1 //===-- llvm/ADT/Hashing.h - Utilities for hashing --------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the newly proposed standard C++ interfaces for hashing
10 // arbitrary data and building hash functions for user-defined types. This
11 // interface was originally proposed in N3333[1] and is currently under review
12 // for inclusion in a future TR and/or standard.
13 //
14 // The primary interfaces provide are comprised of one type and three functions:
15 //
16 //  -- 'hash_code' class is an opaque type representing the hash code for some
17 //     data. It is the intended product of hashing, and can be used to implement
18 //     hash tables, checksumming, and other common uses of hashes. It is not an
19 //     integer type (although it can be converted to one) because it is risky
20 //     to assume much about the internals of a hash_code. In particular, each
21 //     execution of the program has a high probability of producing a different
22 //     hash_code for a given input. Thus their values are not stable to save or
23 //     persist, and should only be used during the execution for the
24 //     construction of hashing datastructures.
25 //
26 //  -- 'hash_value' is a function designed to be overloaded for each
27 //     user-defined type which wishes to be used within a hashing context. It
28 //     should be overloaded within the user-defined type's namespace and found
29 //     via ADL. Overloads for primitive types are provided by this library.
30 //
31 //  -- 'hash_combine' and 'hash_combine_range' are functions designed to aid
32 //      programmers in easily and intuitively combining a set of data into
33 //      a single hash_code for their object. They should only logically be used
34 //      within the implementation of a 'hash_value' routine or similar context.
35 //
36 // Note that 'hash_combine_range' contains very special logic for hashing
37 // a contiguous array of integers or pointers. This logic is *extremely* fast,
38 // on a modern Intel "Gainestown" Xeon (Nehalem uarch) @2.2 GHz, these were
39 // benchmarked at over 6.5 GiB/s for large keys, and <20 cycles/hash for keys
40 // under 32-bytes.
41 //
42 //===----------------------------------------------------------------------===//
43 
44 #ifndef LLVM_ADT_HASHING_H
45 #define LLVM_ADT_HASHING_H
46 
47 #include "llvm/Support/DataTypes.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/SwapByteOrder.h"
50 #include "llvm/Support/type_traits.h"
51 #include <algorithm>
52 #include <cassert>
53 #include <cstring>
54 #include <optional>
55 #include <string>
56 #include <tuple>
57 #include <utility>
58 
59 namespace llvm {
60 template <typename T, typename Enable> struct DenseMapInfo;
61 
62 /// An opaque object representing a hash code.
63 ///
64 /// This object represents the result of hashing some entity. It is intended to
65 /// be used to implement hashtables or other hashing-based data structures.
66 /// While it wraps and exposes a numeric value, this value should not be
67 /// trusted to be stable or predictable across processes or executions.
68 ///
69 /// In order to obtain the hash_code for an object 'x':
70 /// \code
71 ///   using llvm::hash_value;
72 ///   llvm::hash_code code = hash_value(x);
73 /// \endcode
74 class hash_code {
75   size_t value;
76 
77 public:
78   /// Default construct a hash_code.
79   /// Note that this leaves the value uninitialized.
80   hash_code() = default;
81 
82   /// Form a hash code directly from a numerical value.
83   hash_code(size_t value) : value(value) {}
84 
85   /// Convert the hash code to its numerical value for use.
86   /*explicit*/ operator size_t() const { return value; }
87 
88   friend bool operator==(const hash_code &lhs, const hash_code &rhs) {
89     return lhs.value == rhs.value;
90   }
91   friend bool operator!=(const hash_code &lhs, const hash_code &rhs) {
92     return lhs.value != rhs.value;
93   }
94 
95   /// Allow a hash_code to be directly run through hash_value.
96   friend size_t hash_value(const hash_code &code) { return code.value; }
97 };
98 
99 /// Compute a hash_code for any integer value.
100 ///
101 /// Note that this function is intended to compute the same hash_code for
102 /// a particular value without regard to the pre-promotion type. This is in
103 /// contrast to hash_combine which may produce different hash_codes for
104 /// differing argument types even if they would implicit promote to a common
105 /// type without changing the value.
106 template <typename T>
107 std::enable_if_t<is_integral_or_enum<T>::value, hash_code> hash_value(T value);
108 
109 /// Compute a hash_code for a pointer's address.
110 ///
111 /// N.B.: This hashes the *address*. Not the value and not the type.
112 template <typename T> hash_code hash_value(const T *ptr);
113 
114 /// Compute a hash_code for a pair of objects.
115 template <typename T, typename U>
116 hash_code hash_value(const std::pair<T, U> &arg);
117 
118 /// Compute a hash_code for a tuple.
119 template <typename... Ts>
120 hash_code hash_value(const std::tuple<Ts...> &arg);
121 
122 /// Compute a hash_code for a standard string.
123 template <typename T>
124 hash_code hash_value(const std::basic_string<T> &arg);
125 
126 /// Compute a hash_code for a standard string.
127 template <typename T> hash_code hash_value(const std::optional<T> &arg);
128 
129 /// Override the execution seed with a fixed value.
130 ///
131 /// This hashing library uses a per-execution seed designed to change on each
132 /// run with high probability in order to ensure that the hash codes are not
133 /// attackable and to ensure that output which is intended to be stable does
134 /// not rely on the particulars of the hash codes produced.
135 ///
136 /// That said, there are use cases where it is important to be able to
137 /// reproduce *exactly* a specific behavior. To that end, we provide a function
138 /// which will forcibly set the seed to a fixed value. This must be done at the
139 /// start of the program, before any hashes are computed. Also, it cannot be
140 /// undone. This makes it thread-hostile and very hard to use outside of
141 /// immediately on start of a simple program designed for reproducible
142 /// behavior.
143 void set_fixed_execution_hash_seed(uint64_t fixed_value);
144 
145 
146 // All of the implementation details of actually computing the various hash
147 // code values are held within this namespace. These routines are included in
148 // the header file mainly to allow inlining and constant propagation.
149 namespace hashing {
150 namespace detail {
151 
152 inline uint64_t fetch64(const char *p) {
153   uint64_t result;
154   memcpy(&result, p, sizeof(result));
155   if (sys::IsBigEndianHost)
156     sys::swapByteOrder(result);
157   return result;
158 }
159 
160 inline uint32_t fetch32(const char *p) {
161   uint32_t result;
162   memcpy(&result, p, sizeof(result));
163   if (sys::IsBigEndianHost)
164     sys::swapByteOrder(result);
165   return result;
166 }
167 
168 /// Some primes between 2^63 and 2^64 for various uses.
169 static constexpr uint64_t k0 = 0xc3a5c85c97cb3127ULL;
170 static constexpr uint64_t k1 = 0xb492b66fbe98f273ULL;
171 static constexpr uint64_t k2 = 0x9ae16a3b2f90404fULL;
172 static constexpr uint64_t k3 = 0xc949d7c7509e6557ULL;
173 
174 /// Bitwise right rotate.
175 /// Normally this will compile to a single instruction, especially if the
176 /// shift is a manifest constant.
177 inline uint64_t rotate(uint64_t val, size_t shift) {
178   // Avoid shifting by 64: doing so yields an undefined result.
179   return shift == 0 ? val : ((val >> shift) | (val << (64 - shift)));
180 }
181 
182 inline uint64_t shift_mix(uint64_t val) {
183   return val ^ (val >> 47);
184 }
185 
186 inline uint64_t hash_16_bytes(uint64_t low, uint64_t high) {
187   // Murmur-inspired hashing.
188   const uint64_t kMul = 0x9ddfea08eb382d69ULL;
189   uint64_t a = (low ^ high) * kMul;
190   a ^= (a >> 47);
191   uint64_t b = (high ^ a) * kMul;
192   b ^= (b >> 47);
193   b *= kMul;
194   return b;
195 }
196 
197 inline uint64_t hash_1to3_bytes(const char *s, size_t len, uint64_t seed) {
198   uint8_t a = s[0];
199   uint8_t b = s[len >> 1];
200   uint8_t c = s[len - 1];
201   uint32_t y = static_cast<uint32_t>(a) + (static_cast<uint32_t>(b) << 8);
202   uint32_t z = static_cast<uint32_t>(len) + (static_cast<uint32_t>(c) << 2);
203   return shift_mix(y * k2 ^ z * k3 ^ seed) * k2;
204 }
205 
206 inline uint64_t hash_4to8_bytes(const char *s, size_t len, uint64_t seed) {
207   uint64_t a = fetch32(s);
208   return hash_16_bytes(len + (a << 3), seed ^ fetch32(s + len - 4));
209 }
210 
211 inline uint64_t hash_9to16_bytes(const char *s, size_t len, uint64_t seed) {
212   uint64_t a = fetch64(s);
213   uint64_t b = fetch64(s + len - 8);
214   return hash_16_bytes(seed ^ a, rotate(b + len, len)) ^ b;
215 }
216 
217 inline uint64_t hash_17to32_bytes(const char *s, size_t len, uint64_t seed) {
218   uint64_t a = fetch64(s) * k1;
219   uint64_t b = fetch64(s + 8);
220   uint64_t c = fetch64(s + len - 8) * k2;
221   uint64_t d = fetch64(s + len - 16) * k0;
222   return hash_16_bytes(llvm::rotr<uint64_t>(a - b, 43) +
223                            llvm::rotr<uint64_t>(c ^ seed, 30) + d,
224                        a + llvm::rotr<uint64_t>(b ^ k3, 20) - c + len + seed);
225 }
226 
227 inline uint64_t hash_33to64_bytes(const char *s, size_t len, uint64_t seed) {
228   uint64_t z = fetch64(s + 24);
229   uint64_t a = fetch64(s) + (len + fetch64(s + len - 16)) * k0;
230   uint64_t b = llvm::rotr<uint64_t>(a + z, 52);
231   uint64_t c = llvm::rotr<uint64_t>(a, 37);
232   a += fetch64(s + 8);
233   c += llvm::rotr<uint64_t>(a, 7);
234   a += fetch64(s + 16);
235   uint64_t vf = a + z;
236   uint64_t vs = b + llvm::rotr<uint64_t>(a, 31) + c;
237   a = fetch64(s + 16) + fetch64(s + len - 32);
238   z = fetch64(s + len - 8);
239   b = llvm::rotr<uint64_t>(a + z, 52);
240   c = llvm::rotr<uint64_t>(a, 37);
241   a += fetch64(s + len - 24);
242   c += llvm::rotr<uint64_t>(a, 7);
243   a += fetch64(s + len - 16);
244   uint64_t wf = a + z;
245   uint64_t ws = b + llvm::rotr<uint64_t>(a, 31) + c;
246   uint64_t r = shift_mix((vf + ws) * k2 + (wf + vs) * k0);
247   return shift_mix((seed ^ (r * k0)) + vs) * k2;
248 }
249 
250 inline uint64_t hash_short(const char *s, size_t length, uint64_t seed) {
251   if (length >= 4 && length <= 8)
252     return hash_4to8_bytes(s, length, seed);
253   if (length > 8 && length <= 16)
254     return hash_9to16_bytes(s, length, seed);
255   if (length > 16 && length <= 32)
256     return hash_17to32_bytes(s, length, seed);
257   if (length > 32)
258     return hash_33to64_bytes(s, length, seed);
259   if (length != 0)
260     return hash_1to3_bytes(s, length, seed);
261 
262   return k2 ^ seed;
263 }
264 
265 /// The intermediate state used during hashing.
266 /// Currently, the algorithm for computing hash codes is based on CityHash and
267 /// keeps 56 bytes of arbitrary state.
268 struct hash_state {
269   uint64_t h0 = 0, h1 = 0, h2 = 0, h3 = 0, h4 = 0, h5 = 0, h6 = 0;
270 
271   /// Create a new hash_state structure and initialize it based on the
272   /// seed and the first 64-byte chunk.
273   /// This effectively performs the initial mix.
274   static hash_state create(const char *s, uint64_t seed) {
275     hash_state state = {0,
276                         seed,
277                         hash_16_bytes(seed, k1),
278                         llvm::rotr<uint64_t>(seed ^ k1, 49),
279                         seed * k1,
280                         shift_mix(seed),
281                         0};
282     state.h6 = hash_16_bytes(state.h4, state.h5);
283     state.mix(s);
284     return state;
285   }
286 
287   /// Mix 32-bytes from the input sequence into the 16-bytes of 'a'
288   /// and 'b', including whatever is already in 'a' and 'b'.
289   static void mix_32_bytes(const char *s, uint64_t &a, uint64_t &b) {
290     a += fetch64(s);
291     uint64_t c = fetch64(s + 24);
292     b = llvm::rotr<uint64_t>(b + a + c, 21);
293     uint64_t d = a;
294     a += fetch64(s + 8) + fetch64(s + 16);
295     b += llvm::rotr<uint64_t>(a, 44) + d;
296     a += c;
297   }
298 
299   /// Mix in a 64-byte buffer of data.
300   /// We mix all 64 bytes even when the chunk length is smaller, but we
301   /// record the actual length.
302   void mix(const char *s) {
303     h0 = llvm::rotr<uint64_t>(h0 + h1 + h3 + fetch64(s + 8), 37) * k1;
304     h1 = llvm::rotr<uint64_t>(h1 + h4 + fetch64(s + 48), 42) * k1;
305     h0 ^= h6;
306     h1 += h3 + fetch64(s + 40);
307     h2 = llvm::rotr<uint64_t>(h2 + h5, 33) * k1;
308     h3 = h4 * k1;
309     h4 = h0 + h5;
310     mix_32_bytes(s, h3, h4);
311     h5 = h2 + h6;
312     h6 = h1 + fetch64(s + 16);
313     mix_32_bytes(s + 32, h5, h6);
314     std::swap(h2, h0);
315   }
316 
317   /// Compute the final 64-bit hash code value based on the current
318   /// state and the length of bytes hashed.
319   uint64_t finalize(size_t length) {
320     return hash_16_bytes(hash_16_bytes(h3, h5) + shift_mix(h1) * k1 + h2,
321                          hash_16_bytes(h4, h6) + shift_mix(length) * k1 + h0);
322   }
323 };
324 
325 
326 /// A global, fixed seed-override variable.
327 ///
328 /// This variable can be set using the \see llvm::set_fixed_execution_seed
329 /// function. See that function for details. Do not, under any circumstances,
330 /// set or read this variable.
331 extern uint64_t fixed_seed_override;
332 
333 inline uint64_t get_execution_seed() {
334   // FIXME: This needs to be a per-execution seed. This is just a placeholder
335   // implementation. Switching to a per-execution seed is likely to flush out
336   // instability bugs and so will happen as its own commit.
337   //
338   // However, if there is a fixed seed override set the first time this is
339   // called, return that instead of the per-execution seed.
340   const uint64_t seed_prime = 0xff51afd7ed558ccdULL;
341   static uint64_t seed = fixed_seed_override ? fixed_seed_override : seed_prime;
342   return seed;
343 }
344 
345 
346 /// Trait to indicate whether a type's bits can be hashed directly.
347 ///
348 /// A type trait which is true if we want to combine values for hashing by
349 /// reading the underlying data. It is false if values of this type must
350 /// first be passed to hash_value, and the resulting hash_codes combined.
351 //
352 // FIXME: We want to replace is_integral_or_enum and is_pointer here with
353 // a predicate which asserts that comparing the underlying storage of two
354 // values of the type for equality is equivalent to comparing the two values
355 // for equality. For all the platforms we care about, this holds for integers
356 // and pointers, but there are platforms where it doesn't and we would like to
357 // support user-defined types which happen to satisfy this property.
358 template <typename T> struct is_hashable_data
359   : std::integral_constant<bool, ((is_integral_or_enum<T>::value ||
360                                    std::is_pointer<T>::value) &&
361                                   64 % sizeof(T) == 0)> {};
362 
363 // Special case std::pair to detect when both types are viable and when there
364 // is no alignment-derived padding in the pair. This is a bit of a lie because
365 // std::pair isn't truly POD, but it's close enough in all reasonable
366 // implementations for our use case of hashing the underlying data.
367 template <typename T, typename U> struct is_hashable_data<std::pair<T, U> >
368   : std::integral_constant<bool, (is_hashable_data<T>::value &&
369                                   is_hashable_data<U>::value &&
370                                   (sizeof(T) + sizeof(U)) ==
371                                    sizeof(std::pair<T, U>))> {};
372 
373 /// Helper to get the hashable data representation for a type.
374 /// This variant is enabled when the type itself can be used.
375 template <typename T>
376 std::enable_if_t<is_hashable_data<T>::value, T>
377 get_hashable_data(const T &value) {
378   return value;
379 }
380 /// Helper to get the hashable data representation for a type.
381 /// This variant is enabled when we must first call hash_value and use the
382 /// result as our data.
383 template <typename T>
384 std::enable_if_t<!is_hashable_data<T>::value, size_t>
385 get_hashable_data(const T &value) {
386   using ::llvm::hash_value;
387   return hash_value(value);
388 }
389 
390 /// Helper to store data from a value into a buffer and advance the
391 /// pointer into that buffer.
392 ///
393 /// This routine first checks whether there is enough space in the provided
394 /// buffer, and if not immediately returns false. If there is space, it
395 /// copies the underlying bytes of value into the buffer, advances the
396 /// buffer_ptr past the copied bytes, and returns true.
397 template <typename T>
398 bool store_and_advance(char *&buffer_ptr, char *buffer_end, const T& value,
399                        size_t offset = 0) {
400   size_t store_size = sizeof(value) - offset;
401   if (buffer_ptr + store_size > buffer_end)
402     return false;
403   const char *value_data = reinterpret_cast<const char *>(&value);
404   memcpy(buffer_ptr, value_data + offset, store_size);
405   buffer_ptr += store_size;
406   return true;
407 }
408 
409 /// Implement the combining of integral values into a hash_code.
410 ///
411 /// This overload is selected when the value type of the iterator is
412 /// integral. Rather than computing a hash_code for each object and then
413 /// combining them, this (as an optimization) directly combines the integers.
414 template <typename InputIteratorT>
415 hash_code hash_combine_range_impl(InputIteratorT first, InputIteratorT last) {
416   const uint64_t seed = get_execution_seed();
417   char buffer[64], *buffer_ptr = buffer;
418   char *const buffer_end = std::end(buffer);
419   while (first != last && store_and_advance(buffer_ptr, buffer_end,
420                                             get_hashable_data(*first)))
421     ++first;
422   if (first == last)
423     return hash_short(buffer, buffer_ptr - buffer, seed);
424   assert(buffer_ptr == buffer_end);
425 
426   hash_state state = state.create(buffer, seed);
427   size_t length = 64;
428   while (first != last) {
429     // Fill up the buffer. We don't clear it, which re-mixes the last round
430     // when only a partial 64-byte chunk is left.
431     buffer_ptr = buffer;
432     while (first != last && store_and_advance(buffer_ptr, buffer_end,
433                                               get_hashable_data(*first)))
434       ++first;
435 
436     // Rotate the buffer if we did a partial fill in order to simulate doing
437     // a mix of the last 64-bytes. That is how the algorithm works when we
438     // have a contiguous byte sequence, and we want to emulate that here.
439     std::rotate(buffer, buffer_ptr, buffer_end);
440 
441     // Mix this chunk into the current state.
442     state.mix(buffer);
443     length += buffer_ptr - buffer;
444   };
445 
446   return state.finalize(length);
447 }
448 
449 /// Implement the combining of integral values into a hash_code.
450 ///
451 /// This overload is selected when the value type of the iterator is integral
452 /// and when the input iterator is actually a pointer. Rather than computing
453 /// a hash_code for each object and then combining them, this (as an
454 /// optimization) directly combines the integers. Also, because the integers
455 /// are stored in contiguous memory, this routine avoids copying each value
456 /// and directly reads from the underlying memory.
457 template <typename ValueT>
458 std::enable_if_t<is_hashable_data<ValueT>::value, hash_code>
459 hash_combine_range_impl(ValueT *first, ValueT *last) {
460   const uint64_t seed = get_execution_seed();
461   const char *s_begin = reinterpret_cast<const char *>(first);
462   const char *s_end = reinterpret_cast<const char *>(last);
463   const size_t length = std::distance(s_begin, s_end);
464   if (length <= 64)
465     return hash_short(s_begin, length, seed);
466 
467   const char *s_aligned_end = s_begin + (length & ~63);
468   hash_state state = state.create(s_begin, seed);
469   s_begin += 64;
470   while (s_begin != s_aligned_end) {
471     state.mix(s_begin);
472     s_begin += 64;
473   }
474   if (length & 63)
475     state.mix(s_end - 64);
476 
477   return state.finalize(length);
478 }
479 
480 } // namespace detail
481 } // namespace hashing
482 
483 
484 /// Compute a hash_code for a sequence of values.
485 ///
486 /// This hashes a sequence of values. It produces the same hash_code as
487 /// 'hash_combine(a, b, c, ...)', but can run over arbitrary sized sequences
488 /// and is significantly faster given pointers and types which can be hashed as
489 /// a sequence of bytes.
490 template <typename InputIteratorT>
491 hash_code hash_combine_range(InputIteratorT first, InputIteratorT last) {
492   return ::llvm::hashing::detail::hash_combine_range_impl(first, last);
493 }
494 
495 
496 // Implementation details for hash_combine.
497 namespace hashing {
498 namespace detail {
499 
500 /// Helper class to manage the recursive combining of hash_combine
501 /// arguments.
502 ///
503 /// This class exists to manage the state and various calls involved in the
504 /// recursive combining of arguments used in hash_combine. It is particularly
505 /// useful at minimizing the code in the recursive calls to ease the pain
506 /// caused by a lack of variadic functions.
507 struct hash_combine_recursive_helper {
508   char buffer[64] = {};
509   hash_state state;
510   const uint64_t seed;
511 
512 public:
513   /// Construct a recursive hash combining helper.
514   ///
515   /// This sets up the state for a recursive hash combine, including getting
516   /// the seed and buffer setup.
517   hash_combine_recursive_helper()
518     : seed(get_execution_seed()) {}
519 
520   /// Combine one chunk of data into the current in-flight hash.
521   ///
522   /// This merges one chunk of data into the hash. First it tries to buffer
523   /// the data. If the buffer is full, it hashes the buffer into its
524   /// hash_state, empties it, and then merges the new chunk in. This also
525   /// handles cases where the data straddles the end of the buffer.
526   template <typename T>
527   char *combine_data(size_t &length, char *buffer_ptr, char *buffer_end, T data) {
528     if (!store_and_advance(buffer_ptr, buffer_end, data)) {
529       // Check for skew which prevents the buffer from being packed, and do
530       // a partial store into the buffer to fill it. This is only a concern
531       // with the variadic combine because that formation can have varying
532       // argument types.
533       size_t partial_store_size = buffer_end - buffer_ptr;
534       memcpy(buffer_ptr, &data, partial_store_size);
535 
536       // If the store fails, our buffer is full and ready to hash. We have to
537       // either initialize the hash state (on the first full buffer) or mix
538       // this buffer into the existing hash state. Length tracks the *hashed*
539       // length, not the buffered length.
540       if (length == 0) {
541         state = state.create(buffer, seed);
542         length = 64;
543       } else {
544         // Mix this chunk into the current state and bump length up by 64.
545         state.mix(buffer);
546         length += 64;
547       }
548       // Reset the buffer_ptr to the head of the buffer for the next chunk of
549       // data.
550       buffer_ptr = buffer;
551 
552       // Try again to store into the buffer -- this cannot fail as we only
553       // store types smaller than the buffer.
554       if (!store_and_advance(buffer_ptr, buffer_end, data,
555                              partial_store_size))
556         llvm_unreachable("buffer smaller than stored type");
557     }
558     return buffer_ptr;
559   }
560 
561   /// Recursive, variadic combining method.
562   ///
563   /// This function recurses through each argument, combining that argument
564   /// into a single hash.
565   template <typename T, typename ...Ts>
566   hash_code combine(size_t length, char *buffer_ptr, char *buffer_end,
567                     const T &arg, const Ts &...args) {
568     buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg));
569 
570     // Recurse to the next argument.
571     return combine(length, buffer_ptr, buffer_end, args...);
572   }
573 
574   /// Base case for recursive, variadic combining.
575   ///
576   /// The base case when combining arguments recursively is reached when all
577   /// arguments have been handled. It flushes the remaining buffer and
578   /// constructs a hash_code.
579   hash_code combine(size_t length, char *buffer_ptr, char *buffer_end) {
580     // Check whether the entire set of values fit in the buffer. If so, we'll
581     // use the optimized short hashing routine and skip state entirely.
582     if (length == 0)
583       return hash_short(buffer, buffer_ptr - buffer, seed);
584 
585     // Mix the final buffer, rotating it if we did a partial fill in order to
586     // simulate doing a mix of the last 64-bytes. That is how the algorithm
587     // works when we have a contiguous byte sequence, and we want to emulate
588     // that here.
589     std::rotate(buffer, buffer_ptr, buffer_end);
590 
591     // Mix this chunk into the current state.
592     state.mix(buffer);
593     length += buffer_ptr - buffer;
594 
595     return state.finalize(length);
596   }
597 };
598 
599 } // namespace detail
600 } // namespace hashing
601 
602 /// Combine values into a single hash_code.
603 ///
604 /// This routine accepts a varying number of arguments of any type. It will
605 /// attempt to combine them into a single hash_code. For user-defined types it
606 /// attempts to call a \see hash_value overload (via ADL) for the type. For
607 /// integer and pointer types it directly combines their data into the
608 /// resulting hash_code.
609 ///
610 /// The result is suitable for returning from a user's hash_value
611 /// *implementation* for their user-defined type. Consumers of a type should
612 /// *not* call this routine, they should instead call 'hash_value'.
613 template <typename ...Ts> hash_code hash_combine(const Ts &...args) {
614   // Recursively hash each argument using a helper class.
615   ::llvm::hashing::detail::hash_combine_recursive_helper helper;
616   return helper.combine(0, helper.buffer, helper.buffer + 64, args...);
617 }
618 
619 // Implementation details for implementations of hash_value overloads provided
620 // here.
621 namespace hashing {
622 namespace detail {
623 
624 /// Helper to hash the value of a single integer.
625 ///
626 /// Overloads for smaller integer types are not provided to ensure consistent
627 /// behavior in the presence of integral promotions. Essentially,
628 /// "hash_value('4')" and "hash_value('0' + 4)" should be the same.
629 inline hash_code hash_integer_value(uint64_t value) {
630   // Similar to hash_4to8_bytes but using a seed instead of length.
631   const uint64_t seed = get_execution_seed();
632   const char *s = reinterpret_cast<const char *>(&value);
633   const uint64_t a = fetch32(s);
634   return hash_16_bytes(seed + (a << 3), fetch32(s + 4));
635 }
636 
637 } // namespace detail
638 } // namespace hashing
639 
640 // Declared and documented above, but defined here so that any of the hashing
641 // infrastructure is available.
642 template <typename T>
643 std::enable_if_t<is_integral_or_enum<T>::value, hash_code> hash_value(T value) {
644   return ::llvm::hashing::detail::hash_integer_value(
645       static_cast<uint64_t>(value));
646 }
647 
648 // Declared and documented above, but defined here so that any of the hashing
649 // infrastructure is available.
650 template <typename T> hash_code hash_value(const T *ptr) {
651   return ::llvm::hashing::detail::hash_integer_value(
652     reinterpret_cast<uintptr_t>(ptr));
653 }
654 
655 // Declared and documented above, but defined here so that any of the hashing
656 // infrastructure is available.
657 template <typename T, typename U>
658 hash_code hash_value(const std::pair<T, U> &arg) {
659   return hash_combine(arg.first, arg.second);
660 }
661 
662 template <typename... Ts> hash_code hash_value(const std::tuple<Ts...> &arg) {
663   return std::apply([](const auto &...xs) { return hash_combine(xs...); }, arg);
664 }
665 
666 // Declared and documented above, but defined here so that any of the hashing
667 // infrastructure is available.
668 template <typename T>
669 hash_code hash_value(const std::basic_string<T> &arg) {
670   return hash_combine_range(arg.begin(), arg.end());
671 }
672 
673 template <typename T> hash_code hash_value(const std::optional<T> &arg) {
674   return arg ? hash_combine(true, *arg) : hash_value(false);
675 }
676 
677 template <> struct DenseMapInfo<hash_code, void> {
678   static inline hash_code getEmptyKey() { return hash_code(-1); }
679   static inline hash_code getTombstoneKey() { return hash_code(-2); }
680   static unsigned getHashValue(hash_code val) {
681     return static_cast<unsigned>(size_t(val));
682   }
683   static bool isEqual(hash_code LHS, hash_code RHS) { return LHS == RHS; }
684 };
685 
686 } // namespace llvm
687 
688 /// Implement std::hash so that hash_code can be used in STL containers.
689 namespace std {
690 
691 template<>
692 struct hash<llvm::hash_code> {
693   size_t operator()(llvm::hash_code const& Val) const {
694     return Val;
695   }
696 };
697 
698 } // namespace std;
699 
700 #endif
701