1 //===-- llvm/ADT/Hashing.h - Utilities for hashing --------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the newly proposed standard C++ interfaces for hashing
10 // arbitrary data and building hash functions for user-defined types. This
11 // interface was originally proposed in N3333[1] and is currently under review
12 // for inclusion in a future TR and/or standard.
13 //
14 // The primary interfaces provide are comprised of one type and three functions:
15 //
16 //  -- 'hash_code' class is an opaque type representing the hash code for some
17 //     data. It is the intended product of hashing, and can be used to implement
18 //     hash tables, checksumming, and other common uses of hashes. It is not an
19 //     integer type (although it can be converted to one) because it is risky
20 //     to assume much about the internals of a hash_code. In particular, each
21 //     execution of the program has a high probability of producing a different
22 //     hash_code for a given input. Thus their values are not stable to save or
23 //     persist, and should only be used during the execution for the
24 //     construction of hashing datastructures.
25 //
26 //  -- 'hash_value' is a function designed to be overloaded for each
27 //     user-defined type which wishes to be used within a hashing context. It
28 //     should be overloaded within the user-defined type's namespace and found
29 //     via ADL. Overloads for primitive types are provided by this library.
30 //
31 //  -- 'hash_combine' and 'hash_combine_range' are functions designed to aid
32 //      programmers in easily and intuitively combining a set of data into
33 //      a single hash_code for their object. They should only logically be used
34 //      within the implementation of a 'hash_value' routine or similar context.
35 //
36 // Note that 'hash_combine_range' contains very special logic for hashing
37 // a contiguous array of integers or pointers. This logic is *extremely* fast,
38 // on a modern Intel "Gainestown" Xeon (Nehalem uarch) @2.2 GHz, these were
39 // benchmarked at over 6.5 GiB/s for large keys, and <20 cycles/hash for keys
40 // under 32-bytes.
41 //
42 //===----------------------------------------------------------------------===//
43 
44 #ifndef LLVM_ADT_HASHING_H
45 #define LLVM_ADT_HASHING_H
46 
47 #include "llvm/Support/DataTypes.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/SwapByteOrder.h"
50 #include "llvm/Support/type_traits.h"
51 #include <algorithm>
52 #include <cassert>
53 #include <cstring>
54 #include <string>
55 #include <tuple>
56 #include <utility>
57 
58 namespace llvm {
59 
60 /// An opaque object representing a hash code.
61 ///
62 /// This object represents the result of hashing some entity. It is intended to
63 /// be used to implement hashtables or other hashing-based data structures.
64 /// While it wraps and exposes a numeric value, this value should not be
65 /// trusted to be stable or predictable across processes or executions.
66 ///
67 /// In order to obtain the hash_code for an object 'x':
68 /// \code
69 ///   using llvm::hash_value;
70 ///   llvm::hash_code code = hash_value(x);
71 /// \endcode
72 class hash_code {
73   size_t value;
74 
75 public:
76   /// Default construct a hash_code.
77   /// Note that this leaves the value uninitialized.
78   hash_code() = default;
79 
80   /// Form a hash code directly from a numerical value.
81   hash_code(size_t value) : value(value) {}
82 
83   /// Convert the hash code to its numerical value for use.
84   /*explicit*/ operator size_t() const { return value; }
85 
86   friend bool operator==(const hash_code &lhs, const hash_code &rhs) {
87     return lhs.value == rhs.value;
88   }
89   friend bool operator!=(const hash_code &lhs, const hash_code &rhs) {
90     return lhs.value != rhs.value;
91   }
92 
93   /// Allow a hash_code to be directly run through hash_value.
94   friend size_t hash_value(const hash_code &code) { return code.value; }
95 };
96 
97 /// Compute a hash_code for any integer value.
98 ///
99 /// Note that this function is intended to compute the same hash_code for
100 /// a particular value without regard to the pre-promotion type. This is in
101 /// contrast to hash_combine which may produce different hash_codes for
102 /// differing argument types even if they would implicit promote to a common
103 /// type without changing the value.
104 template <typename T>
105 std::enable_if_t<is_integral_or_enum<T>::value, hash_code> hash_value(T value);
106 
107 /// Compute a hash_code for a pointer's address.
108 ///
109 /// N.B.: This hashes the *address*. Not the value and not the type.
110 template <typename T> hash_code hash_value(const T *ptr);
111 
112 /// Compute a hash_code for a pair of objects.
113 template <typename T, typename U>
114 hash_code hash_value(const std::pair<T, U> &arg);
115 
116 /// Compute a hash_code for a tuple.
117 template <typename... Ts>
118 hash_code hash_value(const std::tuple<Ts...> &arg);
119 
120 /// Compute a hash_code for a standard string.
121 template <typename T>
122 hash_code hash_value(const std::basic_string<T> &arg);
123 
124 
125 /// Override the execution seed with a fixed value.
126 ///
127 /// This hashing library uses a per-execution seed designed to change on each
128 /// run with high probability in order to ensure that the hash codes are not
129 /// attackable and to ensure that output which is intended to be stable does
130 /// not rely on the particulars of the hash codes produced.
131 ///
132 /// That said, there are use cases where it is important to be able to
133 /// reproduce *exactly* a specific behavior. To that end, we provide a function
134 /// which will forcibly set the seed to a fixed value. This must be done at the
135 /// start of the program, before any hashes are computed. Also, it cannot be
136 /// undone. This makes it thread-hostile and very hard to use outside of
137 /// immediately on start of a simple program designed for reproducible
138 /// behavior.
139 void set_fixed_execution_hash_seed(uint64_t fixed_value);
140 
141 
142 // All of the implementation details of actually computing the various hash
143 // code values are held within this namespace. These routines are included in
144 // the header file mainly to allow inlining and constant propagation.
145 namespace hashing {
146 namespace detail {
147 
148 inline uint64_t fetch64(const char *p) {
149   uint64_t result;
150   memcpy(&result, p, sizeof(result));
151   if (sys::IsBigEndianHost)
152     sys::swapByteOrder(result);
153   return result;
154 }
155 
156 inline uint32_t fetch32(const char *p) {
157   uint32_t result;
158   memcpy(&result, p, sizeof(result));
159   if (sys::IsBigEndianHost)
160     sys::swapByteOrder(result);
161   return result;
162 }
163 
164 /// Some primes between 2^63 and 2^64 for various uses.
165 static constexpr uint64_t k0 = 0xc3a5c85c97cb3127ULL;
166 static constexpr uint64_t k1 = 0xb492b66fbe98f273ULL;
167 static constexpr uint64_t k2 = 0x9ae16a3b2f90404fULL;
168 static constexpr uint64_t k3 = 0xc949d7c7509e6557ULL;
169 
170 /// Bitwise right rotate.
171 /// Normally this will compile to a single instruction, especially if the
172 /// shift is a manifest constant.
173 inline uint64_t rotate(uint64_t val, size_t shift) {
174   // Avoid shifting by 64: doing so yields an undefined result.
175   return shift == 0 ? val : ((val >> shift) | (val << (64 - shift)));
176 }
177 
178 inline uint64_t shift_mix(uint64_t val) {
179   return val ^ (val >> 47);
180 }
181 
182 inline uint64_t hash_16_bytes(uint64_t low, uint64_t high) {
183   // Murmur-inspired hashing.
184   const uint64_t kMul = 0x9ddfea08eb382d69ULL;
185   uint64_t a = (low ^ high) * kMul;
186   a ^= (a >> 47);
187   uint64_t b = (high ^ a) * kMul;
188   b ^= (b >> 47);
189   b *= kMul;
190   return b;
191 }
192 
193 inline uint64_t hash_1to3_bytes(const char *s, size_t len, uint64_t seed) {
194   uint8_t a = s[0];
195   uint8_t b = s[len >> 1];
196   uint8_t c = s[len - 1];
197   uint32_t y = static_cast<uint32_t>(a) + (static_cast<uint32_t>(b) << 8);
198   uint32_t z = static_cast<uint32_t>(len) + (static_cast<uint32_t>(c) << 2);
199   return shift_mix(y * k2 ^ z * k3 ^ seed) * k2;
200 }
201 
202 inline uint64_t hash_4to8_bytes(const char *s, size_t len, uint64_t seed) {
203   uint64_t a = fetch32(s);
204   return hash_16_bytes(len + (a << 3), seed ^ fetch32(s + len - 4));
205 }
206 
207 inline uint64_t hash_9to16_bytes(const char *s, size_t len, uint64_t seed) {
208   uint64_t a = fetch64(s);
209   uint64_t b = fetch64(s + len - 8);
210   return hash_16_bytes(seed ^ a, rotate(b + len, len)) ^ b;
211 }
212 
213 inline uint64_t hash_17to32_bytes(const char *s, size_t len, uint64_t seed) {
214   uint64_t a = fetch64(s) * k1;
215   uint64_t b = fetch64(s + 8);
216   uint64_t c = fetch64(s + len - 8) * k2;
217   uint64_t d = fetch64(s + len - 16) * k0;
218   return hash_16_bytes(rotate(a - b, 43) + rotate(c ^ seed, 30) + d,
219                        a + rotate(b ^ k3, 20) - c + len + seed);
220 }
221 
222 inline uint64_t hash_33to64_bytes(const char *s, size_t len, uint64_t seed) {
223   uint64_t z = fetch64(s + 24);
224   uint64_t a = fetch64(s) + (len + fetch64(s + len - 16)) * k0;
225   uint64_t b = rotate(a + z, 52);
226   uint64_t c = rotate(a, 37);
227   a += fetch64(s + 8);
228   c += rotate(a, 7);
229   a += fetch64(s + 16);
230   uint64_t vf = a + z;
231   uint64_t vs = b + rotate(a, 31) + c;
232   a = fetch64(s + 16) + fetch64(s + len - 32);
233   z = fetch64(s + len - 8);
234   b = rotate(a + z, 52);
235   c = rotate(a, 37);
236   a += fetch64(s + len - 24);
237   c += rotate(a, 7);
238   a += fetch64(s + len - 16);
239   uint64_t wf = a + z;
240   uint64_t ws = b + rotate(a, 31) + c;
241   uint64_t r = shift_mix((vf + ws) * k2 + (wf + vs) * k0);
242   return shift_mix((seed ^ (r * k0)) + vs) * k2;
243 }
244 
245 inline uint64_t hash_short(const char *s, size_t length, uint64_t seed) {
246   if (length >= 4 && length <= 8)
247     return hash_4to8_bytes(s, length, seed);
248   if (length > 8 && length <= 16)
249     return hash_9to16_bytes(s, length, seed);
250   if (length > 16 && length <= 32)
251     return hash_17to32_bytes(s, length, seed);
252   if (length > 32)
253     return hash_33to64_bytes(s, length, seed);
254   if (length != 0)
255     return hash_1to3_bytes(s, length, seed);
256 
257   return k2 ^ seed;
258 }
259 
260 /// The intermediate state used during hashing.
261 /// Currently, the algorithm for computing hash codes is based on CityHash and
262 /// keeps 56 bytes of arbitrary state.
263 struct hash_state {
264   uint64_t h0 = 0, h1 = 0, h2 = 0, h3 = 0, h4 = 0, h5 = 0, h6 = 0;
265 
266   /// Create a new hash_state structure and initialize it based on the
267   /// seed and the first 64-byte chunk.
268   /// This effectively performs the initial mix.
269   static hash_state create(const char *s, uint64_t seed) {
270     hash_state state = {
271       0, seed, hash_16_bytes(seed, k1), rotate(seed ^ k1, 49),
272       seed * k1, shift_mix(seed), 0 };
273     state.h6 = hash_16_bytes(state.h4, state.h5);
274     state.mix(s);
275     return state;
276   }
277 
278   /// Mix 32-bytes from the input sequence into the 16-bytes of 'a'
279   /// and 'b', including whatever is already in 'a' and 'b'.
280   static void mix_32_bytes(const char *s, uint64_t &a, uint64_t &b) {
281     a += fetch64(s);
282     uint64_t c = fetch64(s + 24);
283     b = rotate(b + a + c, 21);
284     uint64_t d = a;
285     a += fetch64(s + 8) + fetch64(s + 16);
286     b += rotate(a, 44) + d;
287     a += c;
288   }
289 
290   /// Mix in a 64-byte buffer of data.
291   /// We mix all 64 bytes even when the chunk length is smaller, but we
292   /// record the actual length.
293   void mix(const char *s) {
294     h0 = rotate(h0 + h1 + h3 + fetch64(s + 8), 37) * k1;
295     h1 = rotate(h1 + h4 + fetch64(s + 48), 42) * k1;
296     h0 ^= h6;
297     h1 += h3 + fetch64(s + 40);
298     h2 = rotate(h2 + h5, 33) * k1;
299     h3 = h4 * k1;
300     h4 = h0 + h5;
301     mix_32_bytes(s, h3, h4);
302     h5 = h2 + h6;
303     h6 = h1 + fetch64(s + 16);
304     mix_32_bytes(s + 32, h5, h6);
305     std::swap(h2, h0);
306   }
307 
308   /// Compute the final 64-bit hash code value based on the current
309   /// state and the length of bytes hashed.
310   uint64_t finalize(size_t length) {
311     return hash_16_bytes(hash_16_bytes(h3, h5) + shift_mix(h1) * k1 + h2,
312                          hash_16_bytes(h4, h6) + shift_mix(length) * k1 + h0);
313   }
314 };
315 
316 
317 /// A global, fixed seed-override variable.
318 ///
319 /// This variable can be set using the \see llvm::set_fixed_execution_seed
320 /// function. See that function for details. Do not, under any circumstances,
321 /// set or read this variable.
322 extern uint64_t fixed_seed_override;
323 
324 inline uint64_t get_execution_seed() {
325   // FIXME: This needs to be a per-execution seed. This is just a placeholder
326   // implementation. Switching to a per-execution seed is likely to flush out
327   // instability bugs and so will happen as its own commit.
328   //
329   // However, if there is a fixed seed override set the first time this is
330   // called, return that instead of the per-execution seed.
331   const uint64_t seed_prime = 0xff51afd7ed558ccdULL;
332   static uint64_t seed = fixed_seed_override ? fixed_seed_override : seed_prime;
333   return seed;
334 }
335 
336 
337 /// Trait to indicate whether a type's bits can be hashed directly.
338 ///
339 /// A type trait which is true if we want to combine values for hashing by
340 /// reading the underlying data. It is false if values of this type must
341 /// first be passed to hash_value, and the resulting hash_codes combined.
342 //
343 // FIXME: We want to replace is_integral_or_enum and is_pointer here with
344 // a predicate which asserts that comparing the underlying storage of two
345 // values of the type for equality is equivalent to comparing the two values
346 // for equality. For all the platforms we care about, this holds for integers
347 // and pointers, but there are platforms where it doesn't and we would like to
348 // support user-defined types which happen to satisfy this property.
349 template <typename T> struct is_hashable_data
350   : std::integral_constant<bool, ((is_integral_or_enum<T>::value ||
351                                    std::is_pointer<T>::value) &&
352                                   64 % sizeof(T) == 0)> {};
353 
354 // Special case std::pair to detect when both types are viable and when there
355 // is no alignment-derived padding in the pair. This is a bit of a lie because
356 // std::pair isn't truly POD, but it's close enough in all reasonable
357 // implementations for our use case of hashing the underlying data.
358 template <typename T, typename U> struct is_hashable_data<std::pair<T, U> >
359   : std::integral_constant<bool, (is_hashable_data<T>::value &&
360                                   is_hashable_data<U>::value &&
361                                   (sizeof(T) + sizeof(U)) ==
362                                    sizeof(std::pair<T, U>))> {};
363 
364 /// Helper to get the hashable data representation for a type.
365 /// This variant is enabled when the type itself can be used.
366 template <typename T>
367 std::enable_if_t<is_hashable_data<T>::value, T>
368 get_hashable_data(const T &value) {
369   return value;
370 }
371 /// Helper to get the hashable data representation for a type.
372 /// This variant is enabled when we must first call hash_value and use the
373 /// result as our data.
374 template <typename T>
375 std::enable_if_t<!is_hashable_data<T>::value, size_t>
376 get_hashable_data(const T &value) {
377   using ::llvm::hash_value;
378   return hash_value(value);
379 }
380 
381 /// Helper to store data from a value into a buffer and advance the
382 /// pointer into that buffer.
383 ///
384 /// This routine first checks whether there is enough space in the provided
385 /// buffer, and if not immediately returns false. If there is space, it
386 /// copies the underlying bytes of value into the buffer, advances the
387 /// buffer_ptr past the copied bytes, and returns true.
388 template <typename T>
389 bool store_and_advance(char *&buffer_ptr, char *buffer_end, const T& value,
390                        size_t offset = 0) {
391   size_t store_size = sizeof(value) - offset;
392   if (buffer_ptr + store_size > buffer_end)
393     return false;
394   const char *value_data = reinterpret_cast<const char *>(&value);
395   memcpy(buffer_ptr, value_data + offset, store_size);
396   buffer_ptr += store_size;
397   return true;
398 }
399 
400 /// Implement the combining of integral values into a hash_code.
401 ///
402 /// This overload is selected when the value type of the iterator is
403 /// integral. Rather than computing a hash_code for each object and then
404 /// combining them, this (as an optimization) directly combines the integers.
405 template <typename InputIteratorT>
406 hash_code hash_combine_range_impl(InputIteratorT first, InputIteratorT last) {
407   const uint64_t seed = get_execution_seed();
408   char buffer[64], *buffer_ptr = buffer;
409   char *const buffer_end = std::end(buffer);
410   while (first != last && store_and_advance(buffer_ptr, buffer_end,
411                                             get_hashable_data(*first)))
412     ++first;
413   if (first == last)
414     return hash_short(buffer, buffer_ptr - buffer, seed);
415   assert(buffer_ptr == buffer_end);
416 
417   hash_state state = state.create(buffer, seed);
418   size_t length = 64;
419   while (first != last) {
420     // Fill up the buffer. We don't clear it, which re-mixes the last round
421     // when only a partial 64-byte chunk is left.
422     buffer_ptr = buffer;
423     while (first != last && store_and_advance(buffer_ptr, buffer_end,
424                                               get_hashable_data(*first)))
425       ++first;
426 
427     // Rotate the buffer if we did a partial fill in order to simulate doing
428     // a mix of the last 64-bytes. That is how the algorithm works when we
429     // have a contiguous byte sequence, and we want to emulate that here.
430     std::rotate(buffer, buffer_ptr, buffer_end);
431 
432     // Mix this chunk into the current state.
433     state.mix(buffer);
434     length += buffer_ptr - buffer;
435   };
436 
437   return state.finalize(length);
438 }
439 
440 /// Implement the combining of integral values into a hash_code.
441 ///
442 /// This overload is selected when the value type of the iterator is integral
443 /// and when the input iterator is actually a pointer. Rather than computing
444 /// a hash_code for each object and then combining them, this (as an
445 /// optimization) directly combines the integers. Also, because the integers
446 /// are stored in contiguous memory, this routine avoids copying each value
447 /// and directly reads from the underlying memory.
448 template <typename ValueT>
449 std::enable_if_t<is_hashable_data<ValueT>::value, hash_code>
450 hash_combine_range_impl(ValueT *first, ValueT *last) {
451   const uint64_t seed = get_execution_seed();
452   const char *s_begin = reinterpret_cast<const char *>(first);
453   const char *s_end = reinterpret_cast<const char *>(last);
454   const size_t length = std::distance(s_begin, s_end);
455   if (length <= 64)
456     return hash_short(s_begin, length, seed);
457 
458   const char *s_aligned_end = s_begin + (length & ~63);
459   hash_state state = state.create(s_begin, seed);
460   s_begin += 64;
461   while (s_begin != s_aligned_end) {
462     state.mix(s_begin);
463     s_begin += 64;
464   }
465   if (length & 63)
466     state.mix(s_end - 64);
467 
468   return state.finalize(length);
469 }
470 
471 } // namespace detail
472 } // namespace hashing
473 
474 
475 /// Compute a hash_code for a sequence of values.
476 ///
477 /// This hashes a sequence of values. It produces the same hash_code as
478 /// 'hash_combine(a, b, c, ...)', but can run over arbitrary sized sequences
479 /// and is significantly faster given pointers and types which can be hashed as
480 /// a sequence of bytes.
481 template <typename InputIteratorT>
482 hash_code hash_combine_range(InputIteratorT first, InputIteratorT last) {
483   return ::llvm::hashing::detail::hash_combine_range_impl(first, last);
484 }
485 
486 
487 // Implementation details for hash_combine.
488 namespace hashing {
489 namespace detail {
490 
491 /// Helper class to manage the recursive combining of hash_combine
492 /// arguments.
493 ///
494 /// This class exists to manage the state and various calls involved in the
495 /// recursive combining of arguments used in hash_combine. It is particularly
496 /// useful at minimizing the code in the recursive calls to ease the pain
497 /// caused by a lack of variadic functions.
498 struct hash_combine_recursive_helper {
499   char buffer[64] = {};
500   hash_state state;
501   const uint64_t seed;
502 
503 public:
504   /// Construct a recursive hash combining helper.
505   ///
506   /// This sets up the state for a recursive hash combine, including getting
507   /// the seed and buffer setup.
508   hash_combine_recursive_helper()
509     : seed(get_execution_seed()) {}
510 
511   /// Combine one chunk of data into the current in-flight hash.
512   ///
513   /// This merges one chunk of data into the hash. First it tries to buffer
514   /// the data. If the buffer is full, it hashes the buffer into its
515   /// hash_state, empties it, and then merges the new chunk in. This also
516   /// handles cases where the data straddles the end of the buffer.
517   template <typename T>
518   char *combine_data(size_t &length, char *buffer_ptr, char *buffer_end, T data) {
519     if (!store_and_advance(buffer_ptr, buffer_end, data)) {
520       // Check for skew which prevents the buffer from being packed, and do
521       // a partial store into the buffer to fill it. This is only a concern
522       // with the variadic combine because that formation can have varying
523       // argument types.
524       size_t partial_store_size = buffer_end - buffer_ptr;
525       memcpy(buffer_ptr, &data, partial_store_size);
526 
527       // If the store fails, our buffer is full and ready to hash. We have to
528       // either initialize the hash state (on the first full buffer) or mix
529       // this buffer into the existing hash state. Length tracks the *hashed*
530       // length, not the buffered length.
531       if (length == 0) {
532         state = state.create(buffer, seed);
533         length = 64;
534       } else {
535         // Mix this chunk into the current state and bump length up by 64.
536         state.mix(buffer);
537         length += 64;
538       }
539       // Reset the buffer_ptr to the head of the buffer for the next chunk of
540       // data.
541       buffer_ptr = buffer;
542 
543       // Try again to store into the buffer -- this cannot fail as we only
544       // store types smaller than the buffer.
545       if (!store_and_advance(buffer_ptr, buffer_end, data,
546                              partial_store_size))
547         llvm_unreachable("buffer smaller than stored type");
548     }
549     return buffer_ptr;
550   }
551 
552   /// Recursive, variadic combining method.
553   ///
554   /// This function recurses through each argument, combining that argument
555   /// into a single hash.
556   template <typename T, typename ...Ts>
557   hash_code combine(size_t length, char *buffer_ptr, char *buffer_end,
558                     const T &arg, const Ts &...args) {
559     buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg));
560 
561     // Recurse to the next argument.
562     return combine(length, buffer_ptr, buffer_end, args...);
563   }
564 
565   /// Base case for recursive, variadic combining.
566   ///
567   /// The base case when combining arguments recursively is reached when all
568   /// arguments have been handled. It flushes the remaining buffer and
569   /// constructs a hash_code.
570   hash_code combine(size_t length, char *buffer_ptr, char *buffer_end) {
571     // Check whether the entire set of values fit in the buffer. If so, we'll
572     // use the optimized short hashing routine and skip state entirely.
573     if (length == 0)
574       return hash_short(buffer, buffer_ptr - buffer, seed);
575 
576     // Mix the final buffer, rotating it if we did a partial fill in order to
577     // simulate doing a mix of the last 64-bytes. That is how the algorithm
578     // works when we have a contiguous byte sequence, and we want to emulate
579     // that here.
580     std::rotate(buffer, buffer_ptr, buffer_end);
581 
582     // Mix this chunk into the current state.
583     state.mix(buffer);
584     length += buffer_ptr - buffer;
585 
586     return state.finalize(length);
587   }
588 };
589 
590 } // namespace detail
591 } // namespace hashing
592 
593 /// Combine values into a single hash_code.
594 ///
595 /// This routine accepts a varying number of arguments of any type. It will
596 /// attempt to combine them into a single hash_code. For user-defined types it
597 /// attempts to call a \see hash_value overload (via ADL) for the type. For
598 /// integer and pointer types it directly combines their data into the
599 /// resulting hash_code.
600 ///
601 /// The result is suitable for returning from a user's hash_value
602 /// *implementation* for their user-defined type. Consumers of a type should
603 /// *not* call this routine, they should instead call 'hash_value'.
604 template <typename ...Ts> hash_code hash_combine(const Ts &...args) {
605   // Recursively hash each argument using a helper class.
606   ::llvm::hashing::detail::hash_combine_recursive_helper helper;
607   return helper.combine(0, helper.buffer, helper.buffer + 64, args...);
608 }
609 
610 // Implementation details for implementations of hash_value overloads provided
611 // here.
612 namespace hashing {
613 namespace detail {
614 
615 /// Helper to hash the value of a single integer.
616 ///
617 /// Overloads for smaller integer types are not provided to ensure consistent
618 /// behavior in the presence of integral promotions. Essentially,
619 /// "hash_value('4')" and "hash_value('0' + 4)" should be the same.
620 inline hash_code hash_integer_value(uint64_t value) {
621   // Similar to hash_4to8_bytes but using a seed instead of length.
622   const uint64_t seed = get_execution_seed();
623   const char *s = reinterpret_cast<const char *>(&value);
624   const uint64_t a = fetch32(s);
625   return hash_16_bytes(seed + (a << 3), fetch32(s + 4));
626 }
627 
628 } // namespace detail
629 } // namespace hashing
630 
631 // Declared and documented above, but defined here so that any of the hashing
632 // infrastructure is available.
633 template <typename T>
634 std::enable_if_t<is_integral_or_enum<T>::value, hash_code> hash_value(T value) {
635   return ::llvm::hashing::detail::hash_integer_value(
636       static_cast<uint64_t>(value));
637 }
638 
639 // Declared and documented above, but defined here so that any of the hashing
640 // infrastructure is available.
641 template <typename T> hash_code hash_value(const T *ptr) {
642   return ::llvm::hashing::detail::hash_integer_value(
643     reinterpret_cast<uintptr_t>(ptr));
644 }
645 
646 // Declared and documented above, but defined here so that any of the hashing
647 // infrastructure is available.
648 template <typename T, typename U>
649 hash_code hash_value(const std::pair<T, U> &arg) {
650   return hash_combine(arg.first, arg.second);
651 }
652 
653 // Implementation details for the hash_value overload for std::tuple<...>(...).
654 namespace hashing {
655 namespace detail {
656 
657 template <typename... Ts, std::size_t... Indices>
658 hash_code hash_value_tuple_helper(const std::tuple<Ts...> &arg,
659                                   std::index_sequence<Indices...>) {
660   return hash_combine(std::get<Indices>(arg)...);
661 }
662 
663 } // namespace detail
664 } // namespace hashing
665 
666 template <typename... Ts>
667 hash_code hash_value(const std::tuple<Ts...> &arg) {
668   // TODO: Use std::apply when LLVM starts using C++17.
669   return ::llvm::hashing::detail::hash_value_tuple_helper(
670       arg, typename std::index_sequence_for<Ts...>());
671 }
672 
673 // Declared and documented above, but defined here so that any of the hashing
674 // infrastructure is available.
675 template <typename T>
676 hash_code hash_value(const std::basic_string<T> &arg) {
677   return hash_combine_range(arg.begin(), arg.end());
678 }
679 
680 } // namespace llvm
681 
682 #endif
683