1 //===- ADT/SCCIterator.h - Strongly Connected Comp. Iter. -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// This builds on the llvm/ADT/GraphTraits.h file to find the strongly
11 /// connected components (SCCs) of a graph in O(N+E) time using Tarjan's DFS
12 /// algorithm.
13 ///
14 /// The SCC iterator has the important property that if a node in SCC S1 has an
15 /// edge to a node in SCC S2, then it visits S1 *after* S2.
16 ///
17 /// To visit S1 *before* S2, use the scc_iterator on the Inverse graph. (NOTE:
18 /// This requires some simple wrappers and is not supported yet.)
19 ///
20 //===----------------------------------------------------------------------===//
21 
22 #ifndef LLVM_ADT_SCCITERATOR_H
23 #define LLVM_ADT_SCCITERATOR_H
24 
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/GraphTraits.h"
27 #include "llvm/ADT/iterator.h"
28 #include <cassert>
29 #include <cstddef>
30 #include <iterator>
31 #include <queue>
32 #include <set>
33 #include <unordered_map>
34 #include <unordered_set>
35 #include <vector>
36 
37 namespace llvm {
38 
39 /// Enumerate the SCCs of a directed graph in reverse topological order
40 /// of the SCC DAG.
41 ///
42 /// This is implemented using Tarjan's DFS algorithm using an internal stack to
43 /// build up a vector of nodes in a particular SCC. Note that it is a forward
44 /// iterator and thus you cannot backtrack or re-visit nodes.
45 template <class GraphT, class GT = GraphTraits<GraphT>>
46 class scc_iterator : public iterator_facade_base<
47                          scc_iterator<GraphT, GT>, std::forward_iterator_tag,
48                          const std::vector<typename GT::NodeRef>, ptrdiff_t> {
49   using NodeRef = typename GT::NodeRef;
50   using ChildItTy = typename GT::ChildIteratorType;
51   using SccTy = std::vector<NodeRef>;
52   using reference = typename scc_iterator::reference;
53 
54   /// Element of VisitStack during DFS.
55   struct StackElement {
56     NodeRef Node;         ///< The current node pointer.
57     ChildItTy NextChild;  ///< The next child, modified inplace during DFS.
58     unsigned MinVisited;  ///< Minimum uplink value of all children of Node.
59 
60     StackElement(NodeRef Node, const ChildItTy &Child, unsigned Min)
61         : Node(Node), NextChild(Child), MinVisited(Min) {}
62 
63     bool operator==(const StackElement &Other) const {
64       return Node == Other.Node &&
65              NextChild == Other.NextChild &&
66              MinVisited == Other.MinVisited;
67     }
68   };
69 
70   /// The visit counters used to detect when a complete SCC is on the stack.
71   /// visitNum is the global counter.
72   ///
73   /// nodeVisitNumbers are per-node visit numbers, also used as DFS flags.
74   unsigned visitNum;
75   DenseMap<NodeRef, unsigned> nodeVisitNumbers;
76 
77   /// Stack holding nodes of the SCC.
78   std::vector<NodeRef> SCCNodeStack;
79 
80   /// The current SCC, retrieved using operator*().
81   SccTy CurrentSCC;
82 
83   /// DFS stack, Used to maintain the ordering.  The top contains the current
84   /// node, the next child to visit, and the minimum uplink value of all child
85   std::vector<StackElement> VisitStack;
86 
87   /// A single "visit" within the non-recursive DFS traversal.
88   void DFSVisitOne(NodeRef N);
89 
90   /// The stack-based DFS traversal; defined below.
91   void DFSVisitChildren();
92 
93   /// Compute the next SCC using the DFS traversal.
94   void GetNextSCC();
95 
96   scc_iterator(NodeRef entryN) : visitNum(0) {
97     DFSVisitOne(entryN);
98     GetNextSCC();
99   }
100 
101   /// End is when the DFS stack is empty.
102   scc_iterator() = default;
103 
104 public:
105   static scc_iterator begin(const GraphT &G) {
106     return scc_iterator(GT::getEntryNode(G));
107   }
108   static scc_iterator end(const GraphT &) { return scc_iterator(); }
109 
110   /// Direct loop termination test which is more efficient than
111   /// comparison with \c end().
112   bool isAtEnd() const {
113     assert(!CurrentSCC.empty() || VisitStack.empty());
114     return CurrentSCC.empty();
115   }
116 
117   bool operator==(const scc_iterator &x) const {
118     return VisitStack == x.VisitStack && CurrentSCC == x.CurrentSCC;
119   }
120 
121   scc_iterator &operator++() {
122     GetNextSCC();
123     return *this;
124   }
125 
126   reference operator*() const {
127     assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!");
128     return CurrentSCC;
129   }
130 
131   /// Test if the current SCC has a cycle.
132   ///
133   /// If the SCC has more than one node, this is trivially true.  If not, it may
134   /// still contain a cycle if the node has an edge back to itself.
135   bool hasCycle() const;
136 
137   /// This informs the \c scc_iterator that the specified \c Old node
138   /// has been deleted, and \c New is to be used in its place.
139   void ReplaceNode(NodeRef Old, NodeRef New) {
140     assert(nodeVisitNumbers.count(Old) && "Old not in scc_iterator?");
141     // Do the assignment in two steps, in case 'New' is not yet in the map, and
142     // inserting it causes the map to grow.
143     auto tempVal = nodeVisitNumbers[Old];
144     nodeVisitNumbers[New] = tempVal;
145     nodeVisitNumbers.erase(Old);
146   }
147 };
148 
149 template <class GraphT, class GT>
150 void scc_iterator<GraphT, GT>::DFSVisitOne(NodeRef N) {
151   ++visitNum;
152   nodeVisitNumbers[N] = visitNum;
153   SCCNodeStack.push_back(N);
154   VisitStack.push_back(StackElement(N, GT::child_begin(N), visitNum));
155 #if 0 // Enable if needed when debugging.
156   dbgs() << "TarjanSCC: Node " << N <<
157         " : visitNum = " << visitNum << "\n";
158 #endif
159 }
160 
161 template <class GraphT, class GT>
162 void scc_iterator<GraphT, GT>::DFSVisitChildren() {
163   assert(!VisitStack.empty());
164   while (VisitStack.back().NextChild != GT::child_end(VisitStack.back().Node)) {
165     // TOS has at least one more child so continue DFS
166     NodeRef childN = *VisitStack.back().NextChild++;
167     typename DenseMap<NodeRef, unsigned>::iterator Visited =
168         nodeVisitNumbers.find(childN);
169     if (Visited == nodeVisitNumbers.end()) {
170       // this node has never been seen.
171       DFSVisitOne(childN);
172       continue;
173     }
174 
175     unsigned childNum = Visited->second;
176     if (VisitStack.back().MinVisited > childNum)
177       VisitStack.back().MinVisited = childNum;
178   }
179 }
180 
181 template <class GraphT, class GT> void scc_iterator<GraphT, GT>::GetNextSCC() {
182   CurrentSCC.clear(); // Prepare to compute the next SCC
183   while (!VisitStack.empty()) {
184     DFSVisitChildren();
185 
186     // Pop the leaf on top of the VisitStack.
187     NodeRef visitingN = VisitStack.back().Node;
188     unsigned minVisitNum = VisitStack.back().MinVisited;
189     assert(VisitStack.back().NextChild == GT::child_end(visitingN));
190     VisitStack.pop_back();
191 
192     // Propagate MinVisitNum to parent so we can detect the SCC starting node.
193     if (!VisitStack.empty() && VisitStack.back().MinVisited > minVisitNum)
194       VisitStack.back().MinVisited = minVisitNum;
195 
196 #if 0 // Enable if needed when debugging.
197     dbgs() << "TarjanSCC: Popped node " << visitingN <<
198           " : minVisitNum = " << minVisitNum << "; Node visit num = " <<
199           nodeVisitNumbers[visitingN] << "\n";
200 #endif
201 
202     if (minVisitNum != nodeVisitNumbers[visitingN])
203       continue;
204 
205     // A full SCC is on the SCCNodeStack!  It includes all nodes below
206     // visitingN on the stack.  Copy those nodes to CurrentSCC,
207     // reset their minVisit values, and return (this suspends
208     // the DFS traversal till the next ++).
209     do {
210       CurrentSCC.push_back(SCCNodeStack.back());
211       SCCNodeStack.pop_back();
212       nodeVisitNumbers[CurrentSCC.back()] = ~0U;
213     } while (CurrentSCC.back() != visitingN);
214     return;
215   }
216 }
217 
218 template <class GraphT, class GT>
219 bool scc_iterator<GraphT, GT>::hasCycle() const {
220     assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!");
221     if (CurrentSCC.size() > 1)
222       return true;
223     NodeRef N = CurrentSCC.front();
224     for (ChildItTy CI = GT::child_begin(N), CE = GT::child_end(N); CI != CE;
225          ++CI)
226       if (*CI == N)
227         return true;
228     return false;
229   }
230 
231 /// Construct the begin iterator for a deduced graph type T.
232 template <class T> scc_iterator<T> scc_begin(const T &G) {
233   return scc_iterator<T>::begin(G);
234 }
235 
236 /// Construct the end iterator for a deduced graph type T.
237 template <class T> scc_iterator<T> scc_end(const T &G) {
238   return scc_iterator<T>::end(G);
239 }
240 
241 /// Sort the nodes of a directed SCC in the decreasing order of the edge
242 /// weights. The instantiating GraphT type should have weighted edge type
243 /// declared in its graph traits in order to use this iterator.
244 ///
245 /// This is implemented using Kruskal's minimal spanning tree algorithm followed
246 /// by a BFS walk. First a maximum spanning tree (forest) is built based on all
247 /// edges within the SCC collection. Then a BFS walk is initiated on tree nodes
248 /// that do not have a predecessor. Finally, the BFS order computed is the
249 /// traversal order of the nodes of the SCC. Such order ensures that
250 /// high-weighted edges are visited first during the tranversal.
251 template <class GraphT, class GT = GraphTraits<GraphT>>
252 class scc_member_iterator {
253   using NodeType = typename GT::NodeType;
254   using EdgeType = typename GT::EdgeType;
255   using NodesType = std::vector<NodeType *>;
256 
257   // Auxilary node information used during the MST calculation.
258   struct NodeInfo {
259     NodeInfo *Group = this;
260     uint32_t Rank = 0;
261     bool Visited = true;
262   };
263 
264   // Find the root group of the node and compress the path from node to the
265   // root.
266   NodeInfo *find(NodeInfo *Node) {
267     if (Node->Group != Node)
268       Node->Group = find(Node->Group);
269     return Node->Group;
270   }
271 
272   // Union the source and target node into the same group and return true.
273   // Returns false if they are already in the same group.
274   bool unionGroups(const EdgeType *Edge) {
275     NodeInfo *G1 = find(&NodeInfoMap[Edge->Source]);
276     NodeInfo *G2 = find(&NodeInfoMap[Edge->Target]);
277 
278     // If the edge forms a cycle, do not add it to MST
279     if (G1 == G2)
280       return false;
281 
282     // Make the smaller rank tree a direct child or the root of high rank tree.
283     if (G1->Rank < G1->Rank)
284       G1->Group = G2;
285     else {
286       G2->Group = G1;
287       // If the ranks are the same, increment root of one tree by one.
288       if (G1->Rank == G2->Rank)
289         G2->Rank++;
290     }
291     return true;
292   }
293 
294   std::unordered_map<NodeType *, NodeInfo> NodeInfoMap;
295   NodesType Nodes;
296 
297 public:
298   scc_member_iterator(const NodesType &InputNodes);
299 
300   NodesType &operator*() { return Nodes; }
301 };
302 
303 template <class GraphT, class GT>
304 scc_member_iterator<GraphT, GT>::scc_member_iterator(
305     const NodesType &InputNodes) {
306   if (InputNodes.size() <= 1) {
307     Nodes = InputNodes;
308     return;
309   }
310 
311   // Initialize auxilary node information.
312   NodeInfoMap.clear();
313   for (auto *Node : InputNodes) {
314     // This is specifically used to construct a `NodeInfo` object in place. An
315     // insert operation will involve a copy construction which invalidate the
316     // initial value of the `Group` field which should be `this`.
317     (void)NodeInfoMap[Node].Group;
318   }
319 
320   // Sort edges by weights.
321   struct EdgeComparer {
322     bool operator()(const EdgeType *L, const EdgeType *R) const {
323       return L->Weight > R->Weight;
324     }
325   };
326 
327   std::multiset<const EdgeType *, EdgeComparer> SortedEdges;
328   for (auto *Node : InputNodes) {
329     for (auto &Edge : Node->Edges) {
330       if (NodeInfoMap.count(Edge.Target))
331         SortedEdges.insert(&Edge);
332     }
333   }
334 
335   // Traverse all the edges and compute the Maximum Weight Spanning Tree
336   // using Kruskal's algorithm.
337   std::unordered_set<const EdgeType *> MSTEdges;
338   for (auto *Edge : SortedEdges) {
339     if (unionGroups(Edge))
340       MSTEdges.insert(Edge);
341   }
342 
343   // Do BFS on MST, starting from nodes that have no incoming edge. These nodes
344   // are "roots" of the MST forest. This ensures that nodes are visited before
345   // their decsendents are, thus ensures hot edges are processed before cold
346   // edges, based on how MST is computed.
347   for (const auto *Edge : MSTEdges)
348     NodeInfoMap[Edge->Target].Visited = false;
349 
350   std::queue<NodeType *> Queue;
351   // Initialze the queue with MST roots. Note that walking through SortedEdges
352   // instead of NodeInfoMap ensures an ordered deterministic push.
353   for (auto *Edge : SortedEdges) {
354     if (NodeInfoMap[Edge->Source].Visited) {
355       Queue.push(Edge->Source);
356       NodeInfoMap[Edge->Source].Visited = false;
357     }
358   }
359 
360   while (!Queue.empty()) {
361     auto *Node = Queue.front();
362     Queue.pop();
363     Nodes.push_back(Node);
364     for (auto &Edge : Node->Edges) {
365       if (MSTEdges.count(&Edge) && !NodeInfoMap[Edge.Target].Visited) {
366         NodeInfoMap[Edge.Target].Visited = true;
367         Queue.push(Edge.Target);
368       }
369     }
370   }
371 
372   assert(InputNodes.size() == Nodes.size() && "missing nodes in MST");
373   std::reverse(Nodes.begin(), Nodes.end());
374 }
375 } // end namespace llvm
376 
377 #endif // LLVM_ADT_SCCITERATOR_H
378