1 //===- llvm/ADT/MapVector.h - Map w/ deterministic value order --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements a map that provides insertion order iteration. The
11 /// interface is purposefully minimal. The key is assumed to be cheap to copy
12 /// and 2 copies are kept, one for indexing in a DenseMap, one for iteration in
13 /// a SmallVector.
14 ///
15 //===----------------------------------------------------------------------===//
16 
17 #ifndef LLVM_ADT_MAPVECTOR_H
18 #define LLVM_ADT_MAPVECTOR_H
19 
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include <cassert>
23 #include <cstddef>
24 #include <iterator>
25 #include <type_traits>
26 #include <utility>
27 
28 namespace llvm {
29 
30 /// This class implements a map that also provides access to all stored values
31 /// in a deterministic order. The values are kept in a SmallVector<*, 0> and the
32 /// mapping is done with DenseMap from Keys to indexes in that vector.
33 template <typename KeyT, typename ValueT,
34           typename MapType = DenseMap<KeyT, unsigned>,
35           typename VectorType = SmallVector<std::pair<KeyT, ValueT>, 0>>
36 class MapVector {
37   MapType Map;
38   VectorType Vector;
39 
40   static_assert(
41       std::is_integral_v<typename MapType::mapped_type>,
42       "The mapped_type of the specified Map must be an integral type");
43 
44 public:
45   using key_type = KeyT;
46   using value_type = typename VectorType::value_type;
47   using size_type = typename VectorType::size_type;
48 
49   using iterator = typename VectorType::iterator;
50   using const_iterator = typename VectorType::const_iterator;
51   using reverse_iterator = typename VectorType::reverse_iterator;
52   using const_reverse_iterator = typename VectorType::const_reverse_iterator;
53 
54   /// Clear the MapVector and return the underlying vector.
55   VectorType takeVector() {
56     Map.clear();
57     return std::move(Vector);
58   }
59 
60   size_type size() const { return Vector.size(); }
61 
62   /// Grow the MapVector so that it can contain at least \p NumEntries items
63   /// before resizing again.
64   void reserve(size_type NumEntries) {
65     Map.reserve(NumEntries);
66     Vector.reserve(NumEntries);
67   }
68 
69   iterator begin() { return Vector.begin(); }
70   const_iterator begin() const { return Vector.begin(); }
71   iterator end() { return Vector.end(); }
72   const_iterator end() const { return Vector.end(); }
73 
74   reverse_iterator rbegin() { return Vector.rbegin(); }
75   const_reverse_iterator rbegin() const { return Vector.rbegin(); }
76   reverse_iterator rend() { return Vector.rend(); }
77   const_reverse_iterator rend() const { return Vector.rend(); }
78 
79   bool empty() const {
80     return Vector.empty();
81   }
82 
83   std::pair<KeyT, ValueT>       &front()       { return Vector.front(); }
84   const std::pair<KeyT, ValueT> &front() const { return Vector.front(); }
85   std::pair<KeyT, ValueT>       &back()        { return Vector.back(); }
86   const std::pair<KeyT, ValueT> &back()  const { return Vector.back(); }
87 
88   void clear() {
89     Map.clear();
90     Vector.clear();
91   }
92 
93   void swap(MapVector &RHS) {
94     std::swap(Map, RHS.Map);
95     std::swap(Vector, RHS.Vector);
96   }
97 
98   ValueT &operator[](const KeyT &Key) {
99     std::pair<KeyT, typename MapType::mapped_type> Pair = std::make_pair(Key, 0);
100     std::pair<typename MapType::iterator, bool> Result = Map.insert(Pair);
101     auto &I = Result.first->second;
102     if (Result.second) {
103       Vector.push_back(std::make_pair(Key, ValueT()));
104       I = Vector.size() - 1;
105     }
106     return Vector[I].second;
107   }
108 
109   // Returns a copy of the value.  Only allowed if ValueT is copyable.
110   ValueT lookup(const KeyT &Key) const {
111     static_assert(std::is_copy_constructible_v<ValueT>,
112                   "Cannot call lookup() if ValueT is not copyable.");
113     typename MapType::const_iterator Pos = Map.find(Key);
114     return Pos == Map.end()? ValueT() : Vector[Pos->second].second;
115   }
116 
117   std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) {
118     std::pair<KeyT, typename MapType::mapped_type> Pair = std::make_pair(KV.first, 0);
119     std::pair<typename MapType::iterator, bool> Result = Map.insert(Pair);
120     auto &I = Result.first->second;
121     if (Result.second) {
122       Vector.push_back(std::make_pair(KV.first, KV.second));
123       I = Vector.size() - 1;
124       return std::make_pair(std::prev(end()), true);
125     }
126     return std::make_pair(begin() + I, false);
127   }
128 
129   std::pair<iterator, bool> insert(std::pair<KeyT, ValueT> &&KV) {
130     // Copy KV.first into the map, then move it into the vector.
131     std::pair<KeyT, typename MapType::mapped_type> Pair = std::make_pair(KV.first, 0);
132     std::pair<typename MapType::iterator, bool> Result = Map.insert(Pair);
133     auto &I = Result.first->second;
134     if (Result.second) {
135       Vector.push_back(std::move(KV));
136       I = Vector.size() - 1;
137       return std::make_pair(std::prev(end()), true);
138     }
139     return std::make_pair(begin() + I, false);
140   }
141 
142   bool contains(const KeyT &Key) const { return Map.find(Key) != Map.end(); }
143 
144   size_type count(const KeyT &Key) const { return contains(Key) ? 1 : 0; }
145 
146   iterator find(const KeyT &Key) {
147     typename MapType::const_iterator Pos = Map.find(Key);
148     return Pos == Map.end()? Vector.end() :
149                             (Vector.begin() + Pos->second);
150   }
151 
152   const_iterator find(const KeyT &Key) const {
153     typename MapType::const_iterator Pos = Map.find(Key);
154     return Pos == Map.end()? Vector.end() :
155                             (Vector.begin() + Pos->second);
156   }
157 
158   /// Remove the last element from the vector.
159   void pop_back() {
160     typename MapType::iterator Pos = Map.find(Vector.back().first);
161     Map.erase(Pos);
162     Vector.pop_back();
163   }
164 
165   /// Remove the element given by Iterator.
166   ///
167   /// Returns an iterator to the element following the one which was removed,
168   /// which may be end().
169   ///
170   /// \note This is a deceivingly expensive operation (linear time).  It's
171   /// usually better to use \a remove_if() if possible.
172   typename VectorType::iterator erase(typename VectorType::iterator Iterator) {
173     Map.erase(Iterator->first);
174     auto Next = Vector.erase(Iterator);
175     if (Next == Vector.end())
176       return Next;
177 
178     // Update indices in the map.
179     size_t Index = Next - Vector.begin();
180     for (auto &I : Map) {
181       assert(I.second != Index && "Index was already erased!");
182       if (I.second > Index)
183         --I.second;
184     }
185     return Next;
186   }
187 
188   /// Remove all elements with the key value Key.
189   ///
190   /// Returns the number of elements removed.
191   size_type erase(const KeyT &Key) {
192     auto Iterator = find(Key);
193     if (Iterator == end())
194       return 0;
195     erase(Iterator);
196     return 1;
197   }
198 
199   /// Remove the elements that match the predicate.
200   ///
201   /// Erase all elements that match \c Pred in a single pass.  Takes linear
202   /// time.
203   template <class Predicate> void remove_if(Predicate Pred);
204 };
205 
206 template <typename KeyT, typename ValueT, typename MapType, typename VectorType>
207 template <class Function>
208 void MapVector<KeyT, ValueT, MapType, VectorType>::remove_if(Function Pred) {
209   auto O = Vector.begin();
210   for (auto I = O, E = Vector.end(); I != E; ++I) {
211     if (Pred(*I)) {
212       // Erase from the map.
213       Map.erase(I->first);
214       continue;
215     }
216 
217     if (I != O) {
218       // Move the value and update the index in the map.
219       *O = std::move(*I);
220       Map[O->first] = O - Vector.begin();
221     }
222     ++O;
223   }
224   // Erase trailing entries in the vector.
225   Vector.erase(O, Vector.end());
226 }
227 
228 /// A MapVector that performs no allocations if smaller than a certain
229 /// size.
230 template <typename KeyT, typename ValueT, unsigned N>
231 struct SmallMapVector
232     : MapVector<KeyT, ValueT, SmallDenseMap<KeyT, unsigned, N>,
233                 SmallVector<std::pair<KeyT, ValueT>, N>> {
234 };
235 
236 } // end namespace llvm
237 
238 #endif // LLVM_ADT_MAPVECTOR_H
239