1 //===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements a class to represent arbitrary precision
11 /// integral constant values and operations on them.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_ADT_APINT_H
16 #define LLVM_ADT_APINT_H
17 
18 #include "llvm/Support/Compiler.h"
19 #include "llvm/Support/MathExtras.h"
20 #include <cassert>
21 #include <climits>
22 #include <cstring>
23 #include <utility>
24 
25 namespace llvm {
26 class FoldingSetNodeID;
27 class StringRef;
28 class hash_code;
29 class raw_ostream;
30 
31 template <typename T> class SmallVectorImpl;
32 template <typename T> class ArrayRef;
33 template <typename T> class Optional;
34 template <typename T, typename Enable> struct DenseMapInfo;
35 
36 class APInt;
37 
38 inline APInt operator-(APInt);
39 
40 //===----------------------------------------------------------------------===//
41 //                              APInt Class
42 //===----------------------------------------------------------------------===//
43 
44 /// Class for arbitrary precision integers.
45 ///
46 /// APInt is a functional replacement for common case unsigned integer type like
47 /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
48 /// integer sizes and large integer value types such as 3-bits, 15-bits, or more
49 /// than 64-bits of precision. APInt provides a variety of arithmetic operators
50 /// and methods to manipulate integer values of any bit-width. It supports both
51 /// the typical integer arithmetic and comparison operations as well as bitwise
52 /// manipulation.
53 ///
54 /// The class has several invariants worth noting:
55 ///   * All bit, byte, and word positions are zero-based.
56 ///   * Once the bit width is set, it doesn't change except by the Truncate,
57 ///     SignExtend, or ZeroExtend operations.
58 ///   * All binary operators must be on APInt instances of the same bit width.
59 ///     Attempting to use these operators on instances with different bit
60 ///     widths will yield an assertion.
61 ///   * The value is stored canonically as an unsigned value. For operations
62 ///     where it makes a difference, there are both signed and unsigned variants
63 ///     of the operation. For example, sdiv and udiv. However, because the bit
64 ///     widths must be the same, operations such as Mul and Add produce the same
65 ///     results regardless of whether the values are interpreted as signed or
66 ///     not.
67 ///   * In general, the class tries to follow the style of computation that LLVM
68 ///     uses in its IR. This simplifies its use for LLVM.
69 ///   * APInt supports zero-bit-width values, but operations that require bits
70 ///     are not defined on it (e.g. you cannot ask for the sign of a zero-bit
71 ///     integer).  This means that operations like zero extension and logical
72 ///     shifts are defined, but sign extension and ashr is not.  Zero bit values
73 ///     compare and hash equal to themselves, and countLeadingZeros returns 0.
74 ///
75 class LLVM_NODISCARD APInt {
76 public:
77   typedef uint64_t WordType;
78 
79   /// This enum is used to hold the constants we needed for APInt.
80   enum : unsigned {
81     /// Byte size of a word.
82     APINT_WORD_SIZE = sizeof(WordType),
83     /// Bits in a word.
84     APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT
85   };
86 
87   enum class Rounding {
88     DOWN,
89     TOWARD_ZERO,
90     UP,
91   };
92 
93   static constexpr WordType WORDTYPE_MAX = ~WordType(0);
94 
95   /// \name Constructors
96   /// @{
97 
98   /// Create a new APInt of numBits width, initialized as val.
99   ///
100   /// If isSigned is true then val is treated as if it were a signed value
101   /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
102   /// will be done. Otherwise, no sign extension occurs (high order bits beyond
103   /// the range of val are zero filled).
104   ///
105   /// \param numBits the bit width of the constructed APInt
106   /// \param val the initial value of the APInt
107   /// \param isSigned how to treat signedness of val
108   APInt(unsigned numBits, uint64_t val, bool isSigned = false)
109       : BitWidth(numBits) {
110     if (isSingleWord()) {
111       U.VAL = val;
112       clearUnusedBits();
113     } else {
114       initSlowCase(val, isSigned);
115     }
116   }
117 
118   /// Construct an APInt of numBits width, initialized as bigVal[].
119   ///
120   /// Note that bigVal.size() can be smaller or larger than the corresponding
121   /// bit width but any extraneous bits will be dropped.
122   ///
123   /// \param numBits the bit width of the constructed APInt
124   /// \param bigVal a sequence of words to form the initial value of the APInt
125   APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
126 
127   /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
128   /// deprecated because this constructor is prone to ambiguity with the
129   /// APInt(unsigned, uint64_t, bool) constructor.
130   ///
131   /// If this overload is ever deleted, care should be taken to prevent calls
132   /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
133   /// constructor.
134   APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
135 
136   /// Construct an APInt from a string representation.
137   ///
138   /// This constructor interprets the string \p str in the given radix. The
139   /// interpretation stops when the first character that is not suitable for the
140   /// radix is encountered, or the end of the string. Acceptable radix values
141   /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
142   /// string to require more bits than numBits.
143   ///
144   /// \param numBits the bit width of the constructed APInt
145   /// \param str the string to be interpreted
146   /// \param radix the radix to use for the conversion
147   APInt(unsigned numBits, StringRef str, uint8_t radix);
148 
149   /// Default constructor that creates an APInt with a 1-bit zero value.
150   explicit APInt() { U.VAL = 0; }
151 
152   /// Copy Constructor.
153   APInt(const APInt &that) : BitWidth(that.BitWidth) {
154     if (isSingleWord())
155       U.VAL = that.U.VAL;
156     else
157       initSlowCase(that);
158   }
159 
160   /// Move Constructor.
161   APInt(APInt &&that) : BitWidth(that.BitWidth) {
162     memcpy(&U, &that.U, sizeof(U));
163     that.BitWidth = 0;
164   }
165 
166   /// Destructor.
167   ~APInt() {
168     if (needsCleanup())
169       delete[] U.pVal;
170   }
171 
172   /// @}
173   /// \name Value Generators
174   /// @{
175 
176   /// Get the '0' value for the specified bit-width.
177   static APInt getZero(unsigned numBits) { return APInt(numBits, 0); }
178 
179   /// NOTE: This is soft-deprecated.  Please use `getZero()` instead.
180   static APInt getNullValue(unsigned numBits) { return getZero(numBits); }
181 
182   /// Return an APInt zero bits wide.
183   static APInt getZeroWidth() { return getZero(0); }
184 
185   /// Gets maximum unsigned value of APInt for specific bit width.
186   static APInt getMaxValue(unsigned numBits) { return getAllOnes(numBits); }
187 
188   /// Gets maximum signed value of APInt for a specific bit width.
189   static APInt getSignedMaxValue(unsigned numBits) {
190     APInt API = getAllOnes(numBits);
191     API.clearBit(numBits - 1);
192     return API;
193   }
194 
195   /// Gets minimum unsigned value of APInt for a specific bit width.
196   static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
197 
198   /// Gets minimum signed value of APInt for a specific bit width.
199   static APInt getSignedMinValue(unsigned numBits) {
200     APInt API(numBits, 0);
201     API.setBit(numBits - 1);
202     return API;
203   }
204 
205   /// Get the SignMask for a specific bit width.
206   ///
207   /// This is just a wrapper function of getSignedMinValue(), and it helps code
208   /// readability when we want to get a SignMask.
209   static APInt getSignMask(unsigned BitWidth) {
210     return getSignedMinValue(BitWidth);
211   }
212 
213   /// Return an APInt of a specified width with all bits set.
214   static APInt getAllOnes(unsigned numBits) {
215     return APInt(numBits, WORDTYPE_MAX, true);
216   }
217 
218   /// NOTE: This is soft-deprecated.  Please use `getAllOnes()` instead.
219   static APInt getAllOnesValue(unsigned numBits) { return getAllOnes(numBits); }
220 
221   /// Return an APInt with exactly one bit set in the result.
222   static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
223     APInt Res(numBits, 0);
224     Res.setBit(BitNo);
225     return Res;
226   }
227 
228   /// Get a value with a block of bits set.
229   ///
230   /// Constructs an APInt value that has a contiguous range of bits set. The
231   /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
232   /// bits will be zero. For example, with parameters(32, 0, 16) you would get
233   /// 0x0000FFFF. Please call getBitsSetWithWrap if \p loBit may be greater than
234   /// \p hiBit.
235   ///
236   /// \param numBits the intended bit width of the result
237   /// \param loBit the index of the lowest bit set.
238   /// \param hiBit the index of the highest bit set.
239   ///
240   /// \returns An APInt value with the requested bits set.
241   static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
242     APInt Res(numBits, 0);
243     Res.setBits(loBit, hiBit);
244     return Res;
245   }
246 
247   /// Wrap version of getBitsSet.
248   /// If \p hiBit is bigger than \p loBit, this is same with getBitsSet.
249   /// If \p hiBit is not bigger than \p loBit, the set bits "wrap". For example,
250   /// with parameters (32, 28, 4), you would get 0xF000000F.
251   /// If \p hiBit is equal to \p loBit, you would get a result with all bits
252   /// set.
253   static APInt getBitsSetWithWrap(unsigned numBits, unsigned loBit,
254                                   unsigned hiBit) {
255     APInt Res(numBits, 0);
256     Res.setBitsWithWrap(loBit, hiBit);
257     return Res;
258   }
259 
260   /// Constructs an APInt value that has a contiguous range of bits set. The
261   /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other
262   /// bits will be zero. For example, with parameters(32, 12) you would get
263   /// 0xFFFFF000.
264   ///
265   /// \param numBits the intended bit width of the result
266   /// \param loBit the index of the lowest bit to set.
267   ///
268   /// \returns An APInt value with the requested bits set.
269   static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) {
270     APInt Res(numBits, 0);
271     Res.setBitsFrom(loBit);
272     return Res;
273   }
274 
275   /// Constructs an APInt value that has the top hiBitsSet bits set.
276   ///
277   /// \param numBits the bitwidth of the result
278   /// \param hiBitsSet the number of high-order bits set in the result.
279   static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
280     APInt Res(numBits, 0);
281     Res.setHighBits(hiBitsSet);
282     return Res;
283   }
284 
285   /// Constructs an APInt value that has the bottom loBitsSet bits set.
286   ///
287   /// \param numBits the bitwidth of the result
288   /// \param loBitsSet the number of low-order bits set in the result.
289   static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
290     APInt Res(numBits, 0);
291     Res.setLowBits(loBitsSet);
292     return Res;
293   }
294 
295   /// Return a value containing V broadcasted over NewLen bits.
296   static APInt getSplat(unsigned NewLen, const APInt &V);
297 
298   /// @}
299   /// \name Value Tests
300   /// @{
301 
302   /// Determine if this APInt just has one word to store value.
303   ///
304   /// \returns true if the number of bits <= 64, false otherwise.
305   bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
306 
307   /// Determine sign of this APInt.
308   ///
309   /// This tests the high bit of this APInt to determine if it is set.
310   ///
311   /// \returns true if this APInt is negative, false otherwise
312   bool isNegative() const { return (*this)[BitWidth - 1]; }
313 
314   /// Determine if this APInt Value is non-negative (>= 0)
315   ///
316   /// This tests the high bit of the APInt to determine if it is unset.
317   bool isNonNegative() const { return !isNegative(); }
318 
319   /// Determine if sign bit of this APInt is set.
320   ///
321   /// This tests the high bit of this APInt to determine if it is set.
322   ///
323   /// \returns true if this APInt has its sign bit set, false otherwise.
324   bool isSignBitSet() const { return (*this)[BitWidth - 1]; }
325 
326   /// Determine if sign bit of this APInt is clear.
327   ///
328   /// This tests the high bit of this APInt to determine if it is clear.
329   ///
330   /// \returns true if this APInt has its sign bit clear, false otherwise.
331   bool isSignBitClear() const { return !isSignBitSet(); }
332 
333   /// Determine if this APInt Value is positive.
334   ///
335   /// This tests if the value of this APInt is positive (> 0). Note
336   /// that 0 is not a positive value.
337   ///
338   /// \returns true if this APInt is positive.
339   bool isStrictlyPositive() const { return isNonNegative() && !isZero(); }
340 
341   /// Determine if this APInt Value is non-positive (<= 0).
342   ///
343   /// \returns true if this APInt is non-positive.
344   bool isNonPositive() const { return !isStrictlyPositive(); }
345 
346   /// Determine if all bits are set.  This is true for zero-width values.
347   bool isAllOnes() const {
348     if (BitWidth == 0)
349       return true;
350     if (isSingleWord())
351       return U.VAL == WORDTYPE_MAX >> (APINT_BITS_PER_WORD - BitWidth);
352     return countTrailingOnesSlowCase() == BitWidth;
353   }
354 
355   /// NOTE: This is soft-deprecated.  Please use `isAllOnes()` instead.
356   bool isAllOnesValue() const { return isAllOnes(); }
357 
358   /// Determine if this value is zero, i.e. all bits are clear.
359   bool isZero() const {
360     if (isSingleWord())
361       return U.VAL == 0;
362     return countLeadingZerosSlowCase() == BitWidth;
363   }
364 
365   /// NOTE: This is soft-deprecated.  Please use `isZero()` instead.
366   bool isNullValue() const { return isZero(); }
367 
368   /// Determine if this is a value of 1.
369   ///
370   /// This checks to see if the value of this APInt is one.
371   bool isOne() const {
372     if (isSingleWord())
373       return U.VAL == 1;
374     return countLeadingZerosSlowCase() == BitWidth - 1;
375   }
376 
377   /// NOTE: This is soft-deprecated.  Please use `isOne()` instead.
378   bool isOneValue() const { return isOne(); }
379 
380   /// Determine if this is the largest unsigned value.
381   ///
382   /// This checks to see if the value of this APInt is the maximum unsigned
383   /// value for the APInt's bit width.
384   bool isMaxValue() const { return isAllOnes(); }
385 
386   /// Determine if this is the largest signed value.
387   ///
388   /// This checks to see if the value of this APInt is the maximum signed
389   /// value for the APInt's bit width.
390   bool isMaxSignedValue() const {
391     if (isSingleWord()) {
392       assert(BitWidth && "zero width values not allowed");
393       return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1);
394     }
395     return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1;
396   }
397 
398   /// Determine if this is the smallest unsigned value.
399   ///
400   /// This checks to see if the value of this APInt is the minimum unsigned
401   /// value for the APInt's bit width.
402   bool isMinValue() const { return isZero(); }
403 
404   /// Determine if this is the smallest signed value.
405   ///
406   /// This checks to see if the value of this APInt is the minimum signed
407   /// value for the APInt's bit width.
408   bool isMinSignedValue() const {
409     if (isSingleWord()) {
410       assert(BitWidth && "zero width values not allowed");
411       return U.VAL == (WordType(1) << (BitWidth - 1));
412     }
413     return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1;
414   }
415 
416   /// Check if this APInt has an N-bits unsigned integer value.
417   bool isIntN(unsigned N) const { return getActiveBits() <= N; }
418 
419   /// Check if this APInt has an N-bits signed integer value.
420   bool isSignedIntN(unsigned N) const { return getSignificantBits() <= N; }
421 
422   /// Check if this APInt's value is a power of two greater than zero.
423   ///
424   /// \returns true if the argument APInt value is a power of two > 0.
425   bool isPowerOf2() const {
426     if (isSingleWord()) {
427       assert(BitWidth && "zero width values not allowed");
428       return isPowerOf2_64(U.VAL);
429     }
430     return countPopulationSlowCase() == 1;
431   }
432 
433   /// Check if this APInt's negated value is a power of two greater than zero.
434   bool isNegatedPowerOf2() const {
435     assert(BitWidth && "zero width values not allowed");
436     if (isNonNegative())
437       return false;
438     // NegatedPowerOf2 - shifted mask in the top bits.
439     unsigned LO = countLeadingOnes();
440     unsigned TZ = countTrailingZeros();
441     return (LO + TZ) == BitWidth;
442   }
443 
444   /// Check if the APInt's value is returned by getSignMask.
445   ///
446   /// \returns true if this is the value returned by getSignMask.
447   bool isSignMask() const { return isMinSignedValue(); }
448 
449   /// Convert APInt to a boolean value.
450   ///
451   /// This converts the APInt to a boolean value as a test against zero.
452   bool getBoolValue() const { return !isZero(); }
453 
454   /// If this value is smaller than the specified limit, return it, otherwise
455   /// return the limit value.  This causes the value to saturate to the limit.
456   uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) const {
457     return ugt(Limit) ? Limit : getZExtValue();
458   }
459 
460   /// Check if the APInt consists of a repeated bit pattern.
461   ///
462   /// e.g. 0x01010101 satisfies isSplat(8).
463   /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
464   /// width without remainder.
465   bool isSplat(unsigned SplatSizeInBits) const;
466 
467   /// \returns true if this APInt value is a sequence of \param numBits ones
468   /// starting at the least significant bit with the remainder zero.
469   bool isMask(unsigned numBits) const {
470     assert(numBits != 0 && "numBits must be non-zero");
471     assert(numBits <= BitWidth && "numBits out of range");
472     if (isSingleWord())
473       return U.VAL == (WORDTYPE_MAX >> (APINT_BITS_PER_WORD - numBits));
474     unsigned Ones = countTrailingOnesSlowCase();
475     return (numBits == Ones) &&
476            ((Ones + countLeadingZerosSlowCase()) == BitWidth);
477   }
478 
479   /// \returns true if this APInt is a non-empty sequence of ones starting at
480   /// the least significant bit with the remainder zero.
481   /// Ex. isMask(0x0000FFFFU) == true.
482   bool isMask() const {
483     if (isSingleWord())
484       return isMask_64(U.VAL);
485     unsigned Ones = countTrailingOnesSlowCase();
486     return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth);
487   }
488 
489   /// Return true if this APInt value contains a non-empty sequence of ones with
490   /// the remainder zero.
491   bool isShiftedMask() const {
492     if (isSingleWord())
493       return isShiftedMask_64(U.VAL);
494     unsigned Ones = countPopulationSlowCase();
495     unsigned LeadZ = countLeadingZerosSlowCase();
496     return (Ones + LeadZ + countTrailingZeros()) == BitWidth;
497   }
498 
499   /// Return true if this APInt value contains a non-empty sequence of ones with
500   /// the remainder zero. If true, \p MaskIdx will specify the index of the
501   /// lowest set bit and \p MaskLen is updated to specify the length of the
502   /// mask, else neither are updated.
503   bool isShiftedMask(unsigned &MaskIdx, unsigned &MaskLen) const {
504     if (isSingleWord())
505       return isShiftedMask_64(U.VAL, MaskIdx, MaskLen);
506     unsigned Ones = countPopulationSlowCase();
507     unsigned LeadZ = countLeadingZerosSlowCase();
508     unsigned TrailZ = countTrailingZerosSlowCase();
509     if ((Ones + LeadZ + TrailZ) != BitWidth)
510       return false;
511     MaskLen = Ones;
512     MaskIdx = TrailZ;
513     return true;
514   }
515 
516   /// Compute an APInt containing numBits highbits from this APInt.
517   ///
518   /// Get an APInt with the same BitWidth as this APInt, just zero mask the low
519   /// bits and right shift to the least significant bit.
520   ///
521   /// \returns the high "numBits" bits of this APInt.
522   APInt getHiBits(unsigned numBits) const;
523 
524   /// Compute an APInt containing numBits lowbits from this APInt.
525   ///
526   /// Get an APInt with the same BitWidth as this APInt, just zero mask the high
527   /// bits.
528   ///
529   /// \returns the low "numBits" bits of this APInt.
530   APInt getLoBits(unsigned numBits) const;
531 
532   /// Determine if two APInts have the same value, after zero-extending
533   /// one of them (if needed!) to ensure that the bit-widths match.
534   static bool isSameValue(const APInt &I1, const APInt &I2) {
535     if (I1.getBitWidth() == I2.getBitWidth())
536       return I1 == I2;
537 
538     if (I1.getBitWidth() > I2.getBitWidth())
539       return I1 == I2.zext(I1.getBitWidth());
540 
541     return I1.zext(I2.getBitWidth()) == I2;
542   }
543 
544   /// Overload to compute a hash_code for an APInt value.
545   friend hash_code hash_value(const APInt &Arg);
546 
547   /// This function returns a pointer to the internal storage of the APInt.
548   /// This is useful for writing out the APInt in binary form without any
549   /// conversions.
550   const uint64_t *getRawData() const {
551     if (isSingleWord())
552       return &U.VAL;
553     return &U.pVal[0];
554   }
555 
556   /// @}
557   /// \name Unary Operators
558   /// @{
559 
560   /// Postfix increment operator.  Increment *this by 1.
561   ///
562   /// \returns a new APInt value representing the original value of *this.
563   APInt operator++(int) {
564     APInt API(*this);
565     ++(*this);
566     return API;
567   }
568 
569   /// Prefix increment operator.
570   ///
571   /// \returns *this incremented by one
572   APInt &operator++();
573 
574   /// Postfix decrement operator. Decrement *this by 1.
575   ///
576   /// \returns a new APInt value representing the original value of *this.
577   APInt operator--(int) {
578     APInt API(*this);
579     --(*this);
580     return API;
581   }
582 
583   /// Prefix decrement operator.
584   ///
585   /// \returns *this decremented by one.
586   APInt &operator--();
587 
588   /// Logical negation operation on this APInt returns true if zero, like normal
589   /// integers.
590   bool operator!() const { return isZero(); }
591 
592   /// @}
593   /// \name Assignment Operators
594   /// @{
595 
596   /// Copy assignment operator.
597   ///
598   /// \returns *this after assignment of RHS.
599   APInt &operator=(const APInt &RHS) {
600     // The common case (both source or dest being inline) doesn't require
601     // allocation or deallocation.
602     if (isSingleWord() && RHS.isSingleWord()) {
603       U.VAL = RHS.U.VAL;
604       BitWidth = RHS.BitWidth;
605       return *this;
606     }
607 
608     assignSlowCase(RHS);
609     return *this;
610   }
611 
612   /// Move assignment operator.
613   APInt &operator=(APInt &&that) {
614 #ifdef EXPENSIVE_CHECKS
615     // Some std::shuffle implementations still do self-assignment.
616     if (this == &that)
617       return *this;
618 #endif
619     assert(this != &that && "Self-move not supported");
620     if (!isSingleWord())
621       delete[] U.pVal;
622 
623     // Use memcpy so that type based alias analysis sees both VAL and pVal
624     // as modified.
625     memcpy(&U, &that.U, sizeof(U));
626 
627     BitWidth = that.BitWidth;
628     that.BitWidth = 0;
629     return *this;
630   }
631 
632   /// Assignment operator.
633   ///
634   /// The RHS value is assigned to *this. If the significant bits in RHS exceed
635   /// the bit width, the excess bits are truncated. If the bit width is larger
636   /// than 64, the value is zero filled in the unspecified high order bits.
637   ///
638   /// \returns *this after assignment of RHS value.
639   APInt &operator=(uint64_t RHS) {
640     if (isSingleWord()) {
641       U.VAL = RHS;
642       return clearUnusedBits();
643     }
644     U.pVal[0] = RHS;
645     memset(U.pVal + 1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
646     return *this;
647   }
648 
649   /// Bitwise AND assignment operator.
650   ///
651   /// Performs a bitwise AND operation on this APInt and RHS. The result is
652   /// assigned to *this.
653   ///
654   /// \returns *this after ANDing with RHS.
655   APInt &operator&=(const APInt &RHS) {
656     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
657     if (isSingleWord())
658       U.VAL &= RHS.U.VAL;
659     else
660       andAssignSlowCase(RHS);
661     return *this;
662   }
663 
664   /// Bitwise AND assignment operator.
665   ///
666   /// Performs a bitwise AND operation on this APInt and RHS. RHS is
667   /// logically zero-extended or truncated to match the bit-width of
668   /// the LHS.
669   APInt &operator&=(uint64_t RHS) {
670     if (isSingleWord()) {
671       U.VAL &= RHS;
672       return *this;
673     }
674     U.pVal[0] &= RHS;
675     memset(U.pVal + 1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
676     return *this;
677   }
678 
679   /// Bitwise OR assignment operator.
680   ///
681   /// Performs a bitwise OR operation on this APInt and RHS. The result is
682   /// assigned *this;
683   ///
684   /// \returns *this after ORing with RHS.
685   APInt &operator|=(const APInt &RHS) {
686     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
687     if (isSingleWord())
688       U.VAL |= RHS.U.VAL;
689     else
690       orAssignSlowCase(RHS);
691     return *this;
692   }
693 
694   /// Bitwise OR assignment operator.
695   ///
696   /// Performs a bitwise OR operation on this APInt and RHS. RHS is
697   /// logically zero-extended or truncated to match the bit-width of
698   /// the LHS.
699   APInt &operator|=(uint64_t RHS) {
700     if (isSingleWord()) {
701       U.VAL |= RHS;
702       return clearUnusedBits();
703     }
704     U.pVal[0] |= RHS;
705     return *this;
706   }
707 
708   /// Bitwise XOR assignment operator.
709   ///
710   /// Performs a bitwise XOR operation on this APInt and RHS. The result is
711   /// assigned to *this.
712   ///
713   /// \returns *this after XORing with RHS.
714   APInt &operator^=(const APInt &RHS) {
715     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
716     if (isSingleWord())
717       U.VAL ^= RHS.U.VAL;
718     else
719       xorAssignSlowCase(RHS);
720     return *this;
721   }
722 
723   /// Bitwise XOR assignment operator.
724   ///
725   /// Performs a bitwise XOR operation on this APInt and RHS. RHS is
726   /// logically zero-extended or truncated to match the bit-width of
727   /// the LHS.
728   APInt &operator^=(uint64_t RHS) {
729     if (isSingleWord()) {
730       U.VAL ^= RHS;
731       return clearUnusedBits();
732     }
733     U.pVal[0] ^= RHS;
734     return *this;
735   }
736 
737   /// Multiplication assignment operator.
738   ///
739   /// Multiplies this APInt by RHS and assigns the result to *this.
740   ///
741   /// \returns *this
742   APInt &operator*=(const APInt &RHS);
743   APInt &operator*=(uint64_t RHS);
744 
745   /// Addition assignment operator.
746   ///
747   /// Adds RHS to *this and assigns the result to *this.
748   ///
749   /// \returns *this
750   APInt &operator+=(const APInt &RHS);
751   APInt &operator+=(uint64_t RHS);
752 
753   /// Subtraction assignment operator.
754   ///
755   /// Subtracts RHS from *this and assigns the result to *this.
756   ///
757   /// \returns *this
758   APInt &operator-=(const APInt &RHS);
759   APInt &operator-=(uint64_t RHS);
760 
761   /// Left-shift assignment function.
762   ///
763   /// Shifts *this left by shiftAmt and assigns the result to *this.
764   ///
765   /// \returns *this after shifting left by ShiftAmt
766   APInt &operator<<=(unsigned ShiftAmt) {
767     assert(ShiftAmt <= BitWidth && "Invalid shift amount");
768     if (isSingleWord()) {
769       if (ShiftAmt == BitWidth)
770         U.VAL = 0;
771       else
772         U.VAL <<= ShiftAmt;
773       return clearUnusedBits();
774     }
775     shlSlowCase(ShiftAmt);
776     return *this;
777   }
778 
779   /// Left-shift assignment function.
780   ///
781   /// Shifts *this left by shiftAmt and assigns the result to *this.
782   ///
783   /// \returns *this after shifting left by ShiftAmt
784   APInt &operator<<=(const APInt &ShiftAmt);
785 
786   /// @}
787   /// \name Binary Operators
788   /// @{
789 
790   /// Multiplication operator.
791   ///
792   /// Multiplies this APInt by RHS and returns the result.
793   APInt operator*(const APInt &RHS) const;
794 
795   /// Left logical shift operator.
796   ///
797   /// Shifts this APInt left by \p Bits and returns the result.
798   APInt operator<<(unsigned Bits) const { return shl(Bits); }
799 
800   /// Left logical shift operator.
801   ///
802   /// Shifts this APInt left by \p Bits and returns the result.
803   APInt operator<<(const APInt &Bits) const { return shl(Bits); }
804 
805   /// Arithmetic right-shift function.
806   ///
807   /// Arithmetic right-shift this APInt by shiftAmt.
808   APInt ashr(unsigned ShiftAmt) const {
809     APInt R(*this);
810     R.ashrInPlace(ShiftAmt);
811     return R;
812   }
813 
814   /// Arithmetic right-shift this APInt by ShiftAmt in place.
815   void ashrInPlace(unsigned ShiftAmt) {
816     assert(ShiftAmt <= BitWidth && "Invalid shift amount");
817     if (isSingleWord()) {
818       int64_t SExtVAL = SignExtend64(U.VAL, BitWidth);
819       if (ShiftAmt == BitWidth)
820         U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit.
821       else
822         U.VAL = SExtVAL >> ShiftAmt;
823       clearUnusedBits();
824       return;
825     }
826     ashrSlowCase(ShiftAmt);
827   }
828 
829   /// Logical right-shift function.
830   ///
831   /// Logical right-shift this APInt by shiftAmt.
832   APInt lshr(unsigned shiftAmt) const {
833     APInt R(*this);
834     R.lshrInPlace(shiftAmt);
835     return R;
836   }
837 
838   /// Logical right-shift this APInt by ShiftAmt in place.
839   void lshrInPlace(unsigned ShiftAmt) {
840     assert(ShiftAmt <= BitWidth && "Invalid shift amount");
841     if (isSingleWord()) {
842       if (ShiftAmt == BitWidth)
843         U.VAL = 0;
844       else
845         U.VAL >>= ShiftAmt;
846       return;
847     }
848     lshrSlowCase(ShiftAmt);
849   }
850 
851   /// Left-shift function.
852   ///
853   /// Left-shift this APInt by shiftAmt.
854   APInt shl(unsigned shiftAmt) const {
855     APInt R(*this);
856     R <<= shiftAmt;
857     return R;
858   }
859 
860   /// Rotate left by rotateAmt.
861   APInt rotl(unsigned rotateAmt) const;
862 
863   /// Rotate right by rotateAmt.
864   APInt rotr(unsigned rotateAmt) const;
865 
866   /// Arithmetic right-shift function.
867   ///
868   /// Arithmetic right-shift this APInt by shiftAmt.
869   APInt ashr(const APInt &ShiftAmt) const {
870     APInt R(*this);
871     R.ashrInPlace(ShiftAmt);
872     return R;
873   }
874 
875   /// Arithmetic right-shift this APInt by shiftAmt in place.
876   void ashrInPlace(const APInt &shiftAmt);
877 
878   /// Logical right-shift function.
879   ///
880   /// Logical right-shift this APInt by shiftAmt.
881   APInt lshr(const APInt &ShiftAmt) const {
882     APInt R(*this);
883     R.lshrInPlace(ShiftAmt);
884     return R;
885   }
886 
887   /// Logical right-shift this APInt by ShiftAmt in place.
888   void lshrInPlace(const APInt &ShiftAmt);
889 
890   /// Left-shift function.
891   ///
892   /// Left-shift this APInt by shiftAmt.
893   APInt shl(const APInt &ShiftAmt) const {
894     APInt R(*this);
895     R <<= ShiftAmt;
896     return R;
897   }
898 
899   /// Rotate left by rotateAmt.
900   APInt rotl(const APInt &rotateAmt) const;
901 
902   /// Rotate right by rotateAmt.
903   APInt rotr(const APInt &rotateAmt) const;
904 
905   /// Concatenate the bits from "NewLSB" onto the bottom of *this.  This is
906   /// equivalent to:
907   ///   (this->zext(NewWidth) << NewLSB.getBitWidth()) | NewLSB.zext(NewWidth)
908   APInt concat(const APInt &NewLSB) const {
909     /// If the result will be small, then both the merged values are small.
910     unsigned NewWidth = getBitWidth() + NewLSB.getBitWidth();
911     if (NewWidth <= APINT_BITS_PER_WORD)
912       return APInt(NewWidth, (U.VAL << NewLSB.getBitWidth()) | NewLSB.U.VAL);
913     return concatSlowCase(NewLSB);
914   }
915 
916   /// Unsigned division operation.
917   ///
918   /// Perform an unsigned divide operation on this APInt by RHS. Both this and
919   /// RHS are treated as unsigned quantities for purposes of this division.
920   ///
921   /// \returns a new APInt value containing the division result, rounded towards
922   /// zero.
923   APInt udiv(const APInt &RHS) const;
924   APInt udiv(uint64_t RHS) const;
925 
926   /// Signed division function for APInt.
927   ///
928   /// Signed divide this APInt by APInt RHS.
929   ///
930   /// The result is rounded towards zero.
931   APInt sdiv(const APInt &RHS) const;
932   APInt sdiv(int64_t RHS) const;
933 
934   /// Unsigned remainder operation.
935   ///
936   /// Perform an unsigned remainder operation on this APInt with RHS being the
937   /// divisor. Both this and RHS are treated as unsigned quantities for purposes
938   /// of this operation. Note that this is a true remainder operation and not a
939   /// modulo operation because the sign follows the sign of the dividend which
940   /// is *this.
941   ///
942   /// \returns a new APInt value containing the remainder result
943   APInt urem(const APInt &RHS) const;
944   uint64_t urem(uint64_t RHS) const;
945 
946   /// Function for signed remainder operation.
947   ///
948   /// Signed remainder operation on APInt.
949   APInt srem(const APInt &RHS) const;
950   int64_t srem(int64_t RHS) const;
951 
952   /// Dual division/remainder interface.
953   ///
954   /// Sometimes it is convenient to divide two APInt values and obtain both the
955   /// quotient and remainder. This function does both operations in the same
956   /// computation making it a little more efficient. The pair of input arguments
957   /// may overlap with the pair of output arguments. It is safe to call
958   /// udivrem(X, Y, X, Y), for example.
959   static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
960                       APInt &Remainder);
961   static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
962                       uint64_t &Remainder);
963 
964   static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
965                       APInt &Remainder);
966   static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient,
967                       int64_t &Remainder);
968 
969   // Operations that return overflow indicators.
970   APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
971   APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
972   APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
973   APInt usub_ov(const APInt &RHS, bool &Overflow) const;
974   APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
975   APInt smul_ov(const APInt &RHS, bool &Overflow) const;
976   APInt umul_ov(const APInt &RHS, bool &Overflow) const;
977   APInt sshl_ov(const APInt &Amt, bool &Overflow) const;
978   APInt ushl_ov(const APInt &Amt, bool &Overflow) const;
979 
980   // Operations that saturate
981   APInt sadd_sat(const APInt &RHS) const;
982   APInt uadd_sat(const APInt &RHS) const;
983   APInt ssub_sat(const APInt &RHS) const;
984   APInt usub_sat(const APInt &RHS) const;
985   APInt smul_sat(const APInt &RHS) const;
986   APInt umul_sat(const APInt &RHS) const;
987   APInt sshl_sat(const APInt &RHS) const;
988   APInt ushl_sat(const APInt &RHS) const;
989 
990   /// Array-indexing support.
991   ///
992   /// \returns the bit value at bitPosition
993   bool operator[](unsigned bitPosition) const {
994     assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
995     return (maskBit(bitPosition) & getWord(bitPosition)) != 0;
996   }
997 
998   /// @}
999   /// \name Comparison Operators
1000   /// @{
1001 
1002   /// Equality operator.
1003   ///
1004   /// Compares this APInt with RHS for the validity of the equality
1005   /// relationship.
1006   bool operator==(const APInt &RHS) const {
1007     assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
1008     if (isSingleWord())
1009       return U.VAL == RHS.U.VAL;
1010     return equalSlowCase(RHS);
1011   }
1012 
1013   /// Equality operator.
1014   ///
1015   /// Compares this APInt with a uint64_t for the validity of the equality
1016   /// relationship.
1017   ///
1018   /// \returns true if *this == Val
1019   bool operator==(uint64_t Val) const {
1020     return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val;
1021   }
1022 
1023   /// Equality comparison.
1024   ///
1025   /// Compares this APInt with RHS for the validity of the equality
1026   /// relationship.
1027   ///
1028   /// \returns true if *this == Val
1029   bool eq(const APInt &RHS) const { return (*this) == RHS; }
1030 
1031   /// Inequality operator.
1032   ///
1033   /// Compares this APInt with RHS for the validity of the inequality
1034   /// relationship.
1035   ///
1036   /// \returns true if *this != Val
1037   bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
1038 
1039   /// Inequality operator.
1040   ///
1041   /// Compares this APInt with a uint64_t for the validity of the inequality
1042   /// relationship.
1043   ///
1044   /// \returns true if *this != Val
1045   bool operator!=(uint64_t Val) const { return !((*this) == Val); }
1046 
1047   /// Inequality comparison
1048   ///
1049   /// Compares this APInt with RHS for the validity of the inequality
1050   /// relationship.
1051   ///
1052   /// \returns true if *this != Val
1053   bool ne(const APInt &RHS) const { return !((*this) == RHS); }
1054 
1055   /// Unsigned less than comparison
1056   ///
1057   /// Regards both *this and RHS as unsigned quantities and compares them for
1058   /// the validity of the less-than relationship.
1059   ///
1060   /// \returns true if *this < RHS when both are considered unsigned.
1061   bool ult(const APInt &RHS) const { return compare(RHS) < 0; }
1062 
1063   /// Unsigned less than comparison
1064   ///
1065   /// Regards both *this as an unsigned quantity and compares it with RHS for
1066   /// the validity of the less-than relationship.
1067   ///
1068   /// \returns true if *this < RHS when considered unsigned.
1069   bool ult(uint64_t RHS) const {
1070     // Only need to check active bits if not a single word.
1071     return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS;
1072   }
1073 
1074   /// Signed less than comparison
1075   ///
1076   /// Regards both *this and RHS as signed quantities and compares them for
1077   /// validity of the less-than relationship.
1078   ///
1079   /// \returns true if *this < RHS when both are considered signed.
1080   bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; }
1081 
1082   /// Signed less than comparison
1083   ///
1084   /// Regards both *this as a signed quantity and compares it with RHS for
1085   /// the validity of the less-than relationship.
1086   ///
1087   /// \returns true if *this < RHS when considered signed.
1088   bool slt(int64_t RHS) const {
1089     return (!isSingleWord() && getSignificantBits() > 64)
1090                ? isNegative()
1091                : getSExtValue() < RHS;
1092   }
1093 
1094   /// Unsigned less or equal comparison
1095   ///
1096   /// Regards both *this and RHS as unsigned quantities and compares them for
1097   /// validity of the less-or-equal relationship.
1098   ///
1099   /// \returns true if *this <= RHS when both are considered unsigned.
1100   bool ule(const APInt &RHS) const { return compare(RHS) <= 0; }
1101 
1102   /// Unsigned less or equal comparison
1103   ///
1104   /// Regards both *this as an unsigned quantity and compares it with RHS for
1105   /// the validity of the less-or-equal relationship.
1106   ///
1107   /// \returns true if *this <= RHS when considered unsigned.
1108   bool ule(uint64_t RHS) const { return !ugt(RHS); }
1109 
1110   /// Signed less or equal comparison
1111   ///
1112   /// Regards both *this and RHS as signed quantities and compares them for
1113   /// validity of the less-or-equal relationship.
1114   ///
1115   /// \returns true if *this <= RHS when both are considered signed.
1116   bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; }
1117 
1118   /// Signed less or equal comparison
1119   ///
1120   /// Regards both *this as a signed quantity and compares it with RHS for the
1121   /// validity of the less-or-equal relationship.
1122   ///
1123   /// \returns true if *this <= RHS when considered signed.
1124   bool sle(uint64_t RHS) const { return !sgt(RHS); }
1125 
1126   /// Unsigned greater than comparison
1127   ///
1128   /// Regards both *this and RHS as unsigned quantities and compares them for
1129   /// the validity of the greater-than relationship.
1130   ///
1131   /// \returns true if *this > RHS when both are considered unsigned.
1132   bool ugt(const APInt &RHS) const { return !ule(RHS); }
1133 
1134   /// Unsigned greater than comparison
1135   ///
1136   /// Regards both *this as an unsigned quantity and compares it with RHS for
1137   /// the validity of the greater-than relationship.
1138   ///
1139   /// \returns true if *this > RHS when considered unsigned.
1140   bool ugt(uint64_t RHS) const {
1141     // Only need to check active bits if not a single word.
1142     return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS;
1143   }
1144 
1145   /// Signed greater than comparison
1146   ///
1147   /// Regards both *this and RHS as signed quantities and compares them for the
1148   /// validity of the greater-than relationship.
1149   ///
1150   /// \returns true if *this > RHS when both are considered signed.
1151   bool sgt(const APInt &RHS) const { return !sle(RHS); }
1152 
1153   /// Signed greater than comparison
1154   ///
1155   /// Regards both *this as a signed quantity and compares it with RHS for
1156   /// the validity of the greater-than relationship.
1157   ///
1158   /// \returns true if *this > RHS when considered signed.
1159   bool sgt(int64_t RHS) const {
1160     return (!isSingleWord() && getSignificantBits() > 64)
1161                ? !isNegative()
1162                : getSExtValue() > RHS;
1163   }
1164 
1165   /// Unsigned greater or equal comparison
1166   ///
1167   /// Regards both *this and RHS as unsigned quantities and compares them for
1168   /// validity of the greater-or-equal relationship.
1169   ///
1170   /// \returns true if *this >= RHS when both are considered unsigned.
1171   bool uge(const APInt &RHS) const { return !ult(RHS); }
1172 
1173   /// Unsigned greater or equal comparison
1174   ///
1175   /// Regards both *this as an unsigned quantity and compares it with RHS for
1176   /// the validity of the greater-or-equal relationship.
1177   ///
1178   /// \returns true if *this >= RHS when considered unsigned.
1179   bool uge(uint64_t RHS) const { return !ult(RHS); }
1180 
1181   /// Signed greater or equal comparison
1182   ///
1183   /// Regards both *this and RHS as signed quantities and compares them for
1184   /// validity of the greater-or-equal relationship.
1185   ///
1186   /// \returns true if *this >= RHS when both are considered signed.
1187   bool sge(const APInt &RHS) const { return !slt(RHS); }
1188 
1189   /// Signed greater or equal comparison
1190   ///
1191   /// Regards both *this as a signed quantity and compares it with RHS for
1192   /// the validity of the greater-or-equal relationship.
1193   ///
1194   /// \returns true if *this >= RHS when considered signed.
1195   bool sge(int64_t RHS) const { return !slt(RHS); }
1196 
1197   /// This operation tests if there are any pairs of corresponding bits
1198   /// between this APInt and RHS that are both set.
1199   bool intersects(const APInt &RHS) const {
1200     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1201     if (isSingleWord())
1202       return (U.VAL & RHS.U.VAL) != 0;
1203     return intersectsSlowCase(RHS);
1204   }
1205 
1206   /// This operation checks that all bits set in this APInt are also set in RHS.
1207   bool isSubsetOf(const APInt &RHS) const {
1208     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1209     if (isSingleWord())
1210       return (U.VAL & ~RHS.U.VAL) == 0;
1211     return isSubsetOfSlowCase(RHS);
1212   }
1213 
1214   /// @}
1215   /// \name Resizing Operators
1216   /// @{
1217 
1218   /// Truncate to new width.
1219   ///
1220   /// Truncate the APInt to a specified width. It is an error to specify a width
1221   /// that is greater than the current width.
1222   APInt trunc(unsigned width) const;
1223 
1224   /// Truncate to new width with unsigned saturation.
1225   ///
1226   /// If the APInt, treated as unsigned integer, can be losslessly truncated to
1227   /// the new bitwidth, then return truncated APInt. Else, return max value.
1228   APInt truncUSat(unsigned width) const;
1229 
1230   /// Truncate to new width with signed saturation.
1231   ///
1232   /// If this APInt, treated as signed integer, can be losslessly truncated to
1233   /// the new bitwidth, then return truncated APInt. Else, return either
1234   /// signed min value if the APInt was negative, or signed max value.
1235   APInt truncSSat(unsigned width) const;
1236 
1237   /// Sign extend to a new width.
1238   ///
1239   /// This operation sign extends the APInt to a new width. If the high order
1240   /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1241   /// It is an error to specify a width that is less than the
1242   /// current width.
1243   APInt sext(unsigned width) const;
1244 
1245   /// Zero extend to a new width.
1246   ///
1247   /// This operation zero extends the APInt to a new width. The high order bits
1248   /// are filled with 0 bits.  It is an error to specify a width that is less
1249   /// than the current width.
1250   APInt zext(unsigned width) const;
1251 
1252   /// Sign extend or truncate to width
1253   ///
1254   /// Make this APInt have the bit width given by \p width. The value is sign
1255   /// extended, truncated, or left alone to make it that width.
1256   APInt sextOrTrunc(unsigned width) const;
1257 
1258   /// Zero extend or truncate to width
1259   ///
1260   /// Make this APInt have the bit width given by \p width. The value is zero
1261   /// extended, truncated, or left alone to make it that width.
1262   APInt zextOrTrunc(unsigned width) const;
1263 
1264   /// @}
1265   /// \name Bit Manipulation Operators
1266   /// @{
1267 
1268   /// Set every bit to 1.
1269   void setAllBits() {
1270     if (isSingleWord())
1271       U.VAL = WORDTYPE_MAX;
1272     else
1273       // Set all the bits in all the words.
1274       memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE);
1275     // Clear the unused ones
1276     clearUnusedBits();
1277   }
1278 
1279   /// Set the given bit to 1 whose position is given as "bitPosition".
1280   void setBit(unsigned BitPosition) {
1281     assert(BitPosition < BitWidth && "BitPosition out of range");
1282     WordType Mask = maskBit(BitPosition);
1283     if (isSingleWord())
1284       U.VAL |= Mask;
1285     else
1286       U.pVal[whichWord(BitPosition)] |= Mask;
1287   }
1288 
1289   /// Set the sign bit to 1.
1290   void setSignBit() { setBit(BitWidth - 1); }
1291 
1292   /// Set a given bit to a given value.
1293   void setBitVal(unsigned BitPosition, bool BitValue) {
1294     if (BitValue)
1295       setBit(BitPosition);
1296     else
1297       clearBit(BitPosition);
1298   }
1299 
1300   /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1301   /// This function handles "wrap" case when \p loBit >= \p hiBit, and calls
1302   /// setBits when \p loBit < \p hiBit.
1303   /// For \p loBit == \p hiBit wrap case, set every bit to 1.
1304   void setBitsWithWrap(unsigned loBit, unsigned hiBit) {
1305     assert(hiBit <= BitWidth && "hiBit out of range");
1306     assert(loBit <= BitWidth && "loBit out of range");
1307     if (loBit < hiBit) {
1308       setBits(loBit, hiBit);
1309       return;
1310     }
1311     setLowBits(hiBit);
1312     setHighBits(BitWidth - loBit);
1313   }
1314 
1315   /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1316   /// This function handles case when \p loBit <= \p hiBit.
1317   void setBits(unsigned loBit, unsigned hiBit) {
1318     assert(hiBit <= BitWidth && "hiBit out of range");
1319     assert(loBit <= BitWidth && "loBit out of range");
1320     assert(loBit <= hiBit && "loBit greater than hiBit");
1321     if (loBit == hiBit)
1322       return;
1323     if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) {
1324       uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit));
1325       mask <<= loBit;
1326       if (isSingleWord())
1327         U.VAL |= mask;
1328       else
1329         U.pVal[0] |= mask;
1330     } else {
1331       setBitsSlowCase(loBit, hiBit);
1332     }
1333   }
1334 
1335   /// Set the top bits starting from loBit.
1336   void setBitsFrom(unsigned loBit) { return setBits(loBit, BitWidth); }
1337 
1338   /// Set the bottom loBits bits.
1339   void setLowBits(unsigned loBits) { return setBits(0, loBits); }
1340 
1341   /// Set the top hiBits bits.
1342   void setHighBits(unsigned hiBits) {
1343     return setBits(BitWidth - hiBits, BitWidth);
1344   }
1345 
1346   /// Set every bit to 0.
1347   void clearAllBits() {
1348     if (isSingleWord())
1349       U.VAL = 0;
1350     else
1351       memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE);
1352   }
1353 
1354   /// Set a given bit to 0.
1355   ///
1356   /// Set the given bit to 0 whose position is given as "bitPosition".
1357   void clearBit(unsigned BitPosition) {
1358     assert(BitPosition < BitWidth && "BitPosition out of range");
1359     WordType Mask = ~maskBit(BitPosition);
1360     if (isSingleWord())
1361       U.VAL &= Mask;
1362     else
1363       U.pVal[whichWord(BitPosition)] &= Mask;
1364   }
1365 
1366   /// Set bottom loBits bits to 0.
1367   void clearLowBits(unsigned loBits) {
1368     assert(loBits <= BitWidth && "More bits than bitwidth");
1369     APInt Keep = getHighBitsSet(BitWidth, BitWidth - loBits);
1370     *this &= Keep;
1371   }
1372 
1373   /// Set the sign bit to 0.
1374   void clearSignBit() { clearBit(BitWidth - 1); }
1375 
1376   /// Toggle every bit to its opposite value.
1377   void flipAllBits() {
1378     if (isSingleWord()) {
1379       U.VAL ^= WORDTYPE_MAX;
1380       clearUnusedBits();
1381     } else {
1382       flipAllBitsSlowCase();
1383     }
1384   }
1385 
1386   /// Toggles a given bit to its opposite value.
1387   ///
1388   /// Toggle a given bit to its opposite value whose position is given
1389   /// as "bitPosition".
1390   void flipBit(unsigned bitPosition);
1391 
1392   /// Negate this APInt in place.
1393   void negate() {
1394     flipAllBits();
1395     ++(*this);
1396   }
1397 
1398   /// Insert the bits from a smaller APInt starting at bitPosition.
1399   void insertBits(const APInt &SubBits, unsigned bitPosition);
1400   void insertBits(uint64_t SubBits, unsigned bitPosition, unsigned numBits);
1401 
1402   /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
1403   APInt extractBits(unsigned numBits, unsigned bitPosition) const;
1404   uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const;
1405 
1406   /// @}
1407   /// \name Value Characterization Functions
1408   /// @{
1409 
1410   /// Return the number of bits in the APInt.
1411   unsigned getBitWidth() const { return BitWidth; }
1412 
1413   /// Get the number of words.
1414   ///
1415   /// Here one word's bitwidth equals to that of uint64_t.
1416   ///
1417   /// \returns the number of words to hold the integer value of this APInt.
1418   unsigned getNumWords() const { return getNumWords(BitWidth); }
1419 
1420   /// Get the number of words.
1421   ///
1422   /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
1423   ///
1424   /// \returns the number of words to hold the integer value with a given bit
1425   /// width.
1426   static unsigned getNumWords(unsigned BitWidth) {
1427     return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1428   }
1429 
1430   /// Compute the number of active bits in the value
1431   ///
1432   /// This function returns the number of active bits which is defined as the
1433   /// bit width minus the number of leading zeros. This is used in several
1434   /// computations to see how "wide" the value is.
1435   unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
1436 
1437   /// Compute the number of active words in the value of this APInt.
1438   ///
1439   /// This is used in conjunction with getActiveData to extract the raw value of
1440   /// the APInt.
1441   unsigned getActiveWords() const {
1442     unsigned numActiveBits = getActiveBits();
1443     return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
1444   }
1445 
1446   /// Get the minimum bit size for this signed APInt
1447   ///
1448   /// Computes the minimum bit width for this APInt while considering it to be a
1449   /// signed (and probably negative) value. If the value is not negative, this
1450   /// function returns the same value as getActiveBits()+1. Otherwise, it
1451   /// returns the smallest bit width that will retain the negative value. For
1452   /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1453   /// for -1, this function will always return 1.
1454   unsigned getSignificantBits() const {
1455     return BitWidth - getNumSignBits() + 1;
1456   }
1457 
1458   /// NOTE: This is soft-deprecated.  Please use `getSignificantBits()` instead.
1459   unsigned getMinSignedBits() const { return getSignificantBits(); }
1460 
1461   /// Get zero extended value
1462   ///
1463   /// This method attempts to return the value of this APInt as a zero extended
1464   /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1465   /// uint64_t. Otherwise an assertion will result.
1466   uint64_t getZExtValue() const {
1467     if (isSingleWord())
1468       return U.VAL;
1469     assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
1470     return U.pVal[0];
1471   }
1472 
1473   /// Get sign extended value
1474   ///
1475   /// This method attempts to return the value of this APInt as a sign extended
1476   /// int64_t. The bit width must be <= 64 or the value must fit within an
1477   /// int64_t. Otherwise an assertion will result.
1478   int64_t getSExtValue() const {
1479     if (isSingleWord())
1480       return SignExtend64(U.VAL, BitWidth);
1481     assert(getSignificantBits() <= 64 && "Too many bits for int64_t");
1482     return int64_t(U.pVal[0]);
1483   }
1484 
1485   /// Get bits required for string value.
1486   ///
1487   /// This method determines how many bits are required to hold the APInt
1488   /// equivalent of the string given by \p str.
1489   static unsigned getBitsNeeded(StringRef str, uint8_t radix);
1490 
1491   /// Get the bits that are sufficient to represent the string value. This may
1492   /// over estimate the amount of bits required, but it does not require
1493   /// parsing the value in the string.
1494   static unsigned getSufficientBitsNeeded(StringRef Str, uint8_t Radix);
1495 
1496   /// The APInt version of the countLeadingZeros functions in
1497   ///   MathExtras.h.
1498   ///
1499   /// It counts the number of zeros from the most significant bit to the first
1500   /// one bit.
1501   ///
1502   /// \returns BitWidth if the value is zero, otherwise returns the number of
1503   ///   zeros from the most significant bit to the first one bits.
1504   unsigned countLeadingZeros() const {
1505     if (isSingleWord()) {
1506       unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1507       return llvm::countLeadingZeros(U.VAL) - unusedBits;
1508     }
1509     return countLeadingZerosSlowCase();
1510   }
1511 
1512   /// Count the number of leading one bits.
1513   ///
1514   /// This function is an APInt version of the countLeadingOnes
1515   /// functions in MathExtras.h. It counts the number of ones from the most
1516   /// significant bit to the first zero bit.
1517   ///
1518   /// \returns 0 if the high order bit is not set, otherwise returns the number
1519   /// of 1 bits from the most significant to the least
1520   unsigned countLeadingOnes() const {
1521     if (isSingleWord()) {
1522       if (LLVM_UNLIKELY(BitWidth == 0))
1523         return 0;
1524       return llvm::countLeadingOnes(U.VAL << (APINT_BITS_PER_WORD - BitWidth));
1525     }
1526     return countLeadingOnesSlowCase();
1527   }
1528 
1529   /// Computes the number of leading bits of this APInt that are equal to its
1530   /// sign bit.
1531   unsigned getNumSignBits() const {
1532     return isNegative() ? countLeadingOnes() : countLeadingZeros();
1533   }
1534 
1535   /// Count the number of trailing zero bits.
1536   ///
1537   /// This function is an APInt version of the countTrailingZeros
1538   /// functions in MathExtras.h. It counts the number of zeros from the least
1539   /// significant bit to the first set bit.
1540   ///
1541   /// \returns BitWidth if the value is zero, otherwise returns the number of
1542   /// zeros from the least significant bit to the first one bit.
1543   unsigned countTrailingZeros() const {
1544     if (isSingleWord()) {
1545       unsigned TrailingZeros = llvm::countTrailingZeros(U.VAL);
1546       return (TrailingZeros > BitWidth ? BitWidth : TrailingZeros);
1547     }
1548     return countTrailingZerosSlowCase();
1549   }
1550 
1551   /// Count the number of trailing one bits.
1552   ///
1553   /// This function is an APInt version of the countTrailingOnes
1554   /// functions in MathExtras.h. It counts the number of ones from the least
1555   /// significant bit to the first zero bit.
1556   ///
1557   /// \returns BitWidth if the value is all ones, otherwise returns the number
1558   /// of ones from the least significant bit to the first zero bit.
1559   unsigned countTrailingOnes() const {
1560     if (isSingleWord())
1561       return llvm::countTrailingOnes(U.VAL);
1562     return countTrailingOnesSlowCase();
1563   }
1564 
1565   /// Count the number of bits set.
1566   ///
1567   /// This function is an APInt version of the countPopulation functions
1568   /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
1569   ///
1570   /// \returns 0 if the value is zero, otherwise returns the number of set bits.
1571   unsigned countPopulation() const {
1572     if (isSingleWord())
1573       return llvm::countPopulation(U.VAL);
1574     return countPopulationSlowCase();
1575   }
1576 
1577   /// @}
1578   /// \name Conversion Functions
1579   /// @{
1580   void print(raw_ostream &OS, bool isSigned) const;
1581 
1582   /// Converts an APInt to a string and append it to Str.  Str is commonly a
1583   /// SmallString.
1584   void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
1585                 bool formatAsCLiteral = false) const;
1586 
1587   /// Considers the APInt to be unsigned and converts it into a string in the
1588   /// radix given. The radix can be 2, 8, 10 16, or 36.
1589   void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1590     toString(Str, Radix, false, false);
1591   }
1592 
1593   /// Considers the APInt to be signed and converts it into a string in the
1594   /// radix given. The radix can be 2, 8, 10, 16, or 36.
1595   void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1596     toString(Str, Radix, true, false);
1597   }
1598 
1599   /// \returns a byte-swapped representation of this APInt Value.
1600   APInt byteSwap() const;
1601 
1602   /// \returns the value with the bit representation reversed of this APInt
1603   /// Value.
1604   APInt reverseBits() const;
1605 
1606   /// Converts this APInt to a double value.
1607   double roundToDouble(bool isSigned) const;
1608 
1609   /// Converts this unsigned APInt to a double value.
1610   double roundToDouble() const { return roundToDouble(false); }
1611 
1612   /// Converts this signed APInt to a double value.
1613   double signedRoundToDouble() const { return roundToDouble(true); }
1614 
1615   /// Converts APInt bits to a double
1616   ///
1617   /// The conversion does not do a translation from integer to double, it just
1618   /// re-interprets the bits as a double. Note that it is valid to do this on
1619   /// any bit width. Exactly 64 bits will be translated.
1620   double bitsToDouble() const { return BitsToDouble(getWord(0)); }
1621 
1622   /// Converts APInt bits to a float
1623   ///
1624   /// The conversion does not do a translation from integer to float, it just
1625   /// re-interprets the bits as a float. Note that it is valid to do this on
1626   /// any bit width. Exactly 32 bits will be translated.
1627   float bitsToFloat() const {
1628     return BitsToFloat(static_cast<uint32_t>(getWord(0)));
1629   }
1630 
1631   /// Converts a double to APInt bits.
1632   ///
1633   /// The conversion does not do a translation from double to integer, it just
1634   /// re-interprets the bits of the double.
1635   static APInt doubleToBits(double V) {
1636     return APInt(sizeof(double) * CHAR_BIT, DoubleToBits(V));
1637   }
1638 
1639   /// Converts a float to APInt bits.
1640   ///
1641   /// The conversion does not do a translation from float to integer, it just
1642   /// re-interprets the bits of the float.
1643   static APInt floatToBits(float V) {
1644     return APInt(sizeof(float) * CHAR_BIT, FloatToBits(V));
1645   }
1646 
1647   /// @}
1648   /// \name Mathematics Operations
1649   /// @{
1650 
1651   /// \returns the floor log base 2 of this APInt.
1652   unsigned logBase2() const { return getActiveBits() - 1; }
1653 
1654   /// \returns the ceil log base 2 of this APInt.
1655   unsigned ceilLogBase2() const {
1656     APInt temp(*this);
1657     --temp;
1658     return temp.getActiveBits();
1659   }
1660 
1661   /// \returns the nearest log base 2 of this APInt. Ties round up.
1662   ///
1663   /// NOTE: When we have a BitWidth of 1, we define:
1664   ///
1665   ///   log2(0) = UINT32_MAX
1666   ///   log2(1) = 0
1667   ///
1668   /// to get around any mathematical concerns resulting from
1669   /// referencing 2 in a space where 2 does no exist.
1670   unsigned nearestLogBase2() const;
1671 
1672   /// \returns the log base 2 of this APInt if its an exact power of two, -1
1673   /// otherwise
1674   int32_t exactLogBase2() const {
1675     if (!isPowerOf2())
1676       return -1;
1677     return logBase2();
1678   }
1679 
1680   /// Compute the square root.
1681   APInt sqrt() const;
1682 
1683   /// Get the absolute value.  If *this is < 0 then return -(*this), otherwise
1684   /// *this.  Note that the "most negative" signed number (e.g. -128 for 8 bit
1685   /// wide APInt) is unchanged due to how negation works.
1686   APInt abs() const {
1687     if (isNegative())
1688       return -(*this);
1689     return *this;
1690   }
1691 
1692   /// \returns the multiplicative inverse for a given modulo.
1693   APInt multiplicativeInverse(const APInt &modulo) const;
1694 
1695   /// @}
1696   /// \name Building-block Operations for APInt and APFloat
1697   /// @{
1698 
1699   // These building block operations operate on a representation of arbitrary
1700   // precision, two's-complement, bignum integer values. They should be
1701   // sufficient to implement APInt and APFloat bignum requirements. Inputs are
1702   // generally a pointer to the base of an array of integer parts, representing
1703   // an unsigned bignum, and a count of how many parts there are.
1704 
1705   /// Sets the least significant part of a bignum to the input value, and zeroes
1706   /// out higher parts.
1707   static void tcSet(WordType *, WordType, unsigned);
1708 
1709   /// Assign one bignum to another.
1710   static void tcAssign(WordType *, const WordType *, unsigned);
1711 
1712   /// Returns true if a bignum is zero, false otherwise.
1713   static bool tcIsZero(const WordType *, unsigned);
1714 
1715   /// Extract the given bit of a bignum; returns 0 or 1.  Zero-based.
1716   static int tcExtractBit(const WordType *, unsigned bit);
1717 
1718   /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
1719   /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
1720   /// significant bit of DST.  All high bits above srcBITS in DST are
1721   /// zero-filled.
1722   static void tcExtract(WordType *, unsigned dstCount, const WordType *,
1723                         unsigned srcBits, unsigned srcLSB);
1724 
1725   /// Set the given bit of a bignum.  Zero-based.
1726   static void tcSetBit(WordType *, unsigned bit);
1727 
1728   /// Clear the given bit of a bignum.  Zero-based.
1729   static void tcClearBit(WordType *, unsigned bit);
1730 
1731   /// Returns the bit number of the least or most significant set bit of a
1732   /// number.  If the input number has no bits set -1U is returned.
1733   static unsigned tcLSB(const WordType *, unsigned n);
1734   static unsigned tcMSB(const WordType *parts, unsigned n);
1735 
1736   /// Negate a bignum in-place.
1737   static void tcNegate(WordType *, unsigned);
1738 
1739   /// DST += RHS + CARRY where CARRY is zero or one.  Returns the carry flag.
1740   static WordType tcAdd(WordType *, const WordType *, WordType carry, unsigned);
1741   /// DST += RHS.  Returns the carry flag.
1742   static WordType tcAddPart(WordType *, WordType, unsigned);
1743 
1744   /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1745   static WordType tcSubtract(WordType *, const WordType *, WordType carry,
1746                              unsigned);
1747   /// DST -= RHS.  Returns the carry flag.
1748   static WordType tcSubtractPart(WordType *, WordType, unsigned);
1749 
1750   /// DST += SRC * MULTIPLIER + PART   if add is true
1751   /// DST  = SRC * MULTIPLIER + PART   if add is false
1752   ///
1753   /// Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC they must
1754   /// start at the same point, i.e. DST == SRC.
1755   ///
1756   /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
1757   /// Otherwise DST is filled with the least significant DSTPARTS parts of the
1758   /// result, and if all of the omitted higher parts were zero return zero,
1759   /// otherwise overflow occurred and return one.
1760   static int tcMultiplyPart(WordType *dst, const WordType *src,
1761                             WordType multiplier, WordType carry,
1762                             unsigned srcParts, unsigned dstParts, bool add);
1763 
1764   /// DST = LHS * RHS, where DST has the same width as the operands and is
1765   /// filled with the least significant parts of the result.  Returns one if
1766   /// overflow occurred, otherwise zero.  DST must be disjoint from both
1767   /// operands.
1768   static int tcMultiply(WordType *, const WordType *, const WordType *,
1769                         unsigned);
1770 
1771   /// DST = LHS * RHS, where DST has width the sum of the widths of the
1772   /// operands. No overflow occurs. DST must be disjoint from both operands.
1773   static void tcFullMultiply(WordType *, const WordType *, const WordType *,
1774                              unsigned, unsigned);
1775 
1776   /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1777   /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
1778   /// REMAINDER to the remainder, return zero.  i.e.
1779   ///
1780   ///  OLD_LHS = RHS * LHS + REMAINDER
1781   ///
1782   /// SCRATCH is a bignum of the same size as the operands and result for use by
1783   /// the routine; its contents need not be initialized and are destroyed.  LHS,
1784   /// REMAINDER and SCRATCH must be distinct.
1785   static int tcDivide(WordType *lhs, const WordType *rhs, WordType *remainder,
1786                       WordType *scratch, unsigned parts);
1787 
1788   /// Shift a bignum left Count bits. Shifted in bits are zero. There are no
1789   /// restrictions on Count.
1790   static void tcShiftLeft(WordType *, unsigned Words, unsigned Count);
1791 
1792   /// Shift a bignum right Count bits.  Shifted in bits are zero.  There are no
1793   /// restrictions on Count.
1794   static void tcShiftRight(WordType *, unsigned Words, unsigned Count);
1795 
1796   /// Comparison (unsigned) of two bignums.
1797   static int tcCompare(const WordType *, const WordType *, unsigned);
1798 
1799   /// Increment a bignum in-place.  Return the carry flag.
1800   static WordType tcIncrement(WordType *dst, unsigned parts) {
1801     return tcAddPart(dst, 1, parts);
1802   }
1803 
1804   /// Decrement a bignum in-place.  Return the borrow flag.
1805   static WordType tcDecrement(WordType *dst, unsigned parts) {
1806     return tcSubtractPart(dst, 1, parts);
1807   }
1808 
1809   /// Used to insert APInt objects, or objects that contain APInt objects, into
1810   ///  FoldingSets.
1811   void Profile(FoldingSetNodeID &id) const;
1812 
1813   /// debug method
1814   void dump() const;
1815 
1816   /// Returns whether this instance allocated memory.
1817   bool needsCleanup() const { return !isSingleWord(); }
1818 
1819 private:
1820   /// This union is used to store the integer value. When the
1821   /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
1822   union {
1823     uint64_t VAL;   ///< Used to store the <= 64 bits integer value.
1824     uint64_t *pVal; ///< Used to store the >64 bits integer value.
1825   } U;
1826 
1827   unsigned BitWidth = 1; ///< The number of bits in this APInt.
1828 
1829   friend struct DenseMapInfo<APInt, void>;
1830   friend class APSInt;
1831 
1832   /// This constructor is used only internally for speed of construction of
1833   /// temporaries. It is unsafe since it takes ownership of the pointer, so it
1834   /// is not public.
1835   APInt(uint64_t *val, unsigned bits) : BitWidth(bits) { U.pVal = val; }
1836 
1837   /// Determine which word a bit is in.
1838   ///
1839   /// \returns the word position for the specified bit position.
1840   static unsigned whichWord(unsigned bitPosition) {
1841     return bitPosition / APINT_BITS_PER_WORD;
1842   }
1843 
1844   /// Determine which bit in a word the specified bit position is in.
1845   static unsigned whichBit(unsigned bitPosition) {
1846     return bitPosition % APINT_BITS_PER_WORD;
1847   }
1848 
1849   /// Get a single bit mask.
1850   ///
1851   /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
1852   /// This method generates and returns a uint64_t (word) mask for a single
1853   /// bit at a specific bit position. This is used to mask the bit in the
1854   /// corresponding word.
1855   static uint64_t maskBit(unsigned bitPosition) {
1856     return 1ULL << whichBit(bitPosition);
1857   }
1858 
1859   /// Clear unused high order bits
1860   ///
1861   /// This method is used internally to clear the top "N" bits in the high order
1862   /// word that are not used by the APInt. This is needed after the most
1863   /// significant word is assigned a value to ensure that those bits are
1864   /// zero'd out.
1865   APInt &clearUnusedBits() {
1866     // Compute how many bits are used in the final word.
1867     unsigned WordBits = ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1;
1868 
1869     // Mask out the high bits.
1870     uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - WordBits);
1871     if (LLVM_UNLIKELY(BitWidth == 0))
1872       mask = 0;
1873 
1874     if (isSingleWord())
1875       U.VAL &= mask;
1876     else
1877       U.pVal[getNumWords() - 1] &= mask;
1878     return *this;
1879   }
1880 
1881   /// Get the word corresponding to a bit position
1882   /// \returns the corresponding word for the specified bit position.
1883   uint64_t getWord(unsigned bitPosition) const {
1884     return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)];
1885   }
1886 
1887   /// Utility method to change the bit width of this APInt to new bit width,
1888   /// allocating and/or deallocating as necessary. There is no guarantee on the
1889   /// value of any bits upon return. Caller should populate the bits after.
1890   void reallocate(unsigned NewBitWidth);
1891 
1892   /// Convert a char array into an APInt
1893   ///
1894   /// \param radix 2, 8, 10, 16, or 36
1895   /// Converts a string into a number.  The string must be non-empty
1896   /// and well-formed as a number of the given base. The bit-width
1897   /// must be sufficient to hold the result.
1898   ///
1899   /// This is used by the constructors that take string arguments.
1900   ///
1901   /// StringRef::getAsInteger is superficially similar but (1) does
1902   /// not assume that the string is well-formed and (2) grows the
1903   /// result to hold the input.
1904   void fromString(unsigned numBits, StringRef str, uint8_t radix);
1905 
1906   /// An internal division function for dividing APInts.
1907   ///
1908   /// This is used by the toString method to divide by the radix. It simply
1909   /// provides a more convenient form of divide for internal use since KnuthDiv
1910   /// has specific constraints on its inputs. If those constraints are not met
1911   /// then it provides a simpler form of divide.
1912   static void divide(const WordType *LHS, unsigned lhsWords,
1913                      const WordType *RHS, unsigned rhsWords, WordType *Quotient,
1914                      WordType *Remainder);
1915 
1916   /// out-of-line slow case for inline constructor
1917   void initSlowCase(uint64_t val, bool isSigned);
1918 
1919   /// shared code between two array constructors
1920   void initFromArray(ArrayRef<uint64_t> array);
1921 
1922   /// out-of-line slow case for inline copy constructor
1923   void initSlowCase(const APInt &that);
1924 
1925   /// out-of-line slow case for shl
1926   void shlSlowCase(unsigned ShiftAmt);
1927 
1928   /// out-of-line slow case for lshr.
1929   void lshrSlowCase(unsigned ShiftAmt);
1930 
1931   /// out-of-line slow case for ashr.
1932   void ashrSlowCase(unsigned ShiftAmt);
1933 
1934   /// out-of-line slow case for operator=
1935   void assignSlowCase(const APInt &RHS);
1936 
1937   /// out-of-line slow case for operator==
1938   bool equalSlowCase(const APInt &RHS) const LLVM_READONLY;
1939 
1940   /// out-of-line slow case for countLeadingZeros
1941   unsigned countLeadingZerosSlowCase() const LLVM_READONLY;
1942 
1943   /// out-of-line slow case for countLeadingOnes.
1944   unsigned countLeadingOnesSlowCase() const LLVM_READONLY;
1945 
1946   /// out-of-line slow case for countTrailingZeros.
1947   unsigned countTrailingZerosSlowCase() const LLVM_READONLY;
1948 
1949   /// out-of-line slow case for countTrailingOnes
1950   unsigned countTrailingOnesSlowCase() const LLVM_READONLY;
1951 
1952   /// out-of-line slow case for countPopulation
1953   unsigned countPopulationSlowCase() const LLVM_READONLY;
1954 
1955   /// out-of-line slow case for intersects.
1956   bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY;
1957 
1958   /// out-of-line slow case for isSubsetOf.
1959   bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY;
1960 
1961   /// out-of-line slow case for setBits.
1962   void setBitsSlowCase(unsigned loBit, unsigned hiBit);
1963 
1964   /// out-of-line slow case for flipAllBits.
1965   void flipAllBitsSlowCase();
1966 
1967   /// out-of-line slow case for concat.
1968   APInt concatSlowCase(const APInt &NewLSB) const;
1969 
1970   /// out-of-line slow case for operator&=.
1971   void andAssignSlowCase(const APInt &RHS);
1972 
1973   /// out-of-line slow case for operator|=.
1974   void orAssignSlowCase(const APInt &RHS);
1975 
1976   /// out-of-line slow case for operator^=.
1977   void xorAssignSlowCase(const APInt &RHS);
1978 
1979   /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal
1980   /// to, or greater than RHS.
1981   int compare(const APInt &RHS) const LLVM_READONLY;
1982 
1983   /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal
1984   /// to, or greater than RHS.
1985   int compareSigned(const APInt &RHS) const LLVM_READONLY;
1986 
1987   /// @}
1988 };
1989 
1990 inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
1991 
1992 inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
1993 
1994 /// Unary bitwise complement operator.
1995 ///
1996 /// \returns an APInt that is the bitwise complement of \p v.
1997 inline APInt operator~(APInt v) {
1998   v.flipAllBits();
1999   return v;
2000 }
2001 
2002 inline APInt operator&(APInt a, const APInt &b) {
2003   a &= b;
2004   return a;
2005 }
2006 
2007 inline APInt operator&(const APInt &a, APInt &&b) {
2008   b &= a;
2009   return std::move(b);
2010 }
2011 
2012 inline APInt operator&(APInt a, uint64_t RHS) {
2013   a &= RHS;
2014   return a;
2015 }
2016 
2017 inline APInt operator&(uint64_t LHS, APInt b) {
2018   b &= LHS;
2019   return b;
2020 }
2021 
2022 inline APInt operator|(APInt a, const APInt &b) {
2023   a |= b;
2024   return a;
2025 }
2026 
2027 inline APInt operator|(const APInt &a, APInt &&b) {
2028   b |= a;
2029   return std::move(b);
2030 }
2031 
2032 inline APInt operator|(APInt a, uint64_t RHS) {
2033   a |= RHS;
2034   return a;
2035 }
2036 
2037 inline APInt operator|(uint64_t LHS, APInt b) {
2038   b |= LHS;
2039   return b;
2040 }
2041 
2042 inline APInt operator^(APInt a, const APInt &b) {
2043   a ^= b;
2044   return a;
2045 }
2046 
2047 inline APInt operator^(const APInt &a, APInt &&b) {
2048   b ^= a;
2049   return std::move(b);
2050 }
2051 
2052 inline APInt operator^(APInt a, uint64_t RHS) {
2053   a ^= RHS;
2054   return a;
2055 }
2056 
2057 inline APInt operator^(uint64_t LHS, APInt b) {
2058   b ^= LHS;
2059   return b;
2060 }
2061 
2062 inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
2063   I.print(OS, true);
2064   return OS;
2065 }
2066 
2067 inline APInt operator-(APInt v) {
2068   v.negate();
2069   return v;
2070 }
2071 
2072 inline APInt operator+(APInt a, const APInt &b) {
2073   a += b;
2074   return a;
2075 }
2076 
2077 inline APInt operator+(const APInt &a, APInt &&b) {
2078   b += a;
2079   return std::move(b);
2080 }
2081 
2082 inline APInt operator+(APInt a, uint64_t RHS) {
2083   a += RHS;
2084   return a;
2085 }
2086 
2087 inline APInt operator+(uint64_t LHS, APInt b) {
2088   b += LHS;
2089   return b;
2090 }
2091 
2092 inline APInt operator-(APInt a, const APInt &b) {
2093   a -= b;
2094   return a;
2095 }
2096 
2097 inline APInt operator-(const APInt &a, APInt &&b) {
2098   b.negate();
2099   b += a;
2100   return std::move(b);
2101 }
2102 
2103 inline APInt operator-(APInt a, uint64_t RHS) {
2104   a -= RHS;
2105   return a;
2106 }
2107 
2108 inline APInt operator-(uint64_t LHS, APInt b) {
2109   b.negate();
2110   b += LHS;
2111   return b;
2112 }
2113 
2114 inline APInt operator*(APInt a, uint64_t RHS) {
2115   a *= RHS;
2116   return a;
2117 }
2118 
2119 inline APInt operator*(uint64_t LHS, APInt b) {
2120   b *= LHS;
2121   return b;
2122 }
2123 
2124 namespace APIntOps {
2125 
2126 /// Determine the smaller of two APInts considered to be signed.
2127 inline const APInt &smin(const APInt &A, const APInt &B) {
2128   return A.slt(B) ? A : B;
2129 }
2130 
2131 /// Determine the larger of two APInts considered to be signed.
2132 inline const APInt &smax(const APInt &A, const APInt &B) {
2133   return A.sgt(B) ? A : B;
2134 }
2135 
2136 /// Determine the smaller of two APInts considered to be unsigned.
2137 inline const APInt &umin(const APInt &A, const APInt &B) {
2138   return A.ult(B) ? A : B;
2139 }
2140 
2141 /// Determine the larger of two APInts considered to be unsigned.
2142 inline const APInt &umax(const APInt &A, const APInt &B) {
2143   return A.ugt(B) ? A : B;
2144 }
2145 
2146 /// Compute GCD of two unsigned APInt values.
2147 ///
2148 /// This function returns the greatest common divisor of the two APInt values
2149 /// using Stein's algorithm.
2150 ///
2151 /// \returns the greatest common divisor of A and B.
2152 APInt GreatestCommonDivisor(APInt A, APInt B);
2153 
2154 /// Converts the given APInt to a double value.
2155 ///
2156 /// Treats the APInt as an unsigned value for conversion purposes.
2157 inline double RoundAPIntToDouble(const APInt &APIVal) {
2158   return APIVal.roundToDouble();
2159 }
2160 
2161 /// Converts the given APInt to a double value.
2162 ///
2163 /// Treats the APInt as a signed value for conversion purposes.
2164 inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
2165   return APIVal.signedRoundToDouble();
2166 }
2167 
2168 /// Converts the given APInt to a float value.
2169 inline float RoundAPIntToFloat(const APInt &APIVal) {
2170   return float(RoundAPIntToDouble(APIVal));
2171 }
2172 
2173 /// Converts the given APInt to a float value.
2174 ///
2175 /// Treats the APInt as a signed value for conversion purposes.
2176 inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
2177   return float(APIVal.signedRoundToDouble());
2178 }
2179 
2180 /// Converts the given double value into a APInt.
2181 ///
2182 /// This function convert a double value to an APInt value.
2183 APInt RoundDoubleToAPInt(double Double, unsigned width);
2184 
2185 /// Converts a float value into a APInt.
2186 ///
2187 /// Converts a float value into an APInt value.
2188 inline APInt RoundFloatToAPInt(float Float, unsigned width) {
2189   return RoundDoubleToAPInt(double(Float), width);
2190 }
2191 
2192 /// Return A unsign-divided by B, rounded by the given rounding mode.
2193 APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
2194 
2195 /// Return A sign-divided by B, rounded by the given rounding mode.
2196 APInt RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
2197 
2198 /// Let q(n) = An^2 + Bn + C, and BW = bit width of the value range
2199 /// (e.g. 32 for i32).
2200 /// This function finds the smallest number n, such that
2201 /// (a) n >= 0 and q(n) = 0, or
2202 /// (b) n >= 1 and q(n-1) and q(n), when evaluated in the set of all
2203 ///     integers, belong to two different intervals [Rk, Rk+R),
2204 ///     where R = 2^BW, and k is an integer.
2205 /// The idea here is to find when q(n) "overflows" 2^BW, while at the
2206 /// same time "allowing" subtraction. In unsigned modulo arithmetic a
2207 /// subtraction (treated as addition of negated numbers) would always
2208 /// count as an overflow, but here we want to allow values to decrease
2209 /// and increase as long as they are within the same interval.
2210 /// Specifically, adding of two negative numbers should not cause an
2211 /// overflow (as long as the magnitude does not exceed the bit width).
2212 /// On the other hand, given a positive number, adding a negative
2213 /// number to it can give a negative result, which would cause the
2214 /// value to go from [-2^BW, 0) to [0, 2^BW). In that sense, zero is
2215 /// treated as a special case of an overflow.
2216 ///
2217 /// This function returns None if after finding k that minimizes the
2218 /// positive solution to q(n) = kR, both solutions are contained between
2219 /// two consecutive integers.
2220 ///
2221 /// There are cases where q(n) > T, and q(n+1) < T (assuming evaluation
2222 /// in arithmetic modulo 2^BW, and treating the values as signed) by the
2223 /// virtue of *signed* overflow. This function will *not* find such an n,
2224 /// however it may find a value of n satisfying the inequalities due to
2225 /// an *unsigned* overflow (if the values are treated as unsigned).
2226 /// To find a solution for a signed overflow, treat it as a problem of
2227 /// finding an unsigned overflow with a range with of BW-1.
2228 ///
2229 /// The returned value may have a different bit width from the input
2230 /// coefficients.
2231 Optional<APInt> SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
2232                                            unsigned RangeWidth);
2233 
2234 /// Compare two values, and if they are different, return the position of the
2235 /// most significant bit that is different in the values.
2236 Optional<unsigned> GetMostSignificantDifferentBit(const APInt &A,
2237                                                   const APInt &B);
2238 
2239 /// Splat/Merge neighboring bits to widen/narrow the bitmask represented
2240 /// by \param A to \param NewBitWidth bits.
2241 ///
2242 /// MatchAnyBits: (Default)
2243 /// e.g. ScaleBitMask(0b0101, 8) -> 0b00110011
2244 /// e.g. ScaleBitMask(0b00011011, 4) -> 0b0111
2245 ///
2246 /// MatchAllBits:
2247 /// e.g. ScaleBitMask(0b0101, 8) -> 0b00110011
2248 /// e.g. ScaleBitMask(0b00011011, 4) -> 0b0001
2249 /// A.getBitwidth() or NewBitWidth must be a whole multiples of the other.
2250 APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth,
2251                    bool MatchAllBits = false);
2252 } // namespace APIntOps
2253 
2254 // See friend declaration above. This additional declaration is required in
2255 // order to compile LLVM with IBM xlC compiler.
2256 hash_code hash_value(const APInt &Arg);
2257 
2258 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
2259 /// with the integer held in IntVal.
2260 void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, unsigned StoreBytes);
2261 
2262 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
2263 /// from Src into IntVal, which is assumed to be wide enough and to hold zero.
2264 void LoadIntFromMemory(APInt &IntVal, const uint8_t *Src, unsigned LoadBytes);
2265 
2266 /// Provide DenseMapInfo for APInt.
2267 template <> struct DenseMapInfo<APInt, void> {
2268   static inline APInt getEmptyKey() {
2269     APInt V(nullptr, 0);
2270     V.U.VAL = 0;
2271     return V;
2272   }
2273 
2274   static inline APInt getTombstoneKey() {
2275     APInt V(nullptr, 0);
2276     V.U.VAL = 1;
2277     return V;
2278   }
2279 
2280   static unsigned getHashValue(const APInt &Key);
2281 
2282   static bool isEqual(const APInt &LHS, const APInt &RHS) {
2283     return LHS.getBitWidth() == RHS.getBitWidth() && LHS == RHS;
2284   }
2285 };
2286 
2287 } // namespace llvm
2288 
2289 #endif
2290