1 //===- llvm/ADT/PostOrderIterator.h - PostOrder iterator --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file builds on the ADT/GraphTraits.h file to build a generic graph
11 /// post order iterator.  This should work over any graph type that has a
12 /// GraphTraits specialization.
13 ///
14 //===----------------------------------------------------------------------===//
15 
16 #ifndef LLVM_ADT_POSTORDERITERATOR_H
17 #define LLVM_ADT_POSTORDERITERATOR_H
18 
19 #include "llvm/ADT/GraphTraits.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include <iterator>
24 #include <optional>
25 #include <set>
26 #include <utility>
27 #include <vector>
28 
29 namespace llvm {
30 
31 // The po_iterator_storage template provides access to the set of already
32 // visited nodes during the po_iterator's depth-first traversal.
33 //
34 // The default implementation simply contains a set of visited nodes, while
35 // the External=true version uses a reference to an external set.
36 //
37 // It is possible to prune the depth-first traversal in several ways:
38 //
39 // - When providing an external set that already contains some graph nodes,
40 //   those nodes won't be visited again. This is useful for restarting a
41 //   post-order traversal on a graph with nodes that aren't dominated by a
42 //   single node.
43 //
44 // - By providing a custom SetType class, unwanted graph nodes can be excluded
45 //   by having the insert() function return false. This could for example
46 //   confine a CFG traversal to blocks in a specific loop.
47 //
48 // - Finally, by specializing the po_iterator_storage template itself, graph
49 //   edges can be pruned by returning false in the insertEdge() function. This
50 //   could be used to remove loop back-edges from the CFG seen by po_iterator.
51 //
52 // A specialized po_iterator_storage class can observe both the pre-order and
53 // the post-order. The insertEdge() function is called in a pre-order, while
54 // the finishPostorder() function is called just before the po_iterator moves
55 // on to the next node.
56 
57 /// Default po_iterator_storage implementation with an internal set object.
58 template<class SetType, bool External>
59 class po_iterator_storage {
60   SetType Visited;
61 
62 public:
63   // Return true if edge destination should be visited.
64   template <typename NodeRef>
65   bool insertEdge(std::optional<NodeRef> From, NodeRef To) {
66     return Visited.insert(To).second;
67   }
68 
69   // Called after all children of BB have been visited.
70   template <typename NodeRef> void finishPostorder(NodeRef BB) {}
71 };
72 
73 /// Specialization of po_iterator_storage that references an external set.
74 template<class SetType>
75 class po_iterator_storage<SetType, true> {
76   SetType &Visited;
77 
78 public:
79   po_iterator_storage(SetType &VSet) : Visited(VSet) {}
80   po_iterator_storage(const po_iterator_storage &S) : Visited(S.Visited) {}
81 
82   // Return true if edge destination should be visited, called with From = 0 for
83   // the root node.
84   // Graph edges can be pruned by specializing this function.
85   template <class NodeRef>
86   bool insertEdge(std::optional<NodeRef> From, NodeRef To) {
87     return Visited.insert(To).second;
88   }
89 
90   // Called after all children of BB have been visited.
91   template <class NodeRef> void finishPostorder(NodeRef BB) {}
92 };
93 
94 template <class GraphT,
95           class SetType = SmallPtrSet<typename GraphTraits<GraphT>::NodeRef, 8>,
96           bool ExtStorage = false, class GT = GraphTraits<GraphT>>
97 class po_iterator : public po_iterator_storage<SetType, ExtStorage> {
98 public:
99   using iterator_category = std::forward_iterator_tag;
100   using value_type = typename GT::NodeRef;
101   using difference_type = std::ptrdiff_t;
102   using pointer = value_type *;
103   using reference = value_type &;
104 
105 private:
106   using NodeRef = typename GT::NodeRef;
107   using ChildItTy = typename GT::ChildIteratorType;
108 
109   // VisitStack - Used to maintain the ordering.  Top = current block
110   // First element is basic block pointer, second is the 'next child' to visit
111   SmallVector<std::pair<NodeRef, ChildItTy>, 8> VisitStack;
112 
113   po_iterator(NodeRef BB) {
114     this->insertEdge(std::optional<NodeRef>(), BB);
115     VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
116     traverseChild();
117   }
118 
119   po_iterator() = default; // End is when stack is empty.
120 
121   po_iterator(NodeRef BB, SetType &S)
122       : po_iterator_storage<SetType, ExtStorage>(S) {
123     if (this->insertEdge(std::optional<NodeRef>(), BB)) {
124       VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
125       traverseChild();
126     }
127   }
128 
129   po_iterator(SetType &S)
130       : po_iterator_storage<SetType, ExtStorage>(S) {
131   } // End is when stack is empty.
132 
133   void traverseChild() {
134     while (VisitStack.back().second != GT::child_end(VisitStack.back().first)) {
135       NodeRef BB = *VisitStack.back().second++;
136       if (this->insertEdge(std::optional<NodeRef>(VisitStack.back().first),
137                            BB)) {
138         // If the block is not visited...
139         VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
140       }
141     }
142   }
143 
144 public:
145   // Provide static "constructors"...
146   static po_iterator begin(const GraphT &G) {
147     return po_iterator(GT::getEntryNode(G));
148   }
149   static po_iterator end(const GraphT &G) { return po_iterator(); }
150 
151   static po_iterator begin(const GraphT &G, SetType &S) {
152     return po_iterator(GT::getEntryNode(G), S);
153   }
154   static po_iterator end(const GraphT &G, SetType &S) { return po_iterator(S); }
155 
156   bool operator==(const po_iterator &x) const {
157     return VisitStack == x.VisitStack;
158   }
159   bool operator!=(const po_iterator &x) const { return !(*this == x); }
160 
161   const NodeRef &operator*() const { return VisitStack.back().first; }
162 
163   // This is a nonstandard operator-> that dereferences the pointer an extra
164   // time... so that you can actually call methods ON the BasicBlock, because
165   // the contained type is a pointer.  This allows BBIt->getTerminator() f.e.
166   //
167   NodeRef operator->() const { return **this; }
168 
169   po_iterator &operator++() { // Preincrement
170     this->finishPostorder(VisitStack.back().first);
171     VisitStack.pop_back();
172     if (!VisitStack.empty())
173       traverseChild();
174     return *this;
175   }
176 
177   po_iterator operator++(int) { // Postincrement
178     po_iterator tmp = *this;
179     ++*this;
180     return tmp;
181   }
182 };
183 
184 // Provide global constructors that automatically figure out correct types...
185 //
186 template <class T>
187 po_iterator<T> po_begin(const T &G) { return po_iterator<T>::begin(G); }
188 template <class T>
189 po_iterator<T> po_end  (const T &G) { return po_iterator<T>::end(G); }
190 
191 template <class T> iterator_range<po_iterator<T>> post_order(const T &G) {
192   return make_range(po_begin(G), po_end(G));
193 }
194 
195 // Provide global definitions of external postorder iterators...
196 template <class T, class SetType = std::set<typename GraphTraits<T>::NodeRef>>
197 struct po_ext_iterator : public po_iterator<T, SetType, true> {
198   po_ext_iterator(const po_iterator<T, SetType, true> &V) :
199   po_iterator<T, SetType, true>(V) {}
200 };
201 
202 template<class T, class SetType>
203 po_ext_iterator<T, SetType> po_ext_begin(T G, SetType &S) {
204   return po_ext_iterator<T, SetType>::begin(G, S);
205 }
206 
207 template<class T, class SetType>
208 po_ext_iterator<T, SetType> po_ext_end(T G, SetType &S) {
209   return po_ext_iterator<T, SetType>::end(G, S);
210 }
211 
212 template <class T, class SetType>
213 iterator_range<po_ext_iterator<T, SetType>> post_order_ext(const T &G, SetType &S) {
214   return make_range(po_ext_begin(G, S), po_ext_end(G, S));
215 }
216 
217 // Provide global definitions of inverse post order iterators...
218 template <class T, class SetType = std::set<typename GraphTraits<T>::NodeRef>,
219           bool External = false>
220 struct ipo_iterator : public po_iterator<Inverse<T>, SetType, External> {
221   ipo_iterator(const po_iterator<Inverse<T>, SetType, External> &V) :
222      po_iterator<Inverse<T>, SetType, External> (V) {}
223 };
224 
225 template <class T>
226 ipo_iterator<T> ipo_begin(const T &G) {
227   return ipo_iterator<T>::begin(G);
228 }
229 
230 template <class T>
231 ipo_iterator<T> ipo_end(const T &G){
232   return ipo_iterator<T>::end(G);
233 }
234 
235 template <class T>
236 iterator_range<ipo_iterator<T>> inverse_post_order(const T &G) {
237   return make_range(ipo_begin(G), ipo_end(G));
238 }
239 
240 // Provide global definitions of external inverse postorder iterators...
241 template <class T, class SetType = std::set<typename GraphTraits<T>::NodeRef>>
242 struct ipo_ext_iterator : public ipo_iterator<T, SetType, true> {
243   ipo_ext_iterator(const ipo_iterator<T, SetType, true> &V) :
244     ipo_iterator<T, SetType, true>(V) {}
245   ipo_ext_iterator(const po_iterator<Inverse<T>, SetType, true> &V) :
246     ipo_iterator<T, SetType, true>(V) {}
247 };
248 
249 template <class T, class SetType>
250 ipo_ext_iterator<T, SetType> ipo_ext_begin(const T &G, SetType &S) {
251   return ipo_ext_iterator<T, SetType>::begin(G, S);
252 }
253 
254 template <class T, class SetType>
255 ipo_ext_iterator<T, SetType> ipo_ext_end(const T &G, SetType &S) {
256   return ipo_ext_iterator<T, SetType>::end(G, S);
257 }
258 
259 template <class T, class SetType>
260 iterator_range<ipo_ext_iterator<T, SetType>>
261 inverse_post_order_ext(const T &G, SetType &S) {
262   return make_range(ipo_ext_begin(G, S), ipo_ext_end(G, S));
263 }
264 
265 //===--------------------------------------------------------------------===//
266 // Reverse Post Order CFG iterator code
267 //===--------------------------------------------------------------------===//
268 //
269 // This is used to visit basic blocks in a method in reverse post order.  This
270 // class is awkward to use because I don't know a good incremental algorithm to
271 // computer RPO from a graph.  Because of this, the construction of the
272 // ReversePostOrderTraversal object is expensive (it must walk the entire graph
273 // with a postorder iterator to build the data structures).  The moral of this
274 // story is: Don't create more ReversePostOrderTraversal classes than necessary.
275 //
276 // Because it does the traversal in its constructor, it won't invalidate when
277 // BasicBlocks are removed, *but* it may contain erased blocks. Some places
278 // rely on this behavior (i.e. GVN).
279 //
280 // This class should be used like this:
281 // {
282 //   ReversePostOrderTraversal<Function*> RPOT(FuncPtr); // Expensive to create
283 //   for (rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
284 //      ...
285 //   }
286 //   for (rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
287 //      ...
288 //   }
289 // }
290 //
291 
292 template<class GraphT, class GT = GraphTraits<GraphT>>
293 class ReversePostOrderTraversal {
294   using NodeRef = typename GT::NodeRef;
295 
296   std::vector<NodeRef> Blocks; // Block list in normal PO order
297 
298   void Initialize(const GraphT &G) {
299     std::copy(po_begin(G), po_end(G), std::back_inserter(Blocks));
300   }
301 
302 public:
303   using rpo_iterator = typename std::vector<NodeRef>::reverse_iterator;
304   using const_rpo_iterator = typename std::vector<NodeRef>::const_reverse_iterator;
305 
306   ReversePostOrderTraversal(const GraphT &G) { Initialize(G); }
307 
308   // Because we want a reverse post order, use reverse iterators from the vector
309   rpo_iterator begin() { return Blocks.rbegin(); }
310   const_rpo_iterator begin() const { return Blocks.crbegin(); }
311   rpo_iterator end() { return Blocks.rend(); }
312   const_rpo_iterator end() const { return Blocks.crend(); }
313 };
314 
315 } // end namespace llvm
316 
317 #endif // LLVM_ADT_POSTORDERITERATOR_H
318