1 //===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains some templates that are useful if you are working with the
10 // STL at all.
11 //
12 // No library is required when using these functions.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #ifndef LLVM_ADT_STLEXTRAS_H
17 #define LLVM_ADT_STLEXTRAS_H
18 
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/iterator.h"
21 #include "llvm/ADT/iterator_range.h"
22 #include "llvm/Config/abi-breaking.h"
23 #include "llvm/Support/ErrorHandling.h"
24 #include <algorithm>
25 #include <cassert>
26 #include <cstddef>
27 #include <cstdint>
28 #include <cstdlib>
29 #include <functional>
30 #include <initializer_list>
31 #include <iterator>
32 #include <limits>
33 #include <memory>
34 #include <tuple>
35 #include <type_traits>
36 #include <utility>
37 
38 #ifdef EXPENSIVE_CHECKS
39 #include <random> // for std::mt19937
40 #endif
41 
42 namespace llvm {
43 
44 // Only used by compiler if both template types are the same.  Useful when
45 // using SFINAE to test for the existence of member functions.
46 template <typename T, T> struct SameType;
47 
48 namespace detail {
49 
50 template <typename RangeT>
51 using IterOfRange = decltype(std::begin(std::declval<RangeT &>()));
52 
53 } // end namespace detail
54 
55 //===----------------------------------------------------------------------===//
56 //     Extra additions to <type_traits>
57 //===----------------------------------------------------------------------===//
58 
59 template <typename T>
60 struct negation : std::integral_constant<bool, !bool(T::value)> {};
61 
62 template <typename...> struct conjunction : std::true_type {};
63 template <typename B1> struct conjunction<B1> : B1 {};
64 template <typename B1, typename... Bn>
65 struct conjunction<B1, Bn...>
66     : std::conditional<bool(B1::value), conjunction<Bn...>, B1>::type {};
67 
68 template <typename T> struct make_const_ptr {
69   using type =
70       typename std::add_pointer<typename std::add_const<T>::type>::type;
71 };
72 
73 template <typename T> struct make_const_ref {
74   using type = typename std::add_lvalue_reference<
75       typename std::add_const<T>::type>::type;
76 };
77 
78 //===----------------------------------------------------------------------===//
79 //     Extra additions to <functional>
80 //===----------------------------------------------------------------------===//
81 
82 template <class Ty> struct identity {
83   using argument_type = Ty;
84 
85   Ty &operator()(Ty &self) const {
86     return self;
87   }
88   const Ty &operator()(const Ty &self) const {
89     return self;
90   }
91 };
92 
93 /// An efficient, type-erasing, non-owning reference to a callable. This is
94 /// intended for use as the type of a function parameter that is not used
95 /// after the function in question returns.
96 ///
97 /// This class does not own the callable, so it is not in general safe to store
98 /// a function_ref.
99 template<typename Fn> class function_ref;
100 
101 template<typename Ret, typename ...Params>
102 class function_ref<Ret(Params...)> {
103   Ret (*callback)(intptr_t callable, Params ...params) = nullptr;
104   intptr_t callable;
105 
106   template<typename Callable>
107   static Ret callback_fn(intptr_t callable, Params ...params) {
108     return (*reinterpret_cast<Callable*>(callable))(
109         std::forward<Params>(params)...);
110   }
111 
112 public:
113   function_ref() = default;
114   function_ref(std::nullptr_t) {}
115 
116   template <typename Callable>
117   function_ref(Callable &&callable,
118                typename std::enable_if<
119                    !std::is_same<typename std::remove_reference<Callable>::type,
120                                  function_ref>::value>::type * = nullptr)
121       : callback(callback_fn<typename std::remove_reference<Callable>::type>),
122         callable(reinterpret_cast<intptr_t>(&callable)) {}
123 
124   Ret operator()(Params ...params) const {
125     return callback(callable, std::forward<Params>(params)...);
126   }
127 
128   operator bool() const { return callback; }
129 };
130 
131 // deleter - Very very very simple method that is used to invoke operator
132 // delete on something.  It is used like this:
133 //
134 //   for_each(V.begin(), B.end(), deleter<Interval>);
135 template <class T>
136 inline void deleter(T *Ptr) {
137   delete Ptr;
138 }
139 
140 //===----------------------------------------------------------------------===//
141 //     Extra additions to <iterator>
142 //===----------------------------------------------------------------------===//
143 
144 namespace adl_detail {
145 
146 using std::begin;
147 
148 template <typename ContainerTy>
149 auto adl_begin(ContainerTy &&container)
150     -> decltype(begin(std::forward<ContainerTy>(container))) {
151   return begin(std::forward<ContainerTy>(container));
152 }
153 
154 using std::end;
155 
156 template <typename ContainerTy>
157 auto adl_end(ContainerTy &&container)
158     -> decltype(end(std::forward<ContainerTy>(container))) {
159   return end(std::forward<ContainerTy>(container));
160 }
161 
162 using std::swap;
163 
164 template <typename T>
165 void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(swap(std::declval<T>(),
166                                                        std::declval<T>()))) {
167   swap(std::forward<T>(lhs), std::forward<T>(rhs));
168 }
169 
170 } // end namespace adl_detail
171 
172 template <typename ContainerTy>
173 auto adl_begin(ContainerTy &&container)
174     -> decltype(adl_detail::adl_begin(std::forward<ContainerTy>(container))) {
175   return adl_detail::adl_begin(std::forward<ContainerTy>(container));
176 }
177 
178 template <typename ContainerTy>
179 auto adl_end(ContainerTy &&container)
180     -> decltype(adl_detail::adl_end(std::forward<ContainerTy>(container))) {
181   return adl_detail::adl_end(std::forward<ContainerTy>(container));
182 }
183 
184 template <typename T>
185 void adl_swap(T &&lhs, T &&rhs) noexcept(
186     noexcept(adl_detail::adl_swap(std::declval<T>(), std::declval<T>()))) {
187   adl_detail::adl_swap(std::forward<T>(lhs), std::forward<T>(rhs));
188 }
189 
190 /// Test whether \p RangeOrContainer is empty. Similar to C++17 std::empty.
191 template <typename T>
192 constexpr bool empty(const T &RangeOrContainer) {
193   return adl_begin(RangeOrContainer) == adl_end(RangeOrContainer);
194 }
195 
196 /// Return a range covering \p RangeOrContainer with the first N elements
197 /// excluded.
198 template <typename T>
199 auto drop_begin(T &&RangeOrContainer, size_t N) ->
200     iterator_range<decltype(adl_begin(RangeOrContainer))> {
201   return make_range(std::next(adl_begin(RangeOrContainer), N),
202                     adl_end(RangeOrContainer));
203 }
204 
205 // mapped_iterator - This is a simple iterator adapter that causes a function to
206 // be applied whenever operator* is invoked on the iterator.
207 
208 template <typename ItTy, typename FuncTy,
209           typename FuncReturnTy =
210             decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))>
211 class mapped_iterator
212     : public iterator_adaptor_base<
213              mapped_iterator<ItTy, FuncTy>, ItTy,
214              typename std::iterator_traits<ItTy>::iterator_category,
215              typename std::remove_reference<FuncReturnTy>::type> {
216 public:
217   mapped_iterator(ItTy U, FuncTy F)
218     : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {}
219 
220   ItTy getCurrent() { return this->I; }
221 
222   FuncReturnTy operator*() { return F(*this->I); }
223 
224 private:
225   FuncTy F;
226 };
227 
228 // map_iterator - Provide a convenient way to create mapped_iterators, just like
229 // make_pair is useful for creating pairs...
230 template <class ItTy, class FuncTy>
231 inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) {
232   return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F));
233 }
234 
235 template <class ContainerTy, class FuncTy>
236 auto map_range(ContainerTy &&C, FuncTy F)
237     -> decltype(make_range(map_iterator(C.begin(), F),
238                            map_iterator(C.end(), F))) {
239   return make_range(map_iterator(C.begin(), F), map_iterator(C.end(), F));
240 }
241 
242 /// Helper to determine if type T has a member called rbegin().
243 template <typename Ty> class has_rbegin_impl {
244   using yes = char[1];
245   using no = char[2];
246 
247   template <typename Inner>
248   static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr);
249 
250   template <typename>
251   static no& test(...);
252 
253 public:
254   static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
255 };
256 
257 /// Metafunction to determine if T& or T has a member called rbegin().
258 template <typename Ty>
259 struct has_rbegin : has_rbegin_impl<typename std::remove_reference<Ty>::type> {
260 };
261 
262 // Returns an iterator_range over the given container which iterates in reverse.
263 // Note that the container must have rbegin()/rend() methods for this to work.
264 template <typename ContainerTy>
265 auto reverse(ContainerTy &&C,
266              typename std::enable_if<has_rbegin<ContainerTy>::value>::type * =
267                  nullptr) -> decltype(make_range(C.rbegin(), C.rend())) {
268   return make_range(C.rbegin(), C.rend());
269 }
270 
271 // Returns a std::reverse_iterator wrapped around the given iterator.
272 template <typename IteratorTy>
273 std::reverse_iterator<IteratorTy> make_reverse_iterator(IteratorTy It) {
274   return std::reverse_iterator<IteratorTy>(It);
275 }
276 
277 // Returns an iterator_range over the given container which iterates in reverse.
278 // Note that the container must have begin()/end() methods which return
279 // bidirectional iterators for this to work.
280 template <typename ContainerTy>
281 auto reverse(
282     ContainerTy &&C,
283     typename std::enable_if<!has_rbegin<ContainerTy>::value>::type * = nullptr)
284     -> decltype(make_range(llvm::make_reverse_iterator(std::end(C)),
285                            llvm::make_reverse_iterator(std::begin(C)))) {
286   return make_range(llvm::make_reverse_iterator(std::end(C)),
287                     llvm::make_reverse_iterator(std::begin(C)));
288 }
289 
290 /// An iterator adaptor that filters the elements of given inner iterators.
291 ///
292 /// The predicate parameter should be a callable object that accepts the wrapped
293 /// iterator's reference type and returns a bool. When incrementing or
294 /// decrementing the iterator, it will call the predicate on each element and
295 /// skip any where it returns false.
296 ///
297 /// \code
298 ///   int A[] = { 1, 2, 3, 4 };
299 ///   auto R = make_filter_range(A, [](int N) { return N % 2 == 1; });
300 ///   // R contains { 1, 3 }.
301 /// \endcode
302 ///
303 /// Note: filter_iterator_base implements support for forward iteration.
304 /// filter_iterator_impl exists to provide support for bidirectional iteration,
305 /// conditional on whether the wrapped iterator supports it.
306 template <typename WrappedIteratorT, typename PredicateT, typename IterTag>
307 class filter_iterator_base
308     : public iterator_adaptor_base<
309           filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
310           WrappedIteratorT,
311           typename std::common_type<
312               IterTag, typename std::iterator_traits<
313                            WrappedIteratorT>::iterator_category>::type> {
314   using BaseT = iterator_adaptor_base<
315       filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
316       WrappedIteratorT,
317       typename std::common_type<
318           IterTag, typename std::iterator_traits<
319                        WrappedIteratorT>::iterator_category>::type>;
320 
321 protected:
322   WrappedIteratorT End;
323   PredicateT Pred;
324 
325   void findNextValid() {
326     while (this->I != End && !Pred(*this->I))
327       BaseT::operator++();
328   }
329 
330   // Construct the iterator. The begin iterator needs to know where the end
331   // is, so that it can properly stop when it gets there. The end iterator only
332   // needs the predicate to support bidirectional iteration.
333   filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End,
334                        PredicateT Pred)
335       : BaseT(Begin), End(End), Pred(Pred) {
336     findNextValid();
337   }
338 
339 public:
340   using BaseT::operator++;
341 
342   filter_iterator_base &operator++() {
343     BaseT::operator++();
344     findNextValid();
345     return *this;
346   }
347 };
348 
349 /// Specialization of filter_iterator_base for forward iteration only.
350 template <typename WrappedIteratorT, typename PredicateT,
351           typename IterTag = std::forward_iterator_tag>
352 class filter_iterator_impl
353     : public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> {
354   using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>;
355 
356 public:
357   filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
358                        PredicateT Pred)
359       : BaseT(Begin, End, Pred) {}
360 };
361 
362 /// Specialization of filter_iterator_base for bidirectional iteration.
363 template <typename WrappedIteratorT, typename PredicateT>
364 class filter_iterator_impl<WrappedIteratorT, PredicateT,
365                            std::bidirectional_iterator_tag>
366     : public filter_iterator_base<WrappedIteratorT, PredicateT,
367                                   std::bidirectional_iterator_tag> {
368   using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT,
369                                      std::bidirectional_iterator_tag>;
370   void findPrevValid() {
371     while (!this->Pred(*this->I))
372       BaseT::operator--();
373   }
374 
375 public:
376   using BaseT::operator--;
377 
378   filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
379                        PredicateT Pred)
380       : BaseT(Begin, End, Pred) {}
381 
382   filter_iterator_impl &operator--() {
383     BaseT::operator--();
384     findPrevValid();
385     return *this;
386   }
387 };
388 
389 namespace detail {
390 
391 template <bool is_bidirectional> struct fwd_or_bidi_tag_impl {
392   using type = std::forward_iterator_tag;
393 };
394 
395 template <> struct fwd_or_bidi_tag_impl<true> {
396   using type = std::bidirectional_iterator_tag;
397 };
398 
399 /// Helper which sets its type member to forward_iterator_tag if the category
400 /// of \p IterT does not derive from bidirectional_iterator_tag, and to
401 /// bidirectional_iterator_tag otherwise.
402 template <typename IterT> struct fwd_or_bidi_tag {
403   using type = typename fwd_or_bidi_tag_impl<std::is_base_of<
404       std::bidirectional_iterator_tag,
405       typename std::iterator_traits<IterT>::iterator_category>::value>::type;
406 };
407 
408 } // namespace detail
409 
410 /// Defines filter_iterator to a suitable specialization of
411 /// filter_iterator_impl, based on the underlying iterator's category.
412 template <typename WrappedIteratorT, typename PredicateT>
413 using filter_iterator = filter_iterator_impl<
414     WrappedIteratorT, PredicateT,
415     typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>;
416 
417 /// Convenience function that takes a range of elements and a predicate,
418 /// and return a new filter_iterator range.
419 ///
420 /// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the
421 /// lifetime of that temporary is not kept by the returned range object, and the
422 /// temporary is going to be dropped on the floor after the make_iterator_range
423 /// full expression that contains this function call.
424 template <typename RangeT, typename PredicateT>
425 iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>>
426 make_filter_range(RangeT &&Range, PredicateT Pred) {
427   using FilterIteratorT =
428       filter_iterator<detail::IterOfRange<RangeT>, PredicateT>;
429   return make_range(
430       FilterIteratorT(std::begin(std::forward<RangeT>(Range)),
431                       std::end(std::forward<RangeT>(Range)), Pred),
432       FilterIteratorT(std::end(std::forward<RangeT>(Range)),
433                       std::end(std::forward<RangeT>(Range)), Pred));
434 }
435 
436 /// A pseudo-iterator adaptor that is designed to implement "early increment"
437 /// style loops.
438 ///
439 /// This is *not a normal iterator* and should almost never be used directly. It
440 /// is intended primarily to be used with range based for loops and some range
441 /// algorithms.
442 ///
443 /// The iterator isn't quite an `OutputIterator` or an `InputIterator` but
444 /// somewhere between them. The constraints of these iterators are:
445 ///
446 /// - On construction or after being incremented, it is comparable and
447 ///   dereferencable. It is *not* incrementable.
448 /// - After being dereferenced, it is neither comparable nor dereferencable, it
449 ///   is only incrementable.
450 ///
451 /// This means you can only dereference the iterator once, and you can only
452 /// increment it once between dereferences.
453 template <typename WrappedIteratorT>
454 class early_inc_iterator_impl
455     : public iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
456                                    WrappedIteratorT, std::input_iterator_tag> {
457   using BaseT =
458       iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
459                             WrappedIteratorT, std::input_iterator_tag>;
460 
461   using PointerT = typename std::iterator_traits<WrappedIteratorT>::pointer;
462 
463 protected:
464 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
465   bool IsEarlyIncremented = false;
466 #endif
467 
468 public:
469   early_inc_iterator_impl(WrappedIteratorT I) : BaseT(I) {}
470 
471   using BaseT::operator*;
472   typename BaseT::reference operator*() {
473 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
474     assert(!IsEarlyIncremented && "Cannot dereference twice!");
475     IsEarlyIncremented = true;
476 #endif
477     return *(this->I)++;
478   }
479 
480   using BaseT::operator++;
481   early_inc_iterator_impl &operator++() {
482 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
483     assert(IsEarlyIncremented && "Cannot increment before dereferencing!");
484     IsEarlyIncremented = false;
485 #endif
486     return *this;
487   }
488 
489   using BaseT::operator==;
490   bool operator==(const early_inc_iterator_impl &RHS) const {
491 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
492     assert(!IsEarlyIncremented && "Cannot compare after dereferencing!");
493 #endif
494     return BaseT::operator==(RHS);
495   }
496 };
497 
498 /// Make a range that does early increment to allow mutation of the underlying
499 /// range without disrupting iteration.
500 ///
501 /// The underlying iterator will be incremented immediately after it is
502 /// dereferenced, allowing deletion of the current node or insertion of nodes to
503 /// not disrupt iteration provided they do not invalidate the *next* iterator --
504 /// the current iterator can be invalidated.
505 ///
506 /// This requires a very exact pattern of use that is only really suitable to
507 /// range based for loops and other range algorithms that explicitly guarantee
508 /// to dereference exactly once each element, and to increment exactly once each
509 /// element.
510 template <typename RangeT>
511 iterator_range<early_inc_iterator_impl<detail::IterOfRange<RangeT>>>
512 make_early_inc_range(RangeT &&Range) {
513   using EarlyIncIteratorT =
514       early_inc_iterator_impl<detail::IterOfRange<RangeT>>;
515   return make_range(EarlyIncIteratorT(std::begin(std::forward<RangeT>(Range))),
516                     EarlyIncIteratorT(std::end(std::forward<RangeT>(Range))));
517 }
518 
519 // forward declarations required by zip_shortest/zip_first/zip_longest
520 template <typename R, typename UnaryPredicate>
521 bool all_of(R &&range, UnaryPredicate P);
522 template <typename R, typename UnaryPredicate>
523 bool any_of(R &&range, UnaryPredicate P);
524 
525 namespace detail {
526 
527 using std::declval;
528 
529 // We have to alias this since inlining the actual type at the usage site
530 // in the parameter list of iterator_facade_base<> below ICEs MSVC 2017.
531 template<typename... Iters> struct ZipTupleType {
532   using type = std::tuple<decltype(*declval<Iters>())...>;
533 };
534 
535 template <typename ZipType, typename... Iters>
536 using zip_traits = iterator_facade_base<
537     ZipType, typename std::common_type<std::bidirectional_iterator_tag,
538                                        typename std::iterator_traits<
539                                            Iters>::iterator_category...>::type,
540     // ^ TODO: Implement random access methods.
541     typename ZipTupleType<Iters...>::type,
542     typename std::iterator_traits<typename std::tuple_element<
543         0, std::tuple<Iters...>>::type>::difference_type,
544     // ^ FIXME: This follows boost::make_zip_iterator's assumption that all
545     // inner iterators have the same difference_type. It would fail if, for
546     // instance, the second field's difference_type were non-numeric while the
547     // first is.
548     typename ZipTupleType<Iters...>::type *,
549     typename ZipTupleType<Iters...>::type>;
550 
551 template <typename ZipType, typename... Iters>
552 struct zip_common : public zip_traits<ZipType, Iters...> {
553   using Base = zip_traits<ZipType, Iters...>;
554   using value_type = typename Base::value_type;
555 
556   std::tuple<Iters...> iterators;
557 
558 protected:
559   template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const {
560     return value_type(*std::get<Ns>(iterators)...);
561   }
562 
563   template <size_t... Ns>
564   decltype(iterators) tup_inc(std::index_sequence<Ns...>) const {
565     return std::tuple<Iters...>(std::next(std::get<Ns>(iterators))...);
566   }
567 
568   template <size_t... Ns>
569   decltype(iterators) tup_dec(std::index_sequence<Ns...>) const {
570     return std::tuple<Iters...>(std::prev(std::get<Ns>(iterators))...);
571   }
572 
573 public:
574   zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {}
575 
576   value_type operator*() { return deref(std::index_sequence_for<Iters...>{}); }
577 
578   const value_type operator*() const {
579     return deref(std::index_sequence_for<Iters...>{});
580   }
581 
582   ZipType &operator++() {
583     iterators = tup_inc(std::index_sequence_for<Iters...>{});
584     return *reinterpret_cast<ZipType *>(this);
585   }
586 
587   ZipType &operator--() {
588     static_assert(Base::IsBidirectional,
589                   "All inner iterators must be at least bidirectional.");
590     iterators = tup_dec(std::index_sequence_for<Iters...>{});
591     return *reinterpret_cast<ZipType *>(this);
592   }
593 };
594 
595 template <typename... Iters>
596 struct zip_first : public zip_common<zip_first<Iters...>, Iters...> {
597   using Base = zip_common<zip_first<Iters...>, Iters...>;
598 
599   bool operator==(const zip_first<Iters...> &other) const {
600     return std::get<0>(this->iterators) == std::get<0>(other.iterators);
601   }
602 
603   zip_first(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
604 };
605 
606 template <typename... Iters>
607 class zip_shortest : public zip_common<zip_shortest<Iters...>, Iters...> {
608   template <size_t... Ns>
609   bool test(const zip_shortest<Iters...> &other,
610             std::index_sequence<Ns...>) const {
611     return all_of(std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
612                                               std::get<Ns>(other.iterators)...},
613                   identity<bool>{});
614   }
615 
616 public:
617   using Base = zip_common<zip_shortest<Iters...>, Iters...>;
618 
619   zip_shortest(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
620 
621   bool operator==(const zip_shortest<Iters...> &other) const {
622     return !test(other, std::index_sequence_for<Iters...>{});
623   }
624 };
625 
626 template <template <typename...> class ItType, typename... Args> class zippy {
627 public:
628   using iterator = ItType<decltype(std::begin(std::declval<Args>()))...>;
629   using iterator_category = typename iterator::iterator_category;
630   using value_type = typename iterator::value_type;
631   using difference_type = typename iterator::difference_type;
632   using pointer = typename iterator::pointer;
633   using reference = typename iterator::reference;
634 
635 private:
636   std::tuple<Args...> ts;
637 
638   template <size_t... Ns>
639   iterator begin_impl(std::index_sequence<Ns...>) const {
640     return iterator(std::begin(std::get<Ns>(ts))...);
641   }
642   template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const {
643     return iterator(std::end(std::get<Ns>(ts))...);
644   }
645 
646 public:
647   zippy(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
648 
649   iterator begin() const {
650     return begin_impl(std::index_sequence_for<Args...>{});
651   }
652   iterator end() const { return end_impl(std::index_sequence_for<Args...>{}); }
653 };
654 
655 } // end namespace detail
656 
657 /// zip iterator for two or more iteratable types.
658 template <typename T, typename U, typename... Args>
659 detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u,
660                                                        Args &&... args) {
661   return detail::zippy<detail::zip_shortest, T, U, Args...>(
662       std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
663 }
664 
665 /// zip iterator that, for the sake of efficiency, assumes the first iteratee to
666 /// be the shortest.
667 template <typename T, typename U, typename... Args>
668 detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u,
669                                                           Args &&... args) {
670   return detail::zippy<detail::zip_first, T, U, Args...>(
671       std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
672 }
673 
674 namespace detail {
675 template <typename Iter>
676 static Iter next_or_end(const Iter &I, const Iter &End) {
677   if (I == End)
678     return End;
679   return std::next(I);
680 }
681 
682 template <typename Iter>
683 static auto deref_or_none(const Iter &I, const Iter &End)
684     -> llvm::Optional<typename std::remove_const<
685         typename std::remove_reference<decltype(*I)>::type>::type> {
686   if (I == End)
687     return None;
688   return *I;
689 }
690 
691 template <typename Iter> struct ZipLongestItemType {
692   using type =
693       llvm::Optional<typename std::remove_const<typename std::remove_reference<
694           decltype(*std::declval<Iter>())>::type>::type>;
695 };
696 
697 template <typename... Iters> struct ZipLongestTupleType {
698   using type = std::tuple<typename ZipLongestItemType<Iters>::type...>;
699 };
700 
701 template <typename... Iters>
702 class zip_longest_iterator
703     : public iterator_facade_base<
704           zip_longest_iterator<Iters...>,
705           typename std::common_type<
706               std::forward_iterator_tag,
707               typename std::iterator_traits<Iters>::iterator_category...>::type,
708           typename ZipLongestTupleType<Iters...>::type,
709           typename std::iterator_traits<typename std::tuple_element<
710               0, std::tuple<Iters...>>::type>::difference_type,
711           typename ZipLongestTupleType<Iters...>::type *,
712           typename ZipLongestTupleType<Iters...>::type> {
713 public:
714   using value_type = typename ZipLongestTupleType<Iters...>::type;
715 
716 private:
717   std::tuple<Iters...> iterators;
718   std::tuple<Iters...> end_iterators;
719 
720   template <size_t... Ns>
721   bool test(const zip_longest_iterator<Iters...> &other,
722             std::index_sequence<Ns...>) const {
723     return llvm::any_of(
724         std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
725                                     std::get<Ns>(other.iterators)...},
726         identity<bool>{});
727   }
728 
729   template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const {
730     return value_type(
731         deref_or_none(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
732   }
733 
734   template <size_t... Ns>
735   decltype(iterators) tup_inc(std::index_sequence<Ns...>) const {
736     return std::tuple<Iters...>(
737         next_or_end(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
738   }
739 
740 public:
741   zip_longest_iterator(std::pair<Iters &&, Iters &&>... ts)
742       : iterators(std::forward<Iters>(ts.first)...),
743         end_iterators(std::forward<Iters>(ts.second)...) {}
744 
745   value_type operator*() { return deref(std::index_sequence_for<Iters...>{}); }
746 
747   value_type operator*() const {
748     return deref(std::index_sequence_for<Iters...>{});
749   }
750 
751   zip_longest_iterator<Iters...> &operator++() {
752     iterators = tup_inc(std::index_sequence_for<Iters...>{});
753     return *this;
754   }
755 
756   bool operator==(const zip_longest_iterator<Iters...> &other) const {
757     return !test(other, std::index_sequence_for<Iters...>{});
758   }
759 };
760 
761 template <typename... Args> class zip_longest_range {
762 public:
763   using iterator =
764       zip_longest_iterator<decltype(adl_begin(std::declval<Args>()))...>;
765   using iterator_category = typename iterator::iterator_category;
766   using value_type = typename iterator::value_type;
767   using difference_type = typename iterator::difference_type;
768   using pointer = typename iterator::pointer;
769   using reference = typename iterator::reference;
770 
771 private:
772   std::tuple<Args...> ts;
773 
774   template <size_t... Ns>
775   iterator begin_impl(std::index_sequence<Ns...>) const {
776     return iterator(std::make_pair(adl_begin(std::get<Ns>(ts)),
777                                    adl_end(std::get<Ns>(ts)))...);
778   }
779 
780   template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const {
781     return iterator(std::make_pair(adl_end(std::get<Ns>(ts)),
782                                    adl_end(std::get<Ns>(ts)))...);
783   }
784 
785 public:
786   zip_longest_range(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
787 
788   iterator begin() const {
789     return begin_impl(std::index_sequence_for<Args...>{});
790   }
791   iterator end() const { return end_impl(std::index_sequence_for<Args...>{}); }
792 };
793 } // namespace detail
794 
795 /// Iterate over two or more iterators at the same time. Iteration continues
796 /// until all iterators reach the end. The llvm::Optional only contains a value
797 /// if the iterator has not reached the end.
798 template <typename T, typename U, typename... Args>
799 detail::zip_longest_range<T, U, Args...> zip_longest(T &&t, U &&u,
800                                                      Args &&... args) {
801   return detail::zip_longest_range<T, U, Args...>(
802       std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
803 }
804 
805 /// Iterator wrapper that concatenates sequences together.
806 ///
807 /// This can concatenate different iterators, even with different types, into
808 /// a single iterator provided the value types of all the concatenated
809 /// iterators expose `reference` and `pointer` types that can be converted to
810 /// `ValueT &` and `ValueT *` respectively. It doesn't support more
811 /// interesting/customized pointer or reference types.
812 ///
813 /// Currently this only supports forward or higher iterator categories as
814 /// inputs and always exposes a forward iterator interface.
815 template <typename ValueT, typename... IterTs>
816 class concat_iterator
817     : public iterator_facade_base<concat_iterator<ValueT, IterTs...>,
818                                   std::forward_iterator_tag, ValueT> {
819   using BaseT = typename concat_iterator::iterator_facade_base;
820 
821   /// We store both the current and end iterators for each concatenated
822   /// sequence in a tuple of pairs.
823   ///
824   /// Note that something like iterator_range seems nice at first here, but the
825   /// range properties are of little benefit and end up getting in the way
826   /// because we need to do mutation on the current iterators.
827   std::tuple<IterTs...> Begins;
828   std::tuple<IterTs...> Ends;
829 
830   /// Attempts to increment a specific iterator.
831   ///
832   /// Returns true if it was able to increment the iterator. Returns false if
833   /// the iterator is already at the end iterator.
834   template <size_t Index> bool incrementHelper() {
835     auto &Begin = std::get<Index>(Begins);
836     auto &End = std::get<Index>(Ends);
837     if (Begin == End)
838       return false;
839 
840     ++Begin;
841     return true;
842   }
843 
844   /// Increments the first non-end iterator.
845   ///
846   /// It is an error to call this with all iterators at the end.
847   template <size_t... Ns> void increment(std::index_sequence<Ns...>) {
848     // Build a sequence of functions to increment each iterator if possible.
849     bool (concat_iterator::*IncrementHelperFns[])() = {
850         &concat_iterator::incrementHelper<Ns>...};
851 
852     // Loop over them, and stop as soon as we succeed at incrementing one.
853     for (auto &IncrementHelperFn : IncrementHelperFns)
854       if ((this->*IncrementHelperFn)())
855         return;
856 
857     llvm_unreachable("Attempted to increment an end concat iterator!");
858   }
859 
860   /// Returns null if the specified iterator is at the end. Otherwise,
861   /// dereferences the iterator and returns the address of the resulting
862   /// reference.
863   template <size_t Index> ValueT *getHelper() const {
864     auto &Begin = std::get<Index>(Begins);
865     auto &End = std::get<Index>(Ends);
866     if (Begin == End)
867       return nullptr;
868 
869     return &*Begin;
870   }
871 
872   /// Finds the first non-end iterator, dereferences, and returns the resulting
873   /// reference.
874   ///
875   /// It is an error to call this with all iterators at the end.
876   template <size_t... Ns> ValueT &get(std::index_sequence<Ns...>) const {
877     // Build a sequence of functions to get from iterator if possible.
878     ValueT *(concat_iterator::*GetHelperFns[])() const = {
879         &concat_iterator::getHelper<Ns>...};
880 
881     // Loop over them, and return the first result we find.
882     for (auto &GetHelperFn : GetHelperFns)
883       if (ValueT *P = (this->*GetHelperFn)())
884         return *P;
885 
886     llvm_unreachable("Attempted to get a pointer from an end concat iterator!");
887   }
888 
889 public:
890   /// Constructs an iterator from a squence of ranges.
891   ///
892   /// We need the full range to know how to switch between each of the
893   /// iterators.
894   template <typename... RangeTs>
895   explicit concat_iterator(RangeTs &&... Ranges)
896       : Begins(std::begin(Ranges)...), Ends(std::end(Ranges)...) {}
897 
898   using BaseT::operator++;
899 
900   concat_iterator &operator++() {
901     increment(std::index_sequence_for<IterTs...>());
902     return *this;
903   }
904 
905   ValueT &operator*() const {
906     return get(std::index_sequence_for<IterTs...>());
907   }
908 
909   bool operator==(const concat_iterator &RHS) const {
910     return Begins == RHS.Begins && Ends == RHS.Ends;
911   }
912 };
913 
914 namespace detail {
915 
916 /// Helper to store a sequence of ranges being concatenated and access them.
917 ///
918 /// This is designed to facilitate providing actual storage when temporaries
919 /// are passed into the constructor such that we can use it as part of range
920 /// based for loops.
921 template <typename ValueT, typename... RangeTs> class concat_range {
922 public:
923   using iterator =
924       concat_iterator<ValueT,
925                       decltype(std::begin(std::declval<RangeTs &>()))...>;
926 
927 private:
928   std::tuple<RangeTs...> Ranges;
929 
930   template <size_t... Ns> iterator begin_impl(std::index_sequence<Ns...>) {
931     return iterator(std::get<Ns>(Ranges)...);
932   }
933   template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) {
934     return iterator(make_range(std::end(std::get<Ns>(Ranges)),
935                                std::end(std::get<Ns>(Ranges)))...);
936   }
937 
938 public:
939   concat_range(RangeTs &&... Ranges)
940       : Ranges(std::forward<RangeTs>(Ranges)...) {}
941 
942   iterator begin() { return begin_impl(std::index_sequence_for<RangeTs...>{}); }
943   iterator end() { return end_impl(std::index_sequence_for<RangeTs...>{}); }
944 };
945 
946 } // end namespace detail
947 
948 /// Concatenated range across two or more ranges.
949 ///
950 /// The desired value type must be explicitly specified.
951 template <typename ValueT, typename... RangeTs>
952 detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) {
953   static_assert(sizeof...(RangeTs) > 1,
954                 "Need more than one range to concatenate!");
955   return detail::concat_range<ValueT, RangeTs...>(
956       std::forward<RangeTs>(Ranges)...);
957 }
958 
959 //===----------------------------------------------------------------------===//
960 //     Extra additions to <utility>
961 //===----------------------------------------------------------------------===//
962 
963 /// Function object to check whether the first component of a std::pair
964 /// compares less than the first component of another std::pair.
965 struct less_first {
966   template <typename T> bool operator()(const T &lhs, const T &rhs) const {
967     return lhs.first < rhs.first;
968   }
969 };
970 
971 /// Function object to check whether the second component of a std::pair
972 /// compares less than the second component of another std::pair.
973 struct less_second {
974   template <typename T> bool operator()(const T &lhs, const T &rhs) const {
975     return lhs.second < rhs.second;
976   }
977 };
978 
979 /// \brief Function object to apply a binary function to the first component of
980 /// a std::pair.
981 template<typename FuncTy>
982 struct on_first {
983   FuncTy func;
984 
985   template <typename T>
986   auto operator()(const T &lhs, const T &rhs) const
987       -> decltype(func(lhs.first, rhs.first)) {
988     return func(lhs.first, rhs.first);
989   }
990 };
991 
992 /// Utility type to build an inheritance chain that makes it easy to rank
993 /// overload candidates.
994 template <int N> struct rank : rank<N - 1> {};
995 template <> struct rank<0> {};
996 
997 /// traits class for checking whether type T is one of any of the given
998 /// types in the variadic list.
999 template <typename T, typename... Ts> struct is_one_of {
1000   static const bool value = false;
1001 };
1002 
1003 template <typename T, typename U, typename... Ts>
1004 struct is_one_of<T, U, Ts...> {
1005   static const bool value =
1006       std::is_same<T, U>::value || is_one_of<T, Ts...>::value;
1007 };
1008 
1009 /// traits class for checking whether type T is a base class for all
1010 ///  the given types in the variadic list.
1011 template <typename T, typename... Ts> struct are_base_of {
1012   static const bool value = true;
1013 };
1014 
1015 template <typename T, typename U, typename... Ts>
1016 struct are_base_of<T, U, Ts...> {
1017   static const bool value =
1018       std::is_base_of<T, U>::value && are_base_of<T, Ts...>::value;
1019 };
1020 
1021 //===----------------------------------------------------------------------===//
1022 //     Extra additions for arrays
1023 //===----------------------------------------------------------------------===//
1024 
1025 /// Find the length of an array.
1026 template <class T, std::size_t N>
1027 constexpr inline size_t array_lengthof(T (&)[N]) {
1028   return N;
1029 }
1030 
1031 /// Adapt std::less<T> for array_pod_sort.
1032 template<typename T>
1033 inline int array_pod_sort_comparator(const void *P1, const void *P2) {
1034   if (std::less<T>()(*reinterpret_cast<const T*>(P1),
1035                      *reinterpret_cast<const T*>(P2)))
1036     return -1;
1037   if (std::less<T>()(*reinterpret_cast<const T*>(P2),
1038                      *reinterpret_cast<const T*>(P1)))
1039     return 1;
1040   return 0;
1041 }
1042 
1043 /// get_array_pod_sort_comparator - This is an internal helper function used to
1044 /// get type deduction of T right.
1045 template<typename T>
1046 inline int (*get_array_pod_sort_comparator(const T &))
1047              (const void*, const void*) {
1048   return array_pod_sort_comparator<T>;
1049 }
1050 
1051 #ifdef EXPENSIVE_CHECKS
1052 namespace detail {
1053 
1054 inline unsigned presortShuffleEntropy() {
1055   static unsigned Result(std::random_device{}());
1056   return Result;
1057 }
1058 
1059 template <class IteratorTy>
1060 inline void presortShuffle(IteratorTy Start, IteratorTy End) {
1061   std::mt19937 Generator(presortShuffleEntropy());
1062   std::shuffle(Start, End, Generator);
1063 }
1064 
1065 } // end namespace detail
1066 #endif
1067 
1068 /// array_pod_sort - This sorts an array with the specified start and end
1069 /// extent.  This is just like std::sort, except that it calls qsort instead of
1070 /// using an inlined template.  qsort is slightly slower than std::sort, but
1071 /// most sorts are not performance critical in LLVM and std::sort has to be
1072 /// template instantiated for each type, leading to significant measured code
1073 /// bloat.  This function should generally be used instead of std::sort where
1074 /// possible.
1075 ///
1076 /// This function assumes that you have simple POD-like types that can be
1077 /// compared with std::less and can be moved with memcpy.  If this isn't true,
1078 /// you should use std::sort.
1079 ///
1080 /// NOTE: If qsort_r were portable, we could allow a custom comparator and
1081 /// default to std::less.
1082 template<class IteratorTy>
1083 inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
1084   // Don't inefficiently call qsort with one element or trigger undefined
1085   // behavior with an empty sequence.
1086   auto NElts = End - Start;
1087   if (NElts <= 1) return;
1088 #ifdef EXPENSIVE_CHECKS
1089   detail::presortShuffle<IteratorTy>(Start, End);
1090 #endif
1091   qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start));
1092 }
1093 
1094 template <class IteratorTy>
1095 inline void array_pod_sort(
1096     IteratorTy Start, IteratorTy End,
1097     int (*Compare)(
1098         const typename std::iterator_traits<IteratorTy>::value_type *,
1099         const typename std::iterator_traits<IteratorTy>::value_type *)) {
1100   // Don't inefficiently call qsort with one element or trigger undefined
1101   // behavior with an empty sequence.
1102   auto NElts = End - Start;
1103   if (NElts <= 1) return;
1104 #ifdef EXPENSIVE_CHECKS
1105   detail::presortShuffle<IteratorTy>(Start, End);
1106 #endif
1107   qsort(&*Start, NElts, sizeof(*Start),
1108         reinterpret_cast<int (*)(const void *, const void *)>(Compare));
1109 }
1110 
1111 // Provide wrappers to std::sort which shuffle the elements before sorting
1112 // to help uncover non-deterministic behavior (PR35135).
1113 template <typename IteratorTy>
1114 inline void sort(IteratorTy Start, IteratorTy End) {
1115 #ifdef EXPENSIVE_CHECKS
1116   detail::presortShuffle<IteratorTy>(Start, End);
1117 #endif
1118   std::sort(Start, End);
1119 }
1120 
1121 template <typename Container> inline void sort(Container &&C) {
1122   llvm::sort(adl_begin(C), adl_end(C));
1123 }
1124 
1125 template <typename IteratorTy, typename Compare>
1126 inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) {
1127 #ifdef EXPENSIVE_CHECKS
1128   detail::presortShuffle<IteratorTy>(Start, End);
1129 #endif
1130   std::sort(Start, End, Comp);
1131 }
1132 
1133 template <typename Container, typename Compare>
1134 inline void sort(Container &&C, Compare Comp) {
1135   llvm::sort(adl_begin(C), adl_end(C), Comp);
1136 }
1137 
1138 //===----------------------------------------------------------------------===//
1139 //     Extra additions to <algorithm>
1140 //===----------------------------------------------------------------------===//
1141 
1142 /// For a container of pointers, deletes the pointers and then clears the
1143 /// container.
1144 template<typename Container>
1145 void DeleteContainerPointers(Container &C) {
1146   for (auto V : C)
1147     delete V;
1148   C.clear();
1149 }
1150 
1151 /// In a container of pairs (usually a map) whose second element is a pointer,
1152 /// deletes the second elements and then clears the container.
1153 template<typename Container>
1154 void DeleteContainerSeconds(Container &C) {
1155   for (auto &V : C)
1156     delete V.second;
1157   C.clear();
1158 }
1159 
1160 /// Get the size of a range. This is a wrapper function around std::distance
1161 /// which is only enabled when the operation is O(1).
1162 template <typename R>
1163 auto size(R &&Range, typename std::enable_if<
1164                          std::is_same<typename std::iterator_traits<decltype(
1165                                           Range.begin())>::iterator_category,
1166                                       std::random_access_iterator_tag>::value,
1167                          void>::type * = nullptr)
1168     -> decltype(std::distance(Range.begin(), Range.end())) {
1169   return std::distance(Range.begin(), Range.end());
1170 }
1171 
1172 /// Provide wrappers to std::for_each which take ranges instead of having to
1173 /// pass begin/end explicitly.
1174 template <typename R, typename UnaryPredicate>
1175 UnaryPredicate for_each(R &&Range, UnaryPredicate P) {
1176   return std::for_each(adl_begin(Range), adl_end(Range), P);
1177 }
1178 
1179 /// Provide wrappers to std::all_of which take ranges instead of having to pass
1180 /// begin/end explicitly.
1181 template <typename R, typename UnaryPredicate>
1182 bool all_of(R &&Range, UnaryPredicate P) {
1183   return std::all_of(adl_begin(Range), adl_end(Range), P);
1184 }
1185 
1186 /// Provide wrappers to std::any_of which take ranges instead of having to pass
1187 /// begin/end explicitly.
1188 template <typename R, typename UnaryPredicate>
1189 bool any_of(R &&Range, UnaryPredicate P) {
1190   return std::any_of(adl_begin(Range), adl_end(Range), P);
1191 }
1192 
1193 /// Provide wrappers to std::none_of which take ranges instead of having to pass
1194 /// begin/end explicitly.
1195 template <typename R, typename UnaryPredicate>
1196 bool none_of(R &&Range, UnaryPredicate P) {
1197   return std::none_of(adl_begin(Range), adl_end(Range), P);
1198 }
1199 
1200 /// Provide wrappers to std::find which take ranges instead of having to pass
1201 /// begin/end explicitly.
1202 template <typename R, typename T>
1203 auto find(R &&Range, const T &Val) -> decltype(adl_begin(Range)) {
1204   return std::find(adl_begin(Range), adl_end(Range), Val);
1205 }
1206 
1207 /// Provide wrappers to std::find_if which take ranges instead of having to pass
1208 /// begin/end explicitly.
1209 template <typename R, typename UnaryPredicate>
1210 auto find_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1211   return std::find_if(adl_begin(Range), adl_end(Range), P);
1212 }
1213 
1214 template <typename R, typename UnaryPredicate>
1215 auto find_if_not(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1216   return std::find_if_not(adl_begin(Range), adl_end(Range), P);
1217 }
1218 
1219 /// Provide wrappers to std::remove_if which take ranges instead of having to
1220 /// pass begin/end explicitly.
1221 template <typename R, typename UnaryPredicate>
1222 auto remove_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1223   return std::remove_if(adl_begin(Range), adl_end(Range), P);
1224 }
1225 
1226 /// Provide wrappers to std::copy_if which take ranges instead of having to
1227 /// pass begin/end explicitly.
1228 template <typename R, typename OutputIt, typename UnaryPredicate>
1229 OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) {
1230   return std::copy_if(adl_begin(Range), adl_end(Range), Out, P);
1231 }
1232 
1233 template <typename R, typename OutputIt>
1234 OutputIt copy(R &&Range, OutputIt Out) {
1235   return std::copy(adl_begin(Range), adl_end(Range), Out);
1236 }
1237 
1238 /// Wrapper function around std::find to detect if an element exists
1239 /// in a container.
1240 template <typename R, typename E>
1241 bool is_contained(R &&Range, const E &Element) {
1242   return std::find(adl_begin(Range), adl_end(Range), Element) != adl_end(Range);
1243 }
1244 
1245 /// Wrapper function around std::count to count the number of times an element
1246 /// \p Element occurs in the given range \p Range.
1247 template <typename R, typename E>
1248 auto count(R &&Range, const E &Element) ->
1249     typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
1250   return std::count(adl_begin(Range), adl_end(Range), Element);
1251 }
1252 
1253 /// Wrapper function around std::count_if to count the number of times an
1254 /// element satisfying a given predicate occurs in a range.
1255 template <typename R, typename UnaryPredicate>
1256 auto count_if(R &&Range, UnaryPredicate P) ->
1257     typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
1258   return std::count_if(adl_begin(Range), adl_end(Range), P);
1259 }
1260 
1261 /// Wrapper function around std::transform to apply a function to a range and
1262 /// store the result elsewhere.
1263 template <typename R, typename OutputIt, typename UnaryPredicate>
1264 OutputIt transform(R &&Range, OutputIt d_first, UnaryPredicate P) {
1265   return std::transform(adl_begin(Range), adl_end(Range), d_first, P);
1266 }
1267 
1268 /// Provide wrappers to std::partition which take ranges instead of having to
1269 /// pass begin/end explicitly.
1270 template <typename R, typename UnaryPredicate>
1271 auto partition(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1272   return std::partition(adl_begin(Range), adl_end(Range), P);
1273 }
1274 
1275 /// Provide wrappers to std::lower_bound which take ranges instead of having to
1276 /// pass begin/end explicitly.
1277 template <typename R, typename T>
1278 auto lower_bound(R &&Range, T &&Value) -> decltype(adl_begin(Range)) {
1279   return std::lower_bound(adl_begin(Range), adl_end(Range),
1280                           std::forward<T>(Value));
1281 }
1282 
1283 template <typename R, typename T, typename Compare>
1284 auto lower_bound(R &&Range, T &&Value, Compare C)
1285     -> decltype(adl_begin(Range)) {
1286   return std::lower_bound(adl_begin(Range), adl_end(Range),
1287                           std::forward<T>(Value), C);
1288 }
1289 
1290 /// Provide wrappers to std::upper_bound which take ranges instead of having to
1291 /// pass begin/end explicitly.
1292 template <typename R, typename T>
1293 auto upper_bound(R &&Range, T &&Value) -> decltype(adl_begin(Range)) {
1294   return std::upper_bound(adl_begin(Range), adl_end(Range),
1295                           std::forward<T>(Value));
1296 }
1297 
1298 template <typename R, typename T, typename Compare>
1299 auto upper_bound(R &&Range, T &&Value, Compare C)
1300     -> decltype(adl_begin(Range)) {
1301   return std::upper_bound(adl_begin(Range), adl_end(Range),
1302                           std::forward<T>(Value), C);
1303 }
1304 
1305 template <typename R>
1306 void stable_sort(R &&Range) {
1307   std::stable_sort(adl_begin(Range), adl_end(Range));
1308 }
1309 
1310 template <typename R, typename Compare>
1311 void stable_sort(R &&Range, Compare C) {
1312   std::stable_sort(adl_begin(Range), adl_end(Range), C);
1313 }
1314 
1315 /// Binary search for the first iterator in a range where a predicate is false.
1316 /// Requires that C is always true below some limit, and always false above it.
1317 template <typename R, typename Predicate,
1318           typename Val = decltype(*adl_begin(std::declval<R>()))>
1319 auto partition_point(R &&Range, Predicate P) -> decltype(adl_begin(Range)) {
1320   return std::partition_point(adl_begin(Range), adl_end(Range), P);
1321 }
1322 
1323 /// Wrapper function around std::equal to detect if all elements
1324 /// in a container are same.
1325 template <typename R>
1326 bool is_splat(R &&Range) {
1327   size_t range_size = size(Range);
1328   return range_size != 0 && (range_size == 1 ||
1329          std::equal(adl_begin(Range) + 1, adl_end(Range), adl_begin(Range)));
1330 }
1331 
1332 /// Provide a container algorithm similar to C++ Library Fundamentals v2's
1333 /// `erase_if` which is equivalent to:
1334 ///
1335 ///   C.erase(remove_if(C, pred), C.end());
1336 ///
1337 /// This version works for any container with an erase method call accepting
1338 /// two iterators.
1339 template <typename Container, typename UnaryPredicate>
1340 void erase_if(Container &C, UnaryPredicate P) {
1341   C.erase(remove_if(C, P), C.end());
1342 }
1343 
1344 /// Given a sequence container Cont, replace the range [ContIt, ContEnd) with
1345 /// the range [ValIt, ValEnd) (which is not from the same container).
1346 template<typename Container, typename RandomAccessIterator>
1347 void replace(Container &Cont, typename Container::iterator ContIt,
1348              typename Container::iterator ContEnd, RandomAccessIterator ValIt,
1349              RandomAccessIterator ValEnd) {
1350   while (true) {
1351     if (ValIt == ValEnd) {
1352       Cont.erase(ContIt, ContEnd);
1353       return;
1354     } else if (ContIt == ContEnd) {
1355       Cont.insert(ContIt, ValIt, ValEnd);
1356       return;
1357     }
1358     *ContIt++ = *ValIt++;
1359   }
1360 }
1361 
1362 /// Given a sequence container Cont, replace the range [ContIt, ContEnd) with
1363 /// the range R.
1364 template<typename Container, typename Range = std::initializer_list<
1365                                  typename Container::value_type>>
1366 void replace(Container &Cont, typename Container::iterator ContIt,
1367              typename Container::iterator ContEnd, Range R) {
1368   replace(Cont, ContIt, ContEnd, R.begin(), R.end());
1369 }
1370 
1371 //===----------------------------------------------------------------------===//
1372 //     Extra additions to <memory>
1373 //===----------------------------------------------------------------------===//
1374 
1375 struct FreeDeleter {
1376   void operator()(void* v) {
1377     ::free(v);
1378   }
1379 };
1380 
1381 template<typename First, typename Second>
1382 struct pair_hash {
1383   size_t operator()(const std::pair<First, Second> &P) const {
1384     return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second);
1385   }
1386 };
1387 
1388 /// Binary functor that adapts to any other binary functor after dereferencing
1389 /// operands.
1390 template <typename T> struct deref {
1391   T func;
1392 
1393   // Could be further improved to cope with non-derivable functors and
1394   // non-binary functors (should be a variadic template member function
1395   // operator()).
1396   template <typename A, typename B>
1397   auto operator()(A &lhs, B &rhs) const -> decltype(func(*lhs, *rhs)) {
1398     assert(lhs);
1399     assert(rhs);
1400     return func(*lhs, *rhs);
1401   }
1402 };
1403 
1404 namespace detail {
1405 
1406 template <typename R> class enumerator_iter;
1407 
1408 template <typename R> struct result_pair {
1409   using value_reference =
1410       typename std::iterator_traits<IterOfRange<R>>::reference;
1411 
1412   friend class enumerator_iter<R>;
1413 
1414   result_pair() = default;
1415   result_pair(std::size_t Index, IterOfRange<R> Iter)
1416       : Index(Index), Iter(Iter) {}
1417 
1418   result_pair<R>(const result_pair<R> &Other)
1419       : Index(Other.Index), Iter(Other.Iter) {}
1420   result_pair<R> &operator=(const result_pair<R> &Other) {
1421     Index = Other.Index;
1422     Iter = Other.Iter;
1423     return *this;
1424   }
1425 
1426   std::size_t index() const { return Index; }
1427   const value_reference value() const { return *Iter; }
1428   value_reference value() { return *Iter; }
1429 
1430 private:
1431   std::size_t Index = std::numeric_limits<std::size_t>::max();
1432   IterOfRange<R> Iter;
1433 };
1434 
1435 template <typename R>
1436 class enumerator_iter
1437     : public iterator_facade_base<
1438           enumerator_iter<R>, std::forward_iterator_tag, result_pair<R>,
1439           typename std::iterator_traits<IterOfRange<R>>::difference_type,
1440           typename std::iterator_traits<IterOfRange<R>>::pointer,
1441           typename std::iterator_traits<IterOfRange<R>>::reference> {
1442   using result_type = result_pair<R>;
1443 
1444 public:
1445   explicit enumerator_iter(IterOfRange<R> EndIter)
1446       : Result(std::numeric_limits<size_t>::max(), EndIter) {}
1447 
1448   enumerator_iter(std::size_t Index, IterOfRange<R> Iter)
1449       : Result(Index, Iter) {}
1450 
1451   result_type &operator*() { return Result; }
1452   const result_type &operator*() const { return Result; }
1453 
1454   enumerator_iter<R> &operator++() {
1455     assert(Result.Index != std::numeric_limits<size_t>::max());
1456     ++Result.Iter;
1457     ++Result.Index;
1458     return *this;
1459   }
1460 
1461   bool operator==(const enumerator_iter<R> &RHS) const {
1462     // Don't compare indices here, only iterators.  It's possible for an end
1463     // iterator to have different indices depending on whether it was created
1464     // by calling std::end() versus incrementing a valid iterator.
1465     return Result.Iter == RHS.Result.Iter;
1466   }
1467 
1468   enumerator_iter<R>(const enumerator_iter<R> &Other) : Result(Other.Result) {}
1469   enumerator_iter<R> &operator=(const enumerator_iter<R> &Other) {
1470     Result = Other.Result;
1471     return *this;
1472   }
1473 
1474 private:
1475   result_type Result;
1476 };
1477 
1478 template <typename R> class enumerator {
1479 public:
1480   explicit enumerator(R &&Range) : TheRange(std::forward<R>(Range)) {}
1481 
1482   enumerator_iter<R> begin() {
1483     return enumerator_iter<R>(0, std::begin(TheRange));
1484   }
1485 
1486   enumerator_iter<R> end() {
1487     return enumerator_iter<R>(std::end(TheRange));
1488   }
1489 
1490 private:
1491   R TheRange;
1492 };
1493 
1494 } // end namespace detail
1495 
1496 /// Given an input range, returns a new range whose values are are pair (A,B)
1497 /// such that A is the 0-based index of the item in the sequence, and B is
1498 /// the value from the original sequence.  Example:
1499 ///
1500 /// std::vector<char> Items = {'A', 'B', 'C', 'D'};
1501 /// for (auto X : enumerate(Items)) {
1502 ///   printf("Item %d - %c\n", X.index(), X.value());
1503 /// }
1504 ///
1505 /// Output:
1506 ///   Item 0 - A
1507 ///   Item 1 - B
1508 ///   Item 2 - C
1509 ///   Item 3 - D
1510 ///
1511 template <typename R> detail::enumerator<R> enumerate(R &&TheRange) {
1512   return detail::enumerator<R>(std::forward<R>(TheRange));
1513 }
1514 
1515 namespace detail {
1516 
1517 template <typename F, typename Tuple, std::size_t... I>
1518 auto apply_tuple_impl(F &&f, Tuple &&t, std::index_sequence<I...>)
1519     -> decltype(std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...)) {
1520   return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...);
1521 }
1522 
1523 } // end namespace detail
1524 
1525 /// Given an input tuple (a1, a2, ..., an), pass the arguments of the
1526 /// tuple variadically to f as if by calling f(a1, a2, ..., an) and
1527 /// return the result.
1528 template <typename F, typename Tuple>
1529 auto apply_tuple(F &&f, Tuple &&t) -> decltype(detail::apply_tuple_impl(
1530     std::forward<F>(f), std::forward<Tuple>(t),
1531     std::make_index_sequence<
1532         std::tuple_size<typename std::decay<Tuple>::type>::value>{})) {
1533   using Indices = std::make_index_sequence<
1534       std::tuple_size<typename std::decay<Tuple>::type>::value>;
1535 
1536   return detail::apply_tuple_impl(std::forward<F>(f), std::forward<Tuple>(t),
1537                                   Indices{});
1538 }
1539 
1540 /// Return true if the sequence [Begin, End) has exactly N items. Runs in O(N)
1541 /// time. Not meant for use with random-access iterators.
1542 template <typename IterTy>
1543 bool hasNItems(
1544     IterTy &&Begin, IterTy &&End, unsigned N,
1545     typename std::enable_if<
1546         !std::is_same<
1547             typename std::iterator_traits<typename std::remove_reference<
1548                 decltype(Begin)>::type>::iterator_category,
1549             std::random_access_iterator_tag>::value,
1550         void>::type * = nullptr) {
1551   for (; N; --N, ++Begin)
1552     if (Begin == End)
1553       return false; // Too few.
1554   return Begin == End;
1555 }
1556 
1557 /// Return true if the sequence [Begin, End) has N or more items. Runs in O(N)
1558 /// time. Not meant for use with random-access iterators.
1559 template <typename IterTy>
1560 bool hasNItemsOrMore(
1561     IterTy &&Begin, IterTy &&End, unsigned N,
1562     typename std::enable_if<
1563         !std::is_same<
1564             typename std::iterator_traits<typename std::remove_reference<
1565                 decltype(Begin)>::type>::iterator_category,
1566             std::random_access_iterator_tag>::value,
1567         void>::type * = nullptr) {
1568   for (; N; --N, ++Begin)
1569     if (Begin == End)
1570       return false; // Too few.
1571   return true;
1572 }
1573 
1574 /// Returns a raw pointer that represents the same address as the argument.
1575 ///
1576 /// The late bound return should be removed once we move to C++14 to better
1577 /// align with the C++20 declaration. Also, this implementation can be removed
1578 /// once we move to C++20 where it's defined as std::to_addres()
1579 ///
1580 /// The std::pointer_traits<>::to_address(p) variations of these overloads has
1581 /// not been implemented.
1582 template <class Ptr> auto to_address(const Ptr &P) -> decltype(P.operator->()) {
1583   return P.operator->();
1584 }
1585 template <class T> constexpr T *to_address(T *P) { return P; }
1586 
1587 } // end namespace llvm
1588 
1589 #endif // LLVM_ADT_STLEXTRAS_H
1590