() LLVM_READNONE;
206   static const fltSemantics &Float8E5M2FNUZ() LLVM_READNONE;
207   static const fltSemantics &Float8E4M3FN() LLVM_READNONE;
208   static const fltSemantics &Float8E4M3FNUZ() LLVM_READNONE;
209   static const fltSemantics &Float8E4M3B11FNUZ() LLVM_READNONE;
210   static const fltSemantics &FloatTF32() LLVM_READNONE;
211   static const fltSemantics &x87DoubleExtended() LLVM_READNONE;
212 
213   /// A Pseudo fltsemantic used to construct APFloats that cannot conflict with
214   /// anything real.
215   static const fltSemantics &Bogus() LLVM_READNONE;
216 
217   /// @}
218 
219   /// IEEE-754R 5.11: Floating Point Comparison Relations.
220   enum cmpResult {
221     cmpLessThan,
222     cmpEqual,
223     cmpGreaterThan,
224     cmpUnordered
225   };
226 
227   /// IEEE-754R 4.3: Rounding-direction attributes.
228   using roundingMode = llvm::RoundingMode;
229 
230   static constexpr roundingMode rmNearestTiesToEven =
231                                                 RoundingMode::NearestTiesToEven;
232   static constexpr roundingMode rmTowardPositive = RoundingMode::TowardPositive;
233   static constexpr roundingMode rmTowardNegative = RoundingMode::TowardNegative;
234   static constexpr roundingMode rmTowardZero     = RoundingMode::TowardZero;
235   static constexpr roundingMode rmNearestTiesToAway =
236                                                 RoundingMode::NearestTiesToAway;
237 
238   /// IEEE-754R 7: Default exception handling.
239   ///
240   /// opUnderflow or opOverflow are always returned or-ed with opInexact.
241   ///
242   /// APFloat models this behavior specified by IEEE-754:
243   ///   "For operations producing results in floating-point format, the default
244   ///    result of an operation that signals the invalid operation exception
245   ///    shall be a quiet NaN."
246   enum opStatus {
247     opOK = 0x00,
248     opInvalidOp = 0x01,
249     opDivByZero = 0x02,
250     opOverflow = 0x04,
251     opUnderflow = 0x08,
252     opInexact = 0x10
253   };
254 
255   /// Category of internally-represented number.
256   enum fltCategory {
257     fcInfinity,
258     fcNaN,
259     fcNormal,
260     fcZero
261   };
262 
263   /// Convenience enum used to construct an uninitialized APFloat.
264   enum uninitializedTag {
265     uninitialized
266   };
267 
268   /// Enumeration of \c ilogb error results.
269   enum IlogbErrorKinds {
270     IEK_Zero = INT_MIN + 1,
271     IEK_NaN = INT_MIN,
272     IEK_Inf = INT_MAX
273   };
274 
275   static unsigned int semanticsPrecision(const fltSemantics &);
276   static ExponentType semanticsMinExponent(const fltSemantics &);
277   static ExponentType semanticsMaxExponent(const fltSemantics &);
278   static unsigned int semanticsSizeInBits(const fltSemantics &);
279   static unsigned int semanticsIntSizeInBits(const fltSemantics&, bool);
280 
281   // Returns true if any number described by \p Src can be precisely represented
282   // by a normal (not subnormal) value in \p Dst.
283   static bool isRepresentableAsNormalIn(const fltSemantics &Src,
284                                         const fltSemantics &Dst);
285 
286   /// Returns the size of the floating point number (in bits) in the given
287   /// semantics.
288   static unsigned getSizeInBits(const fltSemantics &Sem);
289 };
290 
291 namespace detail {
292 
293 class IEEEFloat final : public APFloatBase {
294 public:
295   /// \name Constructors
296   /// @{
297 
298   IEEEFloat(const fltSemantics &); // Default construct to +0.0
299   IEEEFloat(const fltSemantics &, integerPart);
300   IEEEFloat(const fltSemantics &, uninitializedTag);
301   IEEEFloat(const fltSemantics &, const APInt &);
302   explicit IEEEFloat(double d);
303   explicit IEEEFloat(float f);
304   IEEEFloat(const IEEEFloat &);
305   IEEEFloat(IEEEFloat &&);
306   ~IEEEFloat();
307 
308   /// @}
309 
310   /// Returns whether this instance allocated memory.
311   bool needsCleanup() const { return partCount() > 1; }
312 
313   /// \name Convenience "constructors"
314   /// @{
315 
316   /// @}
317 
318   /// \name Arithmetic
319   /// @{
320 
321   opStatus add(const IEEEFloat &, roundingMode);
322   opStatus subtract(const IEEEFloat &, roundingMode);
323   opStatus multiply(const IEEEFloat &, roundingMode);
324   opStatus divide(const IEEEFloat &, roundingMode);
325   /// IEEE remainder.
326   opStatus remainder(const IEEEFloat &);
327   /// C fmod, or llvm frem.
328   opStatus mod(const IEEEFloat &);
329   opStatus fusedMultiplyAdd(const IEEEFloat &, const IEEEFloat &, roundingMode);
330   opStatus roundToIntegral(roundingMode);
331   /// IEEE-754R 5.3.1: nextUp/nextDown.
332   opStatus next(bool nextDown);
333 
334   /// @}
335 
336   /// \name Sign operations.
337   /// @{
338 
339   void changeSign();
340 
341   /// @}
342 
343   /// \name Conversions
344   /// @{
345 
346   opStatus convert(const fltSemantics &, roundingMode, bool *);
347   opStatus convertToInteger(MutableArrayRef<integerPart>, unsigned int, bool,
348                             roundingMode, bool *) const;
349   opStatus convertFromAPInt(const APInt &, bool, roundingMode);
350   opStatus convertFromSignExtendedInteger(const integerPart *, unsigned int,
351                                           bool, roundingMode);
352   opStatus convertFromZeroExtendedInteger(const integerPart *, unsigned int,
353                                           bool, roundingMode);
354   Expected<opStatus> convertFromString(StringRef, roundingMode);
355   APInt bitcastToAPInt() const;
356   double convertToDouble() const;
357   float convertToFloat() const;
358 
359   /// @}
360 
361   /// The definition of equality is not straightforward for floating point, so
362   /// we won't use operator==.  Use one of the following, or write whatever it
363   /// is you really mean.
364   bool operator==(const IEEEFloat &) const = delete;
365 
366   /// IEEE comparison with another floating point number (NaNs compare
367   /// unordered, 0==-0).
368   cmpResult compare(const IEEEFloat &) const;
369 
370   /// Bitwise comparison for equality (QNaNs compare equal, 0!=-0).
371   bool bitwiseIsEqual(const IEEEFloat &) const;
372 
373   /// Write out a hexadecimal representation of the floating point value to DST,
374   /// which must be of sufficient size, in the C99 form [-]0xh.hhhhp[+-]d.
375   /// Return the number of characters written, excluding the terminating NUL.
376   unsigned int convertToHexString(char *dst, unsigned int hexDigits,
377                                   bool upperCase, roundingMode) const;
378 
379   /// \name IEEE-754R 5.7.2 General operations.
380   /// @{
381 
382   /// IEEE-754R isSignMinus: Returns true if and only if the current value is
383   /// negative.
384   ///
385   /// This applies to zeros and NaNs as well.
386   bool isNegative() const { return sign; }
387 
388   /// IEEE-754R isNormal: Returns true if and only if the current value is normal.
389   ///
390   /// This implies that the current value of the float is not zero, subnormal,
391   /// infinite, or NaN following the definition of normality from IEEE-754R.
392   bool isNormal() const { return !isDenormal() && isFiniteNonZero(); }
393 
394   /// Returns true if and only if the current value is zero, subnormal, or
395   /// normal.
396   ///
397   /// This means that the value is not infinite or NaN.
398   bool isFinite() const { return !isNaN() && !isInfinity(); }
399 
400   /// Returns true if and only if the float is plus or minus zero.
401   bool isZero() const { return category == fcZero; }
402 
403   /// IEEE-754R isSubnormal(): Returns true if and only if the float is a
404   /// denormal.
405   bool isDenormal() const;
406 
407   /// IEEE-754R isInfinite(): Returns true if and only if the float is infinity.
408   bool isInfinity() const { return category == fcInfinity; }
409 
410   /// Returns true if and only if the float is a quiet or signaling NaN.
411   bool isNaN() const { return category == fcNaN; }
412 
413   /// Returns true if and only if the float is a signaling NaN.
414   bool isSignaling() const;
415 
416   /// @}
417 
418   /// \name Simple Queries
419   /// @{
420 
421   fltCategory getCategory() const { return category; }
422   const fltSemantics &getSemantics() const { return *semantics; }
423   bool isNonZero() const { return category != fcZero; }
424   bool isFiniteNonZero() const { return isFinite() && !isZero(); }
425   bool isPosZero() const { return isZero() && !isNegative(); }
426   bool isNegZero() const { return isZero() && isNegative(); }
427 
428   /// Returns true if and only if the number has the smallest possible non-zero
429   /// magnitude in the current semantics.
430   bool isSmallest() const;
431 
432   /// Returns true if this is the smallest (by magnitude) normalized finite
433   /// number in the given semantics.
434   bool isSmallestNormalized() const;
435 
436   /// Returns true if and only if the number has the largest possible finite
437   /// magnitude in the current semantics.
438   bool isLargest() const;
439 
440   /// Returns true if and only if the number is an exact integer.
441   bool isInteger() const;
442 
443   /// @}
444 
445   IEEEFloat &operator=(const IEEEFloat &);
446   IEEEFloat &operator=(IEEEFloat &&);
447 
448   /// Overload to compute a hash code for an APFloat value.
449   ///
450   /// Note that the use of hash codes for floating point values is in general
451   /// frought with peril. Equality is hard to define for these values. For
452   /// example, should negative and positive zero hash to different codes? Are
453   /// they equal or not? This hash value implementation specifically
454   /// emphasizes producing different codes for different inputs in order to
455   /// be used in canonicalization and memoization. As such, equality is
456   /// bitwiseIsEqual, and 0 != -0.
457   friend hash_code hash_value(const IEEEFloat &Arg);
458 
459   /// Converts this value into a decimal string.
460   ///
461   /// \param FormatPrecision The maximum number of digits of
462   ///   precision to output.  If there are fewer digits available,
463   ///   zero padding will not be used unless the value is
464   ///   integral and small enough to be expressed in
465   ///   FormatPrecision digits.  0 means to use the natural
466   ///   precision of the number.
467   /// \param FormatMaxPadding The maximum number of zeros to
468   ///   consider inserting before falling back to scientific
469   ///   notation.  0 means to always use scientific notation.
470   ///
471   /// \param TruncateZero Indicate whether to remove the trailing zero in
472   ///   fraction part or not. Also setting this parameter to false forcing
473   ///   producing of output more similar to default printf behavior.
474   ///   Specifically the lower e is used as exponent delimiter and exponent
475   ///   always contains no less than two digits.
476   ///
477   /// Number       Precision    MaxPadding      Result
478   /// ------       ---------    ----------      ------
479   /// 1.01E+4              5             2       10100
480   /// 1.01E+4              4             2       1.01E+4
481   /// 1.01E+4              5             1       1.01E+4
482   /// 1.01E-2              5             2       0.0101
483   /// 1.01E-2              4             2       0.0101
484   /// 1.01E-2              4             1       1.01E-2
485   void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0,
486                 unsigned FormatMaxPadding = 3, bool TruncateZero = true) const;
487 
488   /// If this value has an exact multiplicative inverse, store it in inv and
489   /// return true.
490   bool getExactInverse(APFloat *inv) const;
491 
492   /// Returns the exponent of the internal representation of the APFloat.
493   ///
494   /// Because the radix of APFloat is 2, this is equivalent to floor(log2(x)).
495   /// For special APFloat values, this returns special error codes:
496   ///
497   ///   NaN -> \c IEK_NaN
498   ///   0   -> \c IEK_Zero
499   ///   Inf -> \c IEK_Inf
500   ///
501   friend int ilogb(const IEEEFloat &Arg);
502 
503   /// Returns: X * 2^Exp for integral exponents.
504   friend IEEEFloat scalbn(IEEEFloat X, int Exp, roundingMode);
505 
506   friend IEEEFloat frexp(const IEEEFloat &X, int &Exp, roundingMode);
507 
508   /// \name Special value setters.
509   /// @{
510 
511   void makeLargest(bool Neg = false);
512   void makeSmallest(bool Neg = false);
513   void makeNaN(bool SNaN = false, bool Neg = false,
514                const APInt *fill = nullptr);
515   void makeInf(bool Neg = false);
516   void makeZero(bool Neg = false);
517   void makeQuiet();
518 
519   /// Returns the smallest (by magnitude) normalized finite number in the given
520   /// semantics.
521   ///
522   /// \param Negative - True iff the number should be negative
523   void makeSmallestNormalized(bool Negative = false);
524 
525   /// @}
526 
527   cmpResult compareAbsoluteValue(const IEEEFloat &) const;
528 
529 private:
530   /// \name Simple Queries
531   /// @{
532 
533   integerPart *significandParts();
534   const integerPart *significandParts() const;
535   unsigned int partCount() const;
536 
537   /// @}
538 
539   /// \name Significand operations.
540   /// @{
541 
542   integerPart addSignificand(const IEEEFloat &);
543   integerPart subtractSignificand(const IEEEFloat &, integerPart);
544   lostFraction addOrSubtractSignificand(const IEEEFloat &, bool subtract);
545   lostFraction multiplySignificand(const IEEEFloat &, IEEEFloat);
546   lostFraction multiplySignificand(const IEEEFloat&);
547   lostFraction divideSignificand(const IEEEFloat &);
548   void incrementSignificand();
549   void initialize(const fltSemantics *);
550   void shiftSignificandLeft(unsigned int);
551   lostFraction shiftSignificandRight(unsigned int);
552   unsigned int significandLSB() const;
553   unsigned int significandMSB() const;
554   void zeroSignificand();
555   /// Return true if the significand excluding the integral bit is all ones.
556   bool isSignificandAllOnes() const;
557   bool isSignificandAllOnesExceptLSB() const;
558   /// Return true if the significand excluding the integral bit is all zeros.
559   bool isSignificandAllZeros() const;
560   bool isSignificandAllZerosExceptMSB() const;
561 
562   /// @}
563 
564   /// \name Arithmetic on special values.
565   /// @{
566 
567   opStatus addOrSubtractSpecials(const IEEEFloat &, bool subtract);
568   opStatus divideSpecials(const IEEEFloat &);
569   opStatus multiplySpecials(const IEEEFloat &);
570   opStatus modSpecials(const IEEEFloat &);
571   opStatus remainderSpecials(const IEEEFloat&);
572 
573   /// @}
574 
575   /// \name Miscellany
576   /// @{
577 
578   bool convertFromStringSpecials(StringRef str);
579   opStatus normalize(roundingMode, lostFraction);
580   opStatus addOrSubtract(const IEEEFloat &, roundingMode, bool subtract);
581   opStatus handleOverflow(roundingMode);
582   bool roundAwayFromZero(roundingMode, lostFraction, unsigned int) const;
583   opStatus convertToSignExtendedInteger(MutableArrayRef<integerPart>,
584                                         unsigned int, bool, roundingMode,
585                                         bool *) const;
586   opStatus convertFromUnsignedParts(const integerPart *, unsigned int,
587                                     roundingMode);
588   Expected<opStatus> convertFromHexadecimalString(StringRef, roundingMode);
589   Expected<opStatus> convertFromDecimalString(StringRef, roundingMode);
590   char *convertNormalToHexString(char *, unsigned int, bool,
591                                  roundingMode) const;
592   opStatus roundSignificandWithExponent(const integerPart *, unsigned int, int,
593                                         roundingMode);
594   ExponentType exponentNaN() const;
595   ExponentType exponentInf() const;
596   ExponentType exponentZero() const;
597 
598   /// @}
599 
600   template <const fltSemantics &S> APInt convertIEEEFloatToAPInt() const;
601   APInt convertHalfAPFloatToAPInt() const;
602   APInt convertBFloatAPFloatToAPInt() const;
603   APInt convertFloatAPFloatToAPInt() const;
604   APInt convertDoubleAPFloatToAPInt() const;
605   APInt convertQuadrupleAPFloatToAPInt() const;
606   APInt convertF80LongDoubleAPFloatToAPInt() const;
607   APInt convertPPCDoubleDoubleAPFloatToAPInt() const;
608   APInt convertFloat8E5M2APFloatToAPInt() const;
609   APInt convertFloat8E5M2FNUZAPFloatToAPInt() const;
610   APInt convertFloat8E4M3FNAPFloatToAPInt() const;
611   APInt convertFloat8E4M3FNUZAPFloatToAPInt() const;
612   APInt convertFloat8E4M3B11FNUZAPFloatToAPInt() const;
613   APInt convertFloatTF32APFloatToAPInt() const;
614   void initFromAPInt(const fltSemantics *Sem, const APInt &api);
615   template <const fltSemantics &S> void initFromIEEEAPInt(const APInt &api);
616   void initFromHalfAPInt(const APInt &api);
617   void initFromBFloatAPInt(const APInt &api);
618   void initFromFloatAPInt(const APInt &api);
619   void initFromDoubleAPInt(const APInt &api);
620   void initFromQuadrupleAPInt(const APInt &api);
621   void initFromF80LongDoubleAPInt(const APInt &api);
622   void initFromPPCDoubleDoubleAPInt(const APInt &api);
623   void initFromFloat8E5M2APInt(const APInt &api);
624   void initFromFloat8E5M2FNUZAPInt(const APInt &api);
625   void initFromFloat8E4M3FNAPInt(const APInt &api);
626   void initFromFloat8E4M3FNUZAPInt(const APInt &api);
627   void initFromFloat8E4M3B11FNUZAPInt(const APInt &api);
628   void initFromFloatTF32APInt(const APInt &api);
629 
630   void assign(const IEEEFloat &);
631   void copySignificand(const IEEEFloat &);
632   void freeSignificand();
633 
634   /// Note: this must be the first data member.
635   /// The semantics that this value obeys.
636   const fltSemantics *semantics;
637 
638   /// A binary fraction with an explicit integer bit.
639   ///
640   /// The significand must be at least one bit wider than the target precision.
641   union Significand {
642     integerPart part;
643     integerPart *parts;
644   } significand;
645 
646   /// The signed unbiased exponent of the value.
647   ExponentType exponent;
648 
649   /// What kind of floating point number this is.
650   ///
651   /// Only 2 bits are required, but VisualStudio incorrectly sign extends it.
652   /// Using the extra bit keeps it from failing under VisualStudio.
653   fltCategory category : 3;
654 
655   /// Sign bit of the number.
656   unsigned int sign : 1;
657 };
658 
659 hash_code hash_value(const IEEEFloat &Arg);
660 int ilogb(const IEEEFloat &Arg);
661 IEEEFloat scalbn(IEEEFloat X, int Exp, IEEEFloat::roundingMode);
662 IEEEFloat frexp(const IEEEFloat &Val, int &Exp, IEEEFloat::roundingMode RM);
663 
664 // This mode implements more precise float in terms of two APFloats.
665 // The interface and layout is designed for arbitrary underlying semantics,
666 // though currently only PPCDoubleDouble semantics are supported, whose
667 // corresponding underlying semantics are IEEEdouble.
668 class DoubleAPFloat final : public APFloatBase {
669   // Note: this must be the first data member.
670   const fltSemantics *Semantics;
671   std::unique_ptr<APFloat[]> Floats;
672 
673   opStatus addImpl(const APFloat &a, const APFloat &aa, const APFloat &c,
674                    const APFloat &cc, roundingMode RM);
675 
676   opStatus addWithSpecial(const DoubleAPFloat &LHS, const DoubleAPFloat &RHS,
677                           DoubleAPFloat &Out, roundingMode RM);
678 
679 public:
680   DoubleAPFloat(const fltSemantics &S);
681   DoubleAPFloat(const fltSemantics &S, uninitializedTag);
682   DoubleAPFloat(const fltSemantics &S, integerPart);
683   DoubleAPFloat(const fltSemantics &S, const APInt &I);
684   DoubleAPFloat(const fltSemantics &S, APFloat &&First, APFloat &&Second);
685   DoubleAPFloat(const DoubleAPFloat &RHS);
686   DoubleAPFloat(DoubleAPFloat &&RHS);
687 
688   DoubleAPFloat &operator=(const DoubleAPFloat &RHS);
689   inline DoubleAPFloat &operator=(DoubleAPFloat &&RHS);
690 
691   bool needsCleanup() const { return Floats != nullptr; }
692 
693   inline APFloat &getFirst();
694   inline const APFloat &getFirst() const;
695   inline APFloat &getSecond();
696   inline const APFloat &getSecond() const;
697 
698   opStatus add(const DoubleAPFloat &RHS, roundingMode RM);
699   opStatus subtract(const DoubleAPFloat &RHS, roundingMode RM);
700   opStatus multiply(const DoubleAPFloat &RHS, roundingMode RM);
701   opStatus divide(const DoubleAPFloat &RHS, roundingMode RM);
702   opStatus remainder(const DoubleAPFloat &RHS);
703   opStatus mod(const DoubleAPFloat &RHS);
704   opStatus fusedMultiplyAdd(const DoubleAPFloat &Multiplicand,
705                             const DoubleAPFloat &Addend, roundingMode RM);
706   opStatus roundToIntegral(roundingMode RM);
707   void changeSign();
708   cmpResult compareAbsoluteValue(const DoubleAPFloat &RHS) const;
709 
710   fltCategory getCategory() const;
711   bool isNegative() const;
712 
713   void makeInf(bool Neg);
714   void makeZero(bool Neg);
715   void makeLargest(bool Neg);
716   void makeSmallest(bool Neg);
717   void makeSmallestNormalized(bool Neg);
718   void makeNaN(bool SNaN, bool Neg, const APInt *fill);
719 
720   cmpResult compare(const DoubleAPFloat &RHS) const;
721   bool bitwiseIsEqual(const DoubleAPFloat &RHS) const;
722   APInt bitcastToAPInt() const;
723   Expected<opStatus> convertFromString(StringRef, roundingMode);
724   opStatus next(bool nextDown);
725 
726   opStatus convertToInteger(MutableArrayRef<integerPart> Input,
727                             unsigned int Width, bool IsSigned, roundingMode RM,
728                             bool *IsExact) const;
729   opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM);
730   opStatus convertFromSignExtendedInteger(const integerPart *Input,
731                                           unsigned int InputSize, bool IsSigned,
732                                           roundingMode RM);
733   opStatus convertFromZeroExtendedInteger(const integerPart *Input,
734                                           unsigned int InputSize, bool IsSigned,
735                                           roundingMode RM);
736   unsigned int convertToHexString(char *DST, unsigned int HexDigits,
737                                   bool UpperCase, roundingMode RM) const;
738 
739   bool isDenormal() const;
740   bool isSmallest() const;
741   bool isSmallestNormalized() const;
742   bool isLargest() const;
743   bool isInteger() const;
744 
745   void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision,
746                 unsigned FormatMaxPadding, bool TruncateZero = true) const;
747 
748   bool getExactInverse(APFloat *inv) const;
749 
750   friend DoubleAPFloat scalbn(const DoubleAPFloat &X, int Exp, roundingMode);
751   friend DoubleAPFloat frexp(const DoubleAPFloat &X, int &Exp, roundingMode);
752   friend hash_code hash_value(const DoubleAPFloat &Arg);
753 };
754 
755 hash_code hash_value(const DoubleAPFloat &Arg);
756 
757 } // End detail namespace
758 
759 // This is a interface class that is currently forwarding functionalities from
760 // detail::IEEEFloat.
761 class APFloat : public APFloatBase {
762   typedef detail::IEEEFloat IEEEFloat;
763   typedef detail::DoubleAPFloat DoubleAPFloat;
764 
765   static_assert(std::is_standard_layout<IEEEFloat>::value);
766 
767   union Storage {
768     const fltSemantics *semantics;
769     IEEEFloat IEEE;
770     DoubleAPFloat Double;
771 
772     explicit Storage(IEEEFloat F, const fltSemantics &S);
773     explicit Storage(DoubleAPFloat F, const fltSemantics &S)
774         : Double(std::move(F)) {
775       assert(&S == &PPCDoubleDouble());
776     }
777 
778     template <typename... ArgTypes>
779     Storage(const fltSemantics &Semantics, ArgTypes &&... Args) {
780       if (usesLayout<IEEEFloat>(Semantics)) {
781         new (&IEEE) IEEEFloat(Semantics, std::forward<ArgTypes>(Args)...);
782         return;
783       }
784       if (usesLayout<DoubleAPFloat>(Semantics)) {
785         new (&Double) DoubleAPFloat(Semantics, std::forward<ArgTypes>(Args)...);
786         return;
787       }
788       llvm_unreachable("Unexpected semantics");
789     }
790 
791     ~Storage() {
792       if (usesLayout<IEEEFloat>(*semantics)) {
793         IEEE.~IEEEFloat();
794         return;
795       }
796       if (usesLayout<DoubleAPFloat>(*semantics)) {
797         Double.~DoubleAPFloat();
798         return;
799       }
800       llvm_unreachable("Unexpected semantics");
801     }
802 
803     Storage(const Storage &RHS) {
804       if (usesLayout<IEEEFloat>(*RHS.semantics)) {
805         new (this) IEEEFloat(RHS.IEEE);
806         return;
807       }
808       if (usesLayout<DoubleAPFloat>(*RHS.semantics)) {
809         new (this) DoubleAPFloat(RHS.Double);
810         return;
811       }
812       llvm_unreachable("Unexpected semantics");
813     }
814 
815     Storage(Storage &&RHS) {
816       if (usesLayout<IEEEFloat>(*RHS.semantics)) {
817         new (this) IEEEFloat(std::move(RHS.IEEE));
818         return;
819       }
820       if (usesLayout<DoubleAPFloat>(*RHS.semantics)) {
821         new (this) DoubleAPFloat(std::move(RHS.Double));
822         return;
823       }
824       llvm_unreachable("Unexpected semantics");
825     }
826 
827     Storage &operator=(const Storage &RHS) {
828       if (usesLayout<IEEEFloat>(*semantics) &&
829           usesLayout<IEEEFloat>(*RHS.semantics)) {
830         IEEE = RHS.IEEE;
831       } else if (usesLayout<DoubleAPFloat>(*semantics) &&
832                  usesLayout<DoubleAPFloat>(*RHS.semantics)) {
833         Double = RHS.Double;
834       } else if (this != &RHS) {
835         this->~Storage();
836         new (this) Storage(RHS);
837       }
838       return *this;
839     }
840 
841     Storage &operator=(Storage &&RHS) {
842       if (usesLayout<IEEEFloat>(*semantics) &&
843           usesLayout<IEEEFloat>(*RHS.semantics)) {
844         IEEE = std::move(RHS.IEEE);
845       } else if (usesLayout<DoubleAPFloat>(*semantics) &&
846                  usesLayout<DoubleAPFloat>(*RHS.semantics)) {
847         Double = std::move(RHS.Double);
848       } else if (this != &RHS) {
849         this->~Storage();
850         new (this) Storage(std::move(RHS));
851       }
852       return *this;
853     }
854   } U;
855 
856   template <typename T> static bool usesLayout(const fltSemantics &Semantics) {
857     static_assert(std::is_same<T, IEEEFloat>::value ||
858                   std::is_same<T, DoubleAPFloat>::value);
859     if (std::is_same<T, DoubleAPFloat>::value) {
860       return &Semantics == &PPCDoubleDouble();
861     }
862     return &Semantics != &PPCDoubleDouble();
863   }
864 
865   IEEEFloat &getIEEE() {
866     if (usesLayout<IEEEFloat>(*U.semantics))
867       return U.IEEE;
868     if (usesLayout<DoubleAPFloat>(*U.semantics))
869       return U.Double.getFirst().U.IEEE;
870     llvm_unreachable("Unexpected semantics");
871   }
872 
873   const IEEEFloat &getIEEE() const {
874     if (usesLayout<IEEEFloat>(*U.semantics))
875       return U.IEEE;
876     if (usesLayout<DoubleAPFloat>(*U.semantics))
877       return U.Double.getFirst().U.IEEE;
878     llvm_unreachable("Unexpected semantics");
879   }
880 
881   void makeZero(bool Neg) { APFLOAT_DISPATCH_ON_SEMANTICS(makeZero(Neg)); }
882 
883   void makeInf(bool Neg) { APFLOAT_DISPATCH_ON_SEMANTICS(makeInf(Neg)); }
884 
885   void makeNaN(bool SNaN, bool Neg, const APInt *fill) {
886     APFLOAT_DISPATCH_ON_SEMANTICS(makeNaN(SNaN, Neg, fill));
887   }
888 
889   void makeLargest(bool Neg) {
890     APFLOAT_DISPATCH_ON_SEMANTICS(makeLargest(Neg));
891   }
892 
893   void makeSmallest(bool Neg) {
894     APFLOAT_DISPATCH_ON_SEMANTICS(makeSmallest(Neg));
895   }
896 
897   void makeSmallestNormalized(bool Neg) {
898     APFLOAT_DISPATCH_ON_SEMANTICS(makeSmallestNormalized(Neg));
899   }
900 
901   explicit APFloat(IEEEFloat F, const fltSemantics &S) : U(std::move(F), S) {}
902   explicit APFloat(DoubleAPFloat F, const fltSemantics &S)
903       : U(std::move(F), S) {}
904 
905   cmpResult compareAbsoluteValue(const APFloat &RHS) const {
906     assert(&getSemantics() == &RHS.getSemantics() &&
907            "Should only compare APFloats with the same semantics");
908     if (usesLayout<IEEEFloat>(getSemantics()))
909       return U.IEEE.compareAbsoluteValue(RHS.U.IEEE);
910     if (usesLayout<DoubleAPFloat>(getSemantics()))
911       return U.Double.compareAbsoluteValue(RHS.U.Double);
912     llvm_unreachable("Unexpected semantics");
913   }
914 
915 public:
916   APFloat(const fltSemantics &Semantics) : U(Semantics) {}
917   APFloat(const fltSemantics &Semantics, StringRef S);
918   APFloat(const fltSemantics &Semantics, integerPart I) : U(Semantics, I) {}
919   template <typename T,
920             typename = std::enable_if_t<std::is_floating_point<T>::value>>
921   APFloat(const fltSemantics &Semantics, T V) = delete;
922   // TODO: Remove this constructor. This isn't faster than the first one.
923   APFloat(const fltSemantics &Semantics, uninitializedTag)
924       : U(Semantics, uninitialized) {}
925   APFloat(const fltSemantics &Semantics, const APInt &I) : U(Semantics, I) {}
926   explicit APFloat(double d) : U(IEEEFloat(d), IEEEdouble()) {}
927   explicit APFloat(float f) : U(IEEEFloat(f), IEEEsingle()) {}
928   APFloat(const APFloat &RHS) = default;
929   APFloat(APFloat &&RHS) = default;
930 
931   ~APFloat() = default;
932 
933   bool needsCleanup() const { APFLOAT_DISPATCH_ON_SEMANTICS(needsCleanup()); }
934 
935   /// Factory for Positive and Negative Zero.
936   ///
937   /// \param Negative True iff the number should be negative.
938   static APFloat getZero(const fltSemantics &Sem, bool Negative = false) {
939     APFloat Val(Sem, uninitialized);
940     Val.makeZero(Negative);
941     return Val;
942   }
943 
944   /// Factory for Positive and Negative Infinity.
945   ///
946   /// \param Negative True iff the number should be negative.
947   static APFloat getInf(const fltSemantics &Sem, bool Negative = false) {
948     APFloat Val(Sem, uninitialized);
949     Val.makeInf(Negative);
950     return Val;
951   }
952 
953   /// Factory for NaN values.
954   ///
955   /// \param Negative - True iff the NaN generated should be negative.
956   /// \param payload - The unspecified fill bits for creating the NaN, 0 by
957   /// default.  The value is truncated as necessary.
958   static APFloat getNaN(const fltSemantics &Sem, bool Negative = false,
959                         uint64_t payload = 0) {
960     if (payload) {
961       APInt intPayload(64, payload);
962       return getQNaN(Sem, Negative, &intPayload);
963     } else {
964       return getQNaN(Sem, Negative, nullptr);
965     }
966   }
967 
968   /// Factory for QNaN values.
969   static APFloat getQNaN(const fltSemantics &Sem, bool Negative = false,
970                          const APInt *payload = nullptr) {
971     APFloat Val(Sem, uninitialized);
972     Val.makeNaN(false, Negative, payload);
973     return Val;
974   }
975 
976   /// Factory for SNaN values.
977   static APFloat getSNaN(const fltSemantics &Sem, bool Negative = false,
978                          const APInt *payload = nullptr) {
979     APFloat Val(Sem, uninitialized);
980     Val.makeNaN(true, Negative, payload);
981     return Val;
982   }
983 
984   /// Returns the largest finite number in the given semantics.
985   ///
986   /// \param Negative - True iff the number should be negative
987   static APFloat getLargest(const fltSemantics &Sem, bool Negative = false) {
988     APFloat Val(Sem, uninitialized);
989     Val.makeLargest(Negative);
990     return Val;
991   }
992 
993   /// Returns the smallest (by magnitude) finite number in the given semantics.
994   /// Might be denormalized, which implies a relative loss of precision.
995   ///
996   /// \param Negative - True iff the number should be negative
997   static APFloat getSmallest(const fltSemantics &Sem, bool Negative = false) {
998     APFloat Val(Sem, uninitialized);
999     Val.makeSmallest(Negative);
1000     return Val;
1001   }
1002 
1003   /// Returns the smallest (by magnitude) normalized finite number in the given
1004   /// semantics.
1005   ///
1006   /// \param Negative - True iff the number should be negative
1007   static APFloat getSmallestNormalized(const fltSemantics &Sem,
1008                                        bool Negative = false) {
1009     APFloat Val(Sem, uninitialized);
1010     Val.makeSmallestNormalized(Negative);
1011     return Val;
1012   }
1013 
1014   /// Returns a float which is bitcasted from an all one value int.
1015   ///
1016   /// \param Semantics - type float semantics
1017   static APFloat getAllOnesValue(const fltSemantics &Semantics);
1018 
1019   /// Used to insert APFloat objects, or objects that contain APFloat objects,
1020   /// into FoldingSets.
1021   void Profile(FoldingSetNodeID &NID) const;
1022 
1023   opStatus add(const APFloat &RHS, roundingMode RM) {
1024     assert(&getSemantics() == &RHS.getSemantics() &&
1025            "Should only call on two APFloats with the same semantics");
1026     if (usesLayout<IEEEFloat>(getSemantics()))
1027       return U.IEEE.add(RHS.U.IEEE, RM);
1028     if (usesLayout<DoubleAPFloat>(getSemantics()))
1029       return U.Double.add(RHS.U.Double, RM);
1030     llvm_unreachable("Unexpected semantics");
1031   }
1032   opStatus subtract(const APFloat &RHS, roundingMode RM) {
1033     assert(&getSemantics() == &RHS.getSemantics() &&
1034            "Should only call on two APFloats with the same semantics");
1035     if (usesLayout<IEEEFloat>(getSemantics()))
1036       return U.IEEE.subtract(RHS.U.IEEE, RM);
1037     if (usesLayout<DoubleAPFloat>(getSemantics()))
1038       return U.Double.subtract(RHS.U.Double, RM);
1039     llvm_unreachable("Unexpected semantics");
1040   }
1041   opStatus multiply(const APFloat &RHS, roundingMode RM) {
1042     assert(&getSemantics() == &RHS.getSemantics() &&
1043            "Should only call on two APFloats with the same semantics");
1044     if (usesLayout<IEEEFloat>(getSemantics()))
1045       return U.IEEE.multiply(RHS.U.IEEE, RM);
1046     if (usesLayout<DoubleAPFloat>(getSemantics()))
1047       return U.Double.multiply(RHS.U.Double, RM);
1048     llvm_unreachable("Unexpected semantics");
1049   }
1050   opStatus divide(const APFloat &RHS, roundingMode RM) {
1051     assert(&getSemantics() == &RHS.getSemantics() &&
1052            "Should only call on two APFloats with the same semantics");
1053     if (usesLayout<IEEEFloat>(getSemantics()))
1054       return U.IEEE.divide(RHS.U.IEEE, RM);
1055     if (usesLayout<DoubleAPFloat>(getSemantics()))
1056       return U.Double.divide(RHS.U.Double, RM);
1057     llvm_unreachable("Unexpected semantics");
1058   }
1059   opStatus remainder(const APFloat &RHS) {
1060     assert(&getSemantics() == &RHS.getSemantics() &&
1061            "Should only call on two APFloats with the same semantics");
1062     if (usesLayout<IEEEFloat>(getSemantics()))
1063       return U.IEEE.remainder(RHS.U.IEEE);
1064     if (usesLayout<DoubleAPFloat>(getSemantics()))
1065       return U.Double.remainder(RHS.U.Double);
1066     llvm_unreachable("Unexpected semantics");
1067   }
1068   opStatus mod(const APFloat &RHS) {
1069     assert(&getSemantics() == &RHS.getSemantics() &&
1070            "Should only call on two APFloats with the same semantics");
1071     if (usesLayout<IEEEFloat>(getSemantics()))
1072       return U.IEEE.mod(RHS.U.IEEE);
1073     if (usesLayout<DoubleAPFloat>(getSemantics()))
1074       return U.Double.mod(RHS.U.Double);
1075     llvm_unreachable("Unexpected semantics");
1076   }
1077   opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend,
1078                             roundingMode RM) {
1079     assert(&getSemantics() == &Multiplicand.getSemantics() &&
1080            "Should only call on APFloats with the same semantics");
1081     assert(&getSemantics() == &Addend.getSemantics() &&
1082            "Should only call on APFloats with the same semantics");
1083     if (usesLayout<IEEEFloat>(getSemantics()))
1084       return U.IEEE.fusedMultiplyAdd(Multiplicand.U.IEEE, Addend.U.IEEE, RM);
1085     if (usesLayout<DoubleAPFloat>(getSemantics()))
1086       return U.Double.fusedMultiplyAdd(Multiplicand.U.Double, Addend.U.Double,
1087                                        RM);
1088     llvm_unreachable("Unexpected semantics");
1089   }
1090   opStatus roundToIntegral(roundingMode RM) {
1091     APFLOAT_DISPATCH_ON_SEMANTICS(roundToIntegral(RM));
1092   }
1093 
1094   // TODO: bool parameters are not readable and a source of bugs.
1095   // Do something.
1096   opStatus next(bool nextDown) {
1097     APFLOAT_DISPATCH_ON_SEMANTICS(next(nextDown));
1098   }
1099 
1100   /// Negate an APFloat.
1101   APFloat operator-() const {
1102     APFloat Result(*this);
1103     Result.changeSign();
1104     return Result;
1105   }
1106 
1107   /// Add two APFloats, rounding ties to the nearest even.
1108   /// No error checking.
1109   APFloat operator+(const APFloat &RHS) const {
1110     APFloat Result(*this);
1111     (void)Result.add(RHS, rmNearestTiesToEven);
1112     return Result;
1113   }
1114 
1115   /// Subtract two APFloats, rounding ties to the nearest even.
1116   /// No error checking.
1117   APFloat operator-(const APFloat &RHS) const {
1118     APFloat Result(*this);
1119     (void)Result.subtract(RHS, rmNearestTiesToEven);
1120     return Result;
1121   }
1122 
1123   /// Multiply two APFloats, rounding ties to the nearest even.
1124   /// No error checking.
1125   APFloat operator*(const APFloat &RHS) const {
1126     APFloat Result(*this);
1127     (void)Result.multiply(RHS, rmNearestTiesToEven);
1128     return Result;
1129   }
1130 
1131   /// Divide the first APFloat by the second, rounding ties to the nearest even.
1132   /// No error checking.
1133   APFloat operator/(const APFloat &RHS) const {
1134     APFloat Result(*this);
1135     (void)Result.divide(RHS, rmNearestTiesToEven);
1136     return Result;
1137   }
1138 
1139   void changeSign() { APFLOAT_DISPATCH_ON_SEMANTICS(changeSign()); }
1140   void clearSign() {
1141     if (isNegative())
1142       changeSign();
1143   }
1144   void copySign(const APFloat &RHS) {
1145     if (isNegative() != RHS.isNegative())
1146       changeSign();
1147   }
1148 
1149   /// A static helper to produce a copy of an APFloat value with its sign
1150   /// copied from some other APFloat.
1151   static APFloat copySign(APFloat Value, const APFloat &Sign) {
1152     Value.copySign(Sign);
1153     return Value;
1154   }
1155 
1156   /// Assuming this is an IEEE-754 NaN value, quiet its signaling bit.
1157   /// This preserves the sign and payload bits.
1158   APFloat makeQuiet() const {
1159     APFloat Result(*this);
1160     Result.getIEEE().makeQuiet();
1161     return Result;
1162   }
1163 
1164   opStatus convert(const fltSemantics &ToSemantics, roundingMode RM,
1165                    bool *losesInfo);
1166   opStatus convertToInteger(MutableArrayRef<integerPart> Input,
1167                             unsigned int Width, bool IsSigned, roundingMode RM,
1168                             bool *IsExact) const {
1169     APFLOAT_DISPATCH_ON_SEMANTICS(
1170         convertToInteger(Input, Width, IsSigned, RM, IsExact));
1171   }
1172   opStatus convertToInteger(APSInt &Result, roundingMode RM,
1173                             bool *IsExact) const;
1174   opStatus convertFromAPInt(const APInt &Input, bool IsSigned,
1175                             roundingMode RM) {
1176     APFLOAT_DISPATCH_ON_SEMANTICS(convertFromAPInt(Input, IsSigned, RM));
1177   }
1178   opStatus convertFromSignExtendedInteger(const integerPart *Input,
1179                                           unsigned int InputSize, bool IsSigned,
1180                                           roundingMode RM) {
1181     APFLOAT_DISPATCH_ON_SEMANTICS(
1182         convertFromSignExtendedInteger(Input, InputSize, IsSigned, RM));
1183   }
1184   opStatus convertFromZeroExtendedInteger(const integerPart *Input,
1185                                           unsigned int InputSize, bool IsSigned,
1186                                           roundingMode RM) {
1187     APFLOAT_DISPATCH_ON_SEMANTICS(
1188         convertFromZeroExtendedInteger(Input, InputSize, IsSigned, RM));
1189   }
1190   Expected<opStatus> convertFromString(StringRef, roundingMode);
1191   APInt bitcastToAPInt() const {
1192     APFLOAT_DISPATCH_ON_SEMANTICS(bitcastToAPInt());
1193   }
1194 
1195   /// Converts this APFloat to host double value.
1196   ///
1197   /// \pre The APFloat must be built using semantics, that can be represented by
1198   /// the host double type without loss of precision. It can be IEEEdouble and
1199   /// shorter semantics, like IEEEsingle and others.
1200   double convertToDouble() const;
1201 
1202   /// Converts this APFloat to host float value.
1203   ///
1204   /// \pre The APFloat must be built using semantics, that can be represented by
1205   /// the host float type without loss of precision. It can be IEEEsingle and
1206   /// shorter semantics, like IEEEhalf.
1207   float convertToFloat() const;
1208 
1209   bool operator==(const APFloat &RHS) const { return compare(RHS) == cmpEqual; }
1210 
1211   bool operator!=(const APFloat &RHS) const { return compare(RHS) != cmpEqual; }
1212 
1213   bool operator<(const APFloat &RHS) const {
1214     return compare(RHS) == cmpLessThan;
1215   }
1216 
1217   bool operator>(const APFloat &RHS) const {
1218     return compare(RHS) == cmpGreaterThan;
1219   }
1220 
1221   bool operator<=(const APFloat &RHS) const {
1222     cmpResult Res = compare(RHS);
1223     return Res == cmpLessThan || Res == cmpEqual;
1224   }
1225 
1226   bool operator>=(const APFloat &RHS) const {
1227     cmpResult Res = compare(RHS);
1228     return Res == cmpGreaterThan || Res == cmpEqual;
1229   }
1230 
1231   cmpResult compare(const APFloat &RHS) const {
1232     assert(&getSemantics() == &RHS.getSemantics() &&
1233            "Should only compare APFloats with the same semantics");
1234     if (usesLayout<IEEEFloat>(getSemantics()))
1235       return U.IEEE.compare(RHS.U.IEEE);
1236     if (usesLayout<DoubleAPFloat>(getSemantics()))
1237       return U.Double.compare(RHS.U.Double);
1238     llvm_unreachable("Unexpected semantics");
1239   }
1240 
1241   bool bitwiseIsEqual(const APFloat &RHS) const {
1242     if (&getSemantics() != &RHS.getSemantics())
1243       return false;
1244     if (usesLayout<IEEEFloat>(getSemantics()))
1245       return U.IEEE.bitwiseIsEqual(RHS.U.IEEE);
1246     if (usesLayout<DoubleAPFloat>(getSemantics()))
1247       return U.Double.bitwiseIsEqual(RHS.U.Double);
1248     llvm_unreachable("Unexpected semantics");
1249   }
1250 
1251   /// We don't rely on operator== working on double values, as
1252   /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1253   /// As such, this method can be used to do an exact bit-for-bit comparison of
1254   /// two floating point values.
1255   ///
1256   /// We leave the version with the double argument here because it's just so
1257   /// convenient to write "2.0" and the like.  Without this function we'd
1258   /// have to duplicate its logic everywhere it's called.
1259   bool isExactlyValue(double V) const {
1260     bool ignored;
1261     APFloat Tmp(V);
1262     Tmp.convert(getSemantics(), APFloat::rmNearestTiesToEven, &ignored);
1263     return bitwiseIsEqual(Tmp);
1264   }
1265 
1266   unsigned int convertToHexString(char *DST, unsigned int HexDigits,
1267                                   bool UpperCase, roundingMode RM) const {
1268     APFLOAT_DISPATCH_ON_SEMANTICS(
1269         convertToHexString(DST, HexDigits, UpperCase, RM));
1270   }
1271 
1272   bool isZero() const { return getCategory() == fcZero; }
1273   bool isInfinity() const { return getCategory() == fcInfinity; }
1274   bool isNaN() const { return getCategory() == fcNaN; }
1275 
1276   bool isNegative() const { return getIEEE().isNegative(); }
1277   bool isDenormal() const { APFLOAT_DISPATCH_ON_SEMANTICS(isDenormal()); }
1278   bool isSignaling() const { return getIEEE().isSignaling(); }
1279 
1280   bool isNormal() const { return !isDenormal() && isFiniteNonZero(); }
1281   bool isFinite() const { return !isNaN() && !isInfinity(); }
1282 
1283   fltCategory getCategory() const { return getIEEE().getCategory(); }
1284   const fltSemantics &getSemantics() const { return *U.semantics; }
1285   bool isNonZero() const { return !isZero(); }
1286   bool isFiniteNonZero() const { return isFinite() && !isZero(); }
1287   bool isPosZero() const { return isZero() && !isNegative(); }
1288   bool isNegZero() const { return isZero() && isNegative(); }
1289   bool isPosInfinity() const { return isInfinity() && !isNegative(); }
1290   bool isNegInfinity() const { return isInfinity() && isNegative(); }
1291   bool isSmallest() const { APFLOAT_DISPATCH_ON_SEMANTICS(isSmallest()); }
1292   bool isLargest() const { APFLOAT_DISPATCH_ON_SEMANTICS(isLargest()); }
1293   bool isInteger() const { APFLOAT_DISPATCH_ON_SEMANTICS(isInteger()); }
1294   bool isIEEE() const { return usesLayout<IEEEFloat>(getSemantics()); }
1295 
1296   bool isSmallestNormalized() const {
1297     APFLOAT_DISPATCH_ON_SEMANTICS(isSmallestNormalized());
1298   }
1299 
1300   /// Return the FPClassTest which will return true for the value.
1301   FPClassTest classify() const;
1302 
1303   APFloat &operator=(const APFloat &RHS) = default;
1304   APFloat &operator=(APFloat &&RHS) = default;
1305 
1306   void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0,
1307                 unsigned FormatMaxPadding = 3, bool TruncateZero = true) const {
1308     APFLOAT_DISPATCH_ON_SEMANTICS(
1309         toString(Str, FormatPrecision, FormatMaxPadding, TruncateZero));
1310   }
1311 
1312   void print(raw_ostream &) const;
1313   void dump() const;
1314 
1315   bool getExactInverse(APFloat *inv) const {
1316     APFLOAT_DISPATCH_ON_SEMANTICS(getExactInverse(inv));
1317   }
1318 
1319   friend hash_code hash_value(const APFloat &Arg);
1320   friend int ilogb(const APFloat &Arg) { return ilogb(Arg.getIEEE()); }
1321   friend APFloat scalbn(APFloat X, int Exp, roundingMode RM);
1322   friend APFloat frexp(const APFloat &X, int &Exp, roundingMode RM);
1323   friend IEEEFloat;
1324   friend DoubleAPFloat;
1325 };
1326 
1327 /// See friend declarations above.
1328 ///
1329 /// These additional declarations are required in order to compile LLVM with IBM
1330 /// xlC compiler.
1331 hash_code hash_value(const APFloat &Arg);
1332 inline APFloat scalbn(APFloat X, int Exp, APFloat::roundingMode RM) {
1333   if (APFloat::usesLayout<detail::IEEEFloat>(X.getSemantics()))
1334     return APFloat(scalbn(X.U.IEEE, Exp, RM), X.getSemantics());
1335   if (APFloat::usesLayout<detail::DoubleAPFloat>(X.getSemantics()))
1336     return APFloat(scalbn(X.U.Double, Exp, RM), X.getSemantics());
1337   llvm_unreachable("Unexpected semantics");
1338 }
1339 
1340 /// Equivalent of C standard library function.
1341 ///
1342 /// While the C standard says Exp is an unspecified value for infinity and nan,
1343 /// this returns INT_MAX for infinities, and INT_MIN for NaNs.
1344 inline APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM) {
1345   if (APFloat::usesLayout<detail::IEEEFloat>(X.getSemantics()))
1346     return APFloat(frexp(X.U.IEEE, Exp, RM), X.getSemantics());
1347   if (APFloat::usesLayout<detail::DoubleAPFloat>(X.getSemantics()))
1348     return APFloat(frexp(X.U.Double, Exp, RM), X.getSemantics());
1349   llvm_unreachable("Unexpected semantics");
1350 }
1351 /// Returns the absolute value of the argument.
1352 inline APFloat abs(APFloat X) {
1353   X.clearSign();
1354   return X;
1355 }
1356 
1357 /// Returns the negated value of the argument.
1358 inline APFloat neg(APFloat X) {
1359   X.changeSign();
1360   return X;
1361 }
1362 
1363 /// Implements IEEE minNum semantics. Returns the smaller of the 2 arguments if
1364 /// both are not NaN. If either argument is a NaN, returns the other argument.
1365 LLVM_READONLY
1366 inline APFloat minnum(const APFloat &A, const APFloat &B) {
1367   if (A.isNaN())
1368     return B;
1369   if (B.isNaN())
1370     return A;
1371   return B < A ? B : A;
1372 }
1373 
1374 /// Implements IEEE maxNum semantics. Returns the larger of the 2 arguments if
1375 /// both are not NaN. If either argument is a NaN, returns the other argument.
1376 LLVM_READONLY
1377 inline APFloat maxnum(const APFloat &A, const APFloat &B) {
1378   if (A.isNaN())
1379     return B;
1380   if (B.isNaN())
1381     return A;
1382   return A < B ? B : A;
1383 }
1384 
1385 /// Implements IEEE 754-2018 minimum semantics. Returns the smaller of 2
1386 /// arguments, propagating NaNs and treating -0 as less than +0.
1387 LLVM_READONLY
1388 inline APFloat minimum(const APFloat &A, const APFloat &B) {
1389   if (A.isNaN())
1390     return A;
1391   if (B.isNaN())
1392     return B;
1393   if (A.isZero() && B.isZero() && (A.isNegative() != B.isNegative()))
1394     return A.isNegative() ? A : B;
1395   return B < A ? B : A;
1396 }
1397 
1398 /// Implements IEEE 754-2018 maximum semantics. Returns the larger of 2
1399 /// arguments, propagating NaNs and treating -0 as less than +0.
1400 LLVM_READONLY
1401 inline APFloat maximum(const APFloat &A, const APFloat &B) {
1402   if (A.isNaN())
1403     return A;
1404   if (B.isNaN())
1405     return B;
1406   if (A.isZero() && B.isZero() && (A.isNegative() != B.isNegative()))
1407     return A.isNegative() ? B : A;
1408   return A < B ? B : A;
1409 }
1410 
1411 // We want the following functions to be available in the header for inlining.
1412 // We cannot define them inline in the class definition of `DoubleAPFloat`
1413 // because doing so would instantiate `std::unique_ptr<APFloat[]>` before
1414 // `APFloat` is defined, and that would be undefined behavior.
1415 namespace detail {
1416 
1417 DoubleAPFloat &DoubleAPFloat::operator=(DoubleAPFloat &&RHS) {
1418   if (this != &RHS) {
1419     this->~DoubleAPFloat();
1420     new (this) DoubleAPFloat(std::move(RHS));
1421   }
1422   return *this;
1423 }
1424 
1425 APFloat &DoubleAPFloat::getFirst() { return Floats[0]; }
1426 const APFloat &DoubleAPFloat::getFirst() const { return Floats[0]; }
1427 APFloat &DoubleAPFloat::getSecond() { return Floats[1]; }
1428 const APFloat &DoubleAPFloat::getSecond() const { return Floats[1]; }
1429 
1430 } // namespace detail
1431 
1432 } // namespace llvm
1433 
1434 #undef APFLOAT_DISPATCH_ON_SEMANTICS
1435 #endif // LLVM_ADT_APFLOAT_H
1436