1 //===- llvm/ADT/PostOrderIterator.h - PostOrder iterator --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file builds on the ADT/GraphTraits.h file to build a generic graph
11 /// post order iterator.  This should work over any graph type that has a
12 /// GraphTraits specialization.
13 ///
14 //===----------------------------------------------------------------------===//
15 
16 #ifndef LLVM_ADT_POSTORDERITERATOR_H
17 #define LLVM_ADT_POSTORDERITERATOR_H
18 
19 #include "llvm/ADT/GraphTraits.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/iterator_range.h"
24 #include <iterator>
25 #include <set>
26 #include <utility>
27 #include <vector>
28 
29 namespace llvm {
30 
31 // The po_iterator_storage template provides access to the set of already
32 // visited nodes during the po_iterator's depth-first traversal.
33 //
34 // The default implementation simply contains a set of visited nodes, while
35 // the External=true version uses a reference to an external set.
36 //
37 // It is possible to prune the depth-first traversal in several ways:
38 //
39 // - When providing an external set that already contains some graph nodes,
40 //   those nodes won't be visited again. This is useful for restarting a
41 //   post-order traversal on a graph with nodes that aren't dominated by a
42 //   single node.
43 //
44 // - By providing a custom SetType class, unwanted graph nodes can be excluded
45 //   by having the insert() function return false. This could for example
46 //   confine a CFG traversal to blocks in a specific loop.
47 //
48 // - Finally, by specializing the po_iterator_storage template itself, graph
49 //   edges can be pruned by returning false in the insertEdge() function. This
50 //   could be used to remove loop back-edges from the CFG seen by po_iterator.
51 //
52 // A specialized po_iterator_storage class can observe both the pre-order and
53 // the post-order. The insertEdge() function is called in a pre-order, while
54 // the finishPostorder() function is called just before the po_iterator moves
55 // on to the next node.
56 
57 /// Default po_iterator_storage implementation with an internal set object.
58 template<class SetType, bool External>
59 class po_iterator_storage {
60   SetType Visited;
61 
62 public:
63   // Return true if edge destination should be visited.
64   template <typename NodeRef>
65   bool insertEdge(Optional<NodeRef> From, NodeRef To) {
66     return Visited.insert(To).second;
67   }
68 
69   // Called after all children of BB have been visited.
70   template <typename NodeRef> void finishPostorder(NodeRef BB) {}
71 };
72 
73 /// Specialization of po_iterator_storage that references an external set.
74 template<class SetType>
75 class po_iterator_storage<SetType, true> {
76   SetType &Visited;
77 
78 public:
79   po_iterator_storage(SetType &VSet) : Visited(VSet) {}
80   po_iterator_storage(const po_iterator_storage &S) : Visited(S.Visited) {}
81 
82   // Return true if edge destination should be visited, called with From = 0 for
83   // the root node.
84   // Graph edges can be pruned by specializing this function.
85   template <class NodeRef> bool insertEdge(Optional<NodeRef> From, NodeRef To) {
86     return Visited.insert(To).second;
87   }
88 
89   // Called after all children of BB have been visited.
90   template <class NodeRef> void finishPostorder(NodeRef BB) {}
91 };
92 
93 template <class GraphT,
94           class SetType = SmallPtrSet<typename GraphTraits<GraphT>::NodeRef, 8>,
95           bool ExtStorage = false, class GT = GraphTraits<GraphT>>
96 class po_iterator : public po_iterator_storage<SetType, ExtStorage> {
97 public:
98   using iterator_category = std::forward_iterator_tag;
99   using value_type = typename GT::NodeRef;
100   using difference_type = std::ptrdiff_t;
101   using pointer = value_type *;
102   using reference = value_type &;
103 
104 private:
105   using NodeRef = typename GT::NodeRef;
106   using ChildItTy = typename GT::ChildIteratorType;
107 
108   // VisitStack - Used to maintain the ordering.  Top = current block
109   // First element is basic block pointer, second is the 'next child' to visit
110   SmallVector<std::pair<NodeRef, ChildItTy>, 8> VisitStack;
111 
112   po_iterator(NodeRef BB) {
113     this->insertEdge(Optional<NodeRef>(), BB);
114     VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
115     traverseChild();
116   }
117 
118   po_iterator() = default; // End is when stack is empty.
119 
120   po_iterator(NodeRef BB, SetType &S)
121       : po_iterator_storage<SetType, ExtStorage>(S) {
122     if (this->insertEdge(Optional<NodeRef>(), BB)) {
123       VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
124       traverseChild();
125     }
126   }
127 
128   po_iterator(SetType &S)
129       : po_iterator_storage<SetType, ExtStorage>(S) {
130   } // End is when stack is empty.
131 
132   void traverseChild() {
133     while (VisitStack.back().second != GT::child_end(VisitStack.back().first)) {
134       NodeRef BB = *VisitStack.back().second++;
135       if (this->insertEdge(Optional<NodeRef>(VisitStack.back().first), BB)) {
136         // If the block is not visited...
137         VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
138       }
139     }
140   }
141 
142 public:
143   // Provide static "constructors"...
144   static po_iterator begin(const GraphT &G) {
145     return po_iterator(GT::getEntryNode(G));
146   }
147   static po_iterator end(const GraphT &G) { return po_iterator(); }
148 
149   static po_iterator begin(const GraphT &G, SetType &S) {
150     return po_iterator(GT::getEntryNode(G), S);
151   }
152   static po_iterator end(const GraphT &G, SetType &S) { return po_iterator(S); }
153 
154   bool operator==(const po_iterator &x) const {
155     return VisitStack == x.VisitStack;
156   }
157   bool operator!=(const po_iterator &x) const { return !(*this == x); }
158 
159   const NodeRef &operator*() const { return VisitStack.back().first; }
160 
161   // This is a nonstandard operator-> that dereferences the pointer an extra
162   // time... so that you can actually call methods ON the BasicBlock, because
163   // the contained type is a pointer.  This allows BBIt->getTerminator() f.e.
164   //
165   NodeRef operator->() const { return **this; }
166 
167   po_iterator &operator++() { // Preincrement
168     this->finishPostorder(VisitStack.back().first);
169     VisitStack.pop_back();
170     if (!VisitStack.empty())
171       traverseChild();
172     return *this;
173   }
174 
175   po_iterator operator++(int) { // Postincrement
176     po_iterator tmp = *this;
177     ++*this;
178     return tmp;
179   }
180 };
181 
182 // Provide global constructors that automatically figure out correct types...
183 //
184 template <class T>
185 po_iterator<T> po_begin(const T &G) { return po_iterator<T>::begin(G); }
186 template <class T>
187 po_iterator<T> po_end  (const T &G) { return po_iterator<T>::end(G); }
188 
189 template <class T> iterator_range<po_iterator<T>> post_order(const T &G) {
190   return make_range(po_begin(G), po_end(G));
191 }
192 
193 // Provide global definitions of external postorder iterators...
194 template <class T, class SetType = std::set<typename GraphTraits<T>::NodeRef>>
195 struct po_ext_iterator : public po_iterator<T, SetType, true> {
196   po_ext_iterator(const po_iterator<T, SetType, true> &V) :
197   po_iterator<T, SetType, true>(V) {}
198 };
199 
200 template<class T, class SetType>
201 po_ext_iterator<T, SetType> po_ext_begin(T G, SetType &S) {
202   return po_ext_iterator<T, SetType>::begin(G, S);
203 }
204 
205 template<class T, class SetType>
206 po_ext_iterator<T, SetType> po_ext_end(T G, SetType &S) {
207   return po_ext_iterator<T, SetType>::end(G, S);
208 }
209 
210 template <class T, class SetType>
211 iterator_range<po_ext_iterator<T, SetType>> post_order_ext(const T &G, SetType &S) {
212   return make_range(po_ext_begin(G, S), po_ext_end(G, S));
213 }
214 
215 // Provide global definitions of inverse post order iterators...
216 template <class T, class SetType = std::set<typename GraphTraits<T>::NodeRef>,
217           bool External = false>
218 struct ipo_iterator : public po_iterator<Inverse<T>, SetType, External> {
219   ipo_iterator(const po_iterator<Inverse<T>, SetType, External> &V) :
220      po_iterator<Inverse<T>, SetType, External> (V) {}
221 };
222 
223 template <class T>
224 ipo_iterator<T> ipo_begin(const T &G) {
225   return ipo_iterator<T>::begin(G);
226 }
227 
228 template <class T>
229 ipo_iterator<T> ipo_end(const T &G){
230   return ipo_iterator<T>::end(G);
231 }
232 
233 template <class T>
234 iterator_range<ipo_iterator<T>> inverse_post_order(const T &G) {
235   return make_range(ipo_begin(G), ipo_end(G));
236 }
237 
238 // Provide global definitions of external inverse postorder iterators...
239 template <class T, class SetType = std::set<typename GraphTraits<T>::NodeRef>>
240 struct ipo_ext_iterator : public ipo_iterator<T, SetType, true> {
241   ipo_ext_iterator(const ipo_iterator<T, SetType, true> &V) :
242     ipo_iterator<T, SetType, true>(V) {}
243   ipo_ext_iterator(const po_iterator<Inverse<T>, SetType, true> &V) :
244     ipo_iterator<T, SetType, true>(V) {}
245 };
246 
247 template <class T, class SetType>
248 ipo_ext_iterator<T, SetType> ipo_ext_begin(const T &G, SetType &S) {
249   return ipo_ext_iterator<T, SetType>::begin(G, S);
250 }
251 
252 template <class T, class SetType>
253 ipo_ext_iterator<T, SetType> ipo_ext_end(const T &G, SetType &S) {
254   return ipo_ext_iterator<T, SetType>::end(G, S);
255 }
256 
257 template <class T, class SetType>
258 iterator_range<ipo_ext_iterator<T, SetType>>
259 inverse_post_order_ext(const T &G, SetType &S) {
260   return make_range(ipo_ext_begin(G, S), ipo_ext_end(G, S));
261 }
262 
263 //===--------------------------------------------------------------------===//
264 // Reverse Post Order CFG iterator code
265 //===--------------------------------------------------------------------===//
266 //
267 // This is used to visit basic blocks in a method in reverse post order.  This
268 // class is awkward to use because I don't know a good incremental algorithm to
269 // computer RPO from a graph.  Because of this, the construction of the
270 // ReversePostOrderTraversal object is expensive (it must walk the entire graph
271 // with a postorder iterator to build the data structures).  The moral of this
272 // story is: Don't create more ReversePostOrderTraversal classes than necessary.
273 //
274 // Because it does the traversal in its constructor, it won't invalidate when
275 // BasicBlocks are removed, *but* it may contain erased blocks. Some places
276 // rely on this behavior (i.e. GVN).
277 //
278 // This class should be used like this:
279 // {
280 //   ReversePostOrderTraversal<Function*> RPOT(FuncPtr); // Expensive to create
281 //   for (rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
282 //      ...
283 //   }
284 //   for (rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
285 //      ...
286 //   }
287 // }
288 //
289 
290 template<class GraphT, class GT = GraphTraits<GraphT>>
291 class ReversePostOrderTraversal {
292   using NodeRef = typename GT::NodeRef;
293 
294   std::vector<NodeRef> Blocks; // Block list in normal PO order
295 
296   void Initialize(const GraphT &G) {
297     std::copy(po_begin(G), po_end(G), std::back_inserter(Blocks));
298   }
299 
300 public:
301   using rpo_iterator = typename std::vector<NodeRef>::reverse_iterator;
302   using const_rpo_iterator = typename std::vector<NodeRef>::const_reverse_iterator;
303 
304   ReversePostOrderTraversal(const GraphT &G) { Initialize(G); }
305 
306   // Because we want a reverse post order, use reverse iterators from the vector
307   rpo_iterator begin() { return Blocks.rbegin(); }
308   const_rpo_iterator begin() const { return Blocks.crbegin(); }
309   rpo_iterator end() { return Blocks.rend(); }
310   const_rpo_iterator end() const { return Blocks.crend(); }
311 };
312 
313 } // end namespace llvm
314 
315 #endif // LLVM_ADT_POSTORDERITERATOR_H
316