1 //===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the SmallVector class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_ADT_SMALLVECTOR_H
14 #define LLVM_ADT_SMALLVECTOR_H
15 
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/Support/AlignOf.h"
18 #include "llvm/Support/Compiler.h"
19 #include "llvm/Support/MathExtras.h"
20 #include "llvm/Support/MemAlloc.h"
21 #include "llvm/Support/type_traits.h"
22 #include "llvm/Support/ErrorHandling.h"
23 #include <algorithm>
24 #include <cassert>
25 #include <cstddef>
26 #include <cstdlib>
27 #include <cstring>
28 #include <initializer_list>
29 #include <iterator>
30 #include <memory>
31 #include <new>
32 #include <type_traits>
33 #include <utility>
34 
35 namespace llvm {
36 
37 /// This is all the non-templated stuff common to all SmallVectors.
38 class SmallVectorBase {
39 protected:
40   void *BeginX;
41   unsigned Size = 0, Capacity;
42 
43   SmallVectorBase() = delete;
44   SmallVectorBase(void *FirstEl, size_t TotalCapacity)
45       : BeginX(FirstEl), Capacity(TotalCapacity) {}
46 
47   /// This is an implementation of the grow() method which only works
48   /// on POD-like data types and is out of line to reduce code duplication.
49   void grow_pod(void *FirstEl, size_t MinCapacity, size_t TSize);
50 
51 public:
52   size_t size() const { return Size; }
53   size_t capacity() const { return Capacity; }
54 
55   LLVM_NODISCARD bool empty() const { return !Size; }
56 
57   /// Set the array size to \p N, which the current array must have enough
58   /// capacity for.
59   ///
60   /// This does not construct or destroy any elements in the vector.
61   ///
62   /// Clients can use this in conjunction with capacity() to write past the end
63   /// of the buffer when they know that more elements are available, and only
64   /// update the size later. This avoids the cost of value initializing elements
65   /// which will only be overwritten.
66   void set_size(size_t N) {
67     assert(N <= capacity());
68     Size = N;
69   }
70 };
71 
72 /// Figure out the offset of the first element.
73 template <class T, typename = void> struct SmallVectorAlignmentAndSize {
74   AlignedCharArrayUnion<SmallVectorBase> Base;
75   AlignedCharArrayUnion<T> FirstEl;
76 };
77 
78 /// This is the part of SmallVectorTemplateBase which does not depend on whether
79 /// the type T is a POD. The extra dummy template argument is used by ArrayRef
80 /// to avoid unnecessarily requiring T to be complete.
81 template <typename T, typename = void>
82 class SmallVectorTemplateCommon : public SmallVectorBase {
83   /// Find the address of the first element.  For this pointer math to be valid
84   /// with small-size of 0 for T with lots of alignment, it's important that
85   /// SmallVectorStorage is properly-aligned even for small-size of 0.
86   void *getFirstEl() const {
87     return const_cast<void *>(reinterpret_cast<const void *>(
88         reinterpret_cast<const char *>(this) +
89         offsetof(SmallVectorAlignmentAndSize<T>, FirstEl)));
90   }
91   // Space after 'FirstEl' is clobbered, do not add any instance vars after it.
92 
93 protected:
94   SmallVectorTemplateCommon(size_t Size)
95       : SmallVectorBase(getFirstEl(), Size) {}
96 
97   void grow_pod(size_t MinCapacity, size_t TSize) {
98     SmallVectorBase::grow_pod(getFirstEl(), MinCapacity, TSize);
99   }
100 
101   /// Return true if this is a smallvector which has not had dynamic
102   /// memory allocated for it.
103   bool isSmall() const { return BeginX == getFirstEl(); }
104 
105   /// Put this vector in a state of being small.
106   void resetToSmall() {
107     BeginX = getFirstEl();
108     Size = Capacity = 0; // FIXME: Setting Capacity to 0 is suspect.
109   }
110 
111 public:
112   using size_type = size_t;
113   using difference_type = ptrdiff_t;
114   using value_type = T;
115   using iterator = T *;
116   using const_iterator = const T *;
117 
118   using const_reverse_iterator = std::reverse_iterator<const_iterator>;
119   using reverse_iterator = std::reverse_iterator<iterator>;
120 
121   using reference = T &;
122   using const_reference = const T &;
123   using pointer = T *;
124   using const_pointer = const T *;
125 
126   // forward iterator creation methods.
127   iterator begin() { return (iterator)this->BeginX; }
128   const_iterator begin() const { return (const_iterator)this->BeginX; }
129   iterator end() { return begin() + size(); }
130   const_iterator end() const { return begin() + size(); }
131 
132   // reverse iterator creation methods.
133   reverse_iterator rbegin()            { return reverse_iterator(end()); }
134   const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
135   reverse_iterator rend()              { return reverse_iterator(begin()); }
136   const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
137 
138   size_type size_in_bytes() const { return size() * sizeof(T); }
139   size_type max_size() const { return size_type(-1) / sizeof(T); }
140 
141   size_t capacity_in_bytes() const { return capacity() * sizeof(T); }
142 
143   /// Return a pointer to the vector's buffer, even if empty().
144   pointer data() { return pointer(begin()); }
145   /// Return a pointer to the vector's buffer, even if empty().
146   const_pointer data() const { return const_pointer(begin()); }
147 
148   reference operator[](size_type idx) {
149     assert(idx < size());
150     return begin()[idx];
151   }
152   const_reference operator[](size_type idx) const {
153     assert(idx < size());
154     return begin()[idx];
155   }
156 
157   reference front() {
158     assert(!empty());
159     return begin()[0];
160   }
161   const_reference front() const {
162     assert(!empty());
163     return begin()[0];
164   }
165 
166   reference back() {
167     assert(!empty());
168     return end()[-1];
169   }
170   const_reference back() const {
171     assert(!empty());
172     return end()[-1];
173   }
174 };
175 
176 /// SmallVectorTemplateBase<TriviallyCopyable = false> - This is where we put method
177 /// implementations that are designed to work with non-POD-like T's.
178 template <typename T, bool = is_trivially_copyable<T>::value>
179 class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> {
180 protected:
181   SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
182 
183   static void destroy_range(T *S, T *E) {
184     while (S != E) {
185       --E;
186       E->~T();
187     }
188   }
189 
190   /// Move the range [I, E) into the uninitialized memory starting with "Dest",
191   /// constructing elements as needed.
192   template<typename It1, typename It2>
193   static void uninitialized_move(It1 I, It1 E, It2 Dest) {
194     std::uninitialized_copy(std::make_move_iterator(I),
195                             std::make_move_iterator(E), Dest);
196   }
197 
198   /// Copy the range [I, E) onto the uninitialized memory starting with "Dest",
199   /// constructing elements as needed.
200   template<typename It1, typename It2>
201   static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
202     std::uninitialized_copy(I, E, Dest);
203   }
204 
205   /// Grow the allocated memory (without initializing new elements), doubling
206   /// the size of the allocated memory. Guarantees space for at least one more
207   /// element, or MinSize more elements if specified.
208   void grow(size_t MinSize = 0);
209 
210 public:
211   void push_back(const T &Elt) {
212     if (LLVM_UNLIKELY(this->size() >= this->capacity()))
213       this->grow();
214     ::new ((void*) this->end()) T(Elt);
215     this->set_size(this->size() + 1);
216   }
217 
218   void push_back(T &&Elt) {
219     if (LLVM_UNLIKELY(this->size() >= this->capacity()))
220       this->grow();
221     ::new ((void*) this->end()) T(::std::move(Elt));
222     this->set_size(this->size() + 1);
223   }
224 
225   void pop_back() {
226     this->set_size(this->size() - 1);
227     this->end()->~T();
228   }
229 };
230 
231 // Define this out-of-line to dissuade the C++ compiler from inlining it.
232 template <typename T, bool TriviallyCopyable>
233 void SmallVectorTemplateBase<T, TriviallyCopyable>::grow(size_t MinSize) {
234   if (MinSize > UINT32_MAX)
235     report_bad_alloc_error("SmallVector capacity overflow during allocation");
236 
237   // Always grow, even from zero.
238   size_t NewCapacity = size_t(NextPowerOf2(this->capacity() + 2));
239   NewCapacity = std::min(std::max(NewCapacity, MinSize), size_t(UINT32_MAX));
240   T *NewElts = static_cast<T*>(llvm::safe_malloc(NewCapacity*sizeof(T)));
241 
242   // Move the elements over.
243   this->uninitialized_move(this->begin(), this->end(), NewElts);
244 
245   // Destroy the original elements.
246   destroy_range(this->begin(), this->end());
247 
248   // If this wasn't grown from the inline copy, deallocate the old space.
249   if (!this->isSmall())
250     free(this->begin());
251 
252   this->BeginX = NewElts;
253   this->Capacity = NewCapacity;
254 }
255 
256 /// SmallVectorTemplateBase<TriviallyCopyable = true> - This is where we put
257 /// method implementations that are designed to work with POD-like T's.
258 template <typename T>
259 class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> {
260 protected:
261   SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
262 
263   // No need to do a destroy loop for POD's.
264   static void destroy_range(T *, T *) {}
265 
266   /// Move the range [I, E) onto the uninitialized memory
267   /// starting with "Dest", constructing elements into it as needed.
268   template<typename It1, typename It2>
269   static void uninitialized_move(It1 I, It1 E, It2 Dest) {
270     // Just do a copy.
271     uninitialized_copy(I, E, Dest);
272   }
273 
274   /// Copy the range [I, E) onto the uninitialized memory
275   /// starting with "Dest", constructing elements into it as needed.
276   template<typename It1, typename It2>
277   static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
278     // Arbitrary iterator types; just use the basic implementation.
279     std::uninitialized_copy(I, E, Dest);
280   }
281 
282   /// Copy the range [I, E) onto the uninitialized memory
283   /// starting with "Dest", constructing elements into it as needed.
284   template <typename T1, typename T2>
285   static void uninitialized_copy(
286       T1 *I, T1 *E, T2 *Dest,
287       typename std::enable_if<std::is_same<typename std::remove_const<T1>::type,
288                                            T2>::value>::type * = nullptr) {
289     // Use memcpy for PODs iterated by pointers (which includes SmallVector
290     // iterators): std::uninitialized_copy optimizes to memmove, but we can
291     // use memcpy here. Note that I and E are iterators and thus might be
292     // invalid for memcpy if they are equal.
293     if (I != E)
294       memcpy(reinterpret_cast<void *>(Dest), I, (E - I) * sizeof(T));
295   }
296 
297   /// Double the size of the allocated memory, guaranteeing space for at
298   /// least one more element or MinSize if specified.
299   void grow(size_t MinSize = 0) { this->grow_pod(MinSize, sizeof(T)); }
300 
301 public:
302   void push_back(const T &Elt) {
303     if (LLVM_UNLIKELY(this->size() >= this->capacity()))
304       this->grow();
305     memcpy(reinterpret_cast<void *>(this->end()), &Elt, sizeof(T));
306     this->set_size(this->size() + 1);
307   }
308 
309   void pop_back() { this->set_size(this->size() - 1); }
310 };
311 
312 /// This class consists of common code factored out of the SmallVector class to
313 /// reduce code duplication based on the SmallVector 'N' template parameter.
314 template <typename T>
315 class SmallVectorImpl : public SmallVectorTemplateBase<T> {
316   using SuperClass = SmallVectorTemplateBase<T>;
317 
318 public:
319   using iterator = typename SuperClass::iterator;
320   using const_iterator = typename SuperClass::const_iterator;
321   using reference = typename SuperClass::reference;
322   using size_type = typename SuperClass::size_type;
323 
324 protected:
325   // Default ctor - Initialize to empty.
326   explicit SmallVectorImpl(unsigned N)
327       : SmallVectorTemplateBase<T>(N) {}
328 
329 public:
330   SmallVectorImpl(const SmallVectorImpl &) = delete;
331 
332   ~SmallVectorImpl() {
333     // Subclass has already destructed this vector's elements.
334     // If this wasn't grown from the inline copy, deallocate the old space.
335     if (!this->isSmall())
336       free(this->begin());
337   }
338 
339   void clear() {
340     this->destroy_range(this->begin(), this->end());
341     this->Size = 0;
342   }
343 
344   void resize(size_type N) {
345     if (N < this->size()) {
346       this->destroy_range(this->begin()+N, this->end());
347       this->set_size(N);
348     } else if (N > this->size()) {
349       if (this->capacity() < N)
350         this->grow(N);
351       for (auto I = this->end(), E = this->begin() + N; I != E; ++I)
352         new (&*I) T();
353       this->set_size(N);
354     }
355   }
356 
357   void resize(size_type N, const T &NV) {
358     if (N < this->size()) {
359       this->destroy_range(this->begin()+N, this->end());
360       this->set_size(N);
361     } else if (N > this->size()) {
362       if (this->capacity() < N)
363         this->grow(N);
364       std::uninitialized_fill(this->end(), this->begin()+N, NV);
365       this->set_size(N);
366     }
367   }
368 
369   void reserve(size_type N) {
370     if (this->capacity() < N)
371       this->grow(N);
372   }
373 
374   LLVM_NODISCARD T pop_back_val() {
375     T Result = ::std::move(this->back());
376     this->pop_back();
377     return Result;
378   }
379 
380   void swap(SmallVectorImpl &RHS);
381 
382   /// Add the specified range to the end of the SmallVector.
383   template <typename in_iter,
384             typename = typename std::enable_if<std::is_convertible<
385                 typename std::iterator_traits<in_iter>::iterator_category,
386                 std::input_iterator_tag>::value>::type>
387   void append(in_iter in_start, in_iter in_end) {
388     size_type NumInputs = std::distance(in_start, in_end);
389     if (NumInputs > this->capacity() - this->size())
390       this->grow(this->size()+NumInputs);
391 
392     this->uninitialized_copy(in_start, in_end, this->end());
393     this->set_size(this->size() + NumInputs);
394   }
395 
396   /// Append \p NumInputs copies of \p Elt to the end.
397   void append(size_type NumInputs, const T &Elt) {
398     if (NumInputs > this->capacity() - this->size())
399       this->grow(this->size()+NumInputs);
400 
401     std::uninitialized_fill_n(this->end(), NumInputs, Elt);
402     this->set_size(this->size() + NumInputs);
403   }
404 
405   void append(std::initializer_list<T> IL) {
406     append(IL.begin(), IL.end());
407   }
408 
409   // FIXME: Consider assigning over existing elements, rather than clearing &
410   // re-initializing them - for all assign(...) variants.
411 
412   void assign(size_type NumElts, const T &Elt) {
413     clear();
414     if (this->capacity() < NumElts)
415       this->grow(NumElts);
416     this->set_size(NumElts);
417     std::uninitialized_fill(this->begin(), this->end(), Elt);
418   }
419 
420   template <typename in_iter,
421             typename = typename std::enable_if<std::is_convertible<
422                 typename std::iterator_traits<in_iter>::iterator_category,
423                 std::input_iterator_tag>::value>::type>
424   void assign(in_iter in_start, in_iter in_end) {
425     clear();
426     append(in_start, in_end);
427   }
428 
429   void assign(std::initializer_list<T> IL) {
430     clear();
431     append(IL);
432   }
433 
434   iterator erase(const_iterator CI) {
435     // Just cast away constness because this is a non-const member function.
436     iterator I = const_cast<iterator>(CI);
437 
438     assert(I >= this->begin() && "Iterator to erase is out of bounds.");
439     assert(I < this->end() && "Erasing at past-the-end iterator.");
440 
441     iterator N = I;
442     // Shift all elts down one.
443     std::move(I+1, this->end(), I);
444     // Drop the last elt.
445     this->pop_back();
446     return(N);
447   }
448 
449   iterator erase(const_iterator CS, const_iterator CE) {
450     // Just cast away constness because this is a non-const member function.
451     iterator S = const_cast<iterator>(CS);
452     iterator E = const_cast<iterator>(CE);
453 
454     assert(S >= this->begin() && "Range to erase is out of bounds.");
455     assert(S <= E && "Trying to erase invalid range.");
456     assert(E <= this->end() && "Trying to erase past the end.");
457 
458     iterator N = S;
459     // Shift all elts down.
460     iterator I = std::move(E, this->end(), S);
461     // Drop the last elts.
462     this->destroy_range(I, this->end());
463     this->set_size(I - this->begin());
464     return(N);
465   }
466 
467   iterator insert(iterator I, T &&Elt) {
468     if (I == this->end()) {  // Important special case for empty vector.
469       this->push_back(::std::move(Elt));
470       return this->end()-1;
471     }
472 
473     assert(I >= this->begin() && "Insertion iterator is out of bounds.");
474     assert(I <= this->end() && "Inserting past the end of the vector.");
475 
476     if (this->size() >= this->capacity()) {
477       size_t EltNo = I-this->begin();
478       this->grow();
479       I = this->begin()+EltNo;
480     }
481 
482     ::new ((void*) this->end()) T(::std::move(this->back()));
483     // Push everything else over.
484     std::move_backward(I, this->end()-1, this->end());
485     this->set_size(this->size() + 1);
486 
487     // If we just moved the element we're inserting, be sure to update
488     // the reference.
489     T *EltPtr = &Elt;
490     if (I <= EltPtr && EltPtr < this->end())
491       ++EltPtr;
492 
493     *I = ::std::move(*EltPtr);
494     return I;
495   }
496 
497   iterator insert(iterator I, const T &Elt) {
498     if (I == this->end()) {  // Important special case for empty vector.
499       this->push_back(Elt);
500       return this->end()-1;
501     }
502 
503     assert(I >= this->begin() && "Insertion iterator is out of bounds.");
504     assert(I <= this->end() && "Inserting past the end of the vector.");
505 
506     if (this->size() >= this->capacity()) {
507       size_t EltNo = I-this->begin();
508       this->grow();
509       I = this->begin()+EltNo;
510     }
511     ::new ((void*) this->end()) T(std::move(this->back()));
512     // Push everything else over.
513     std::move_backward(I, this->end()-1, this->end());
514     this->set_size(this->size() + 1);
515 
516     // If we just moved the element we're inserting, be sure to update
517     // the reference.
518     const T *EltPtr = &Elt;
519     if (I <= EltPtr && EltPtr < this->end())
520       ++EltPtr;
521 
522     *I = *EltPtr;
523     return I;
524   }
525 
526   iterator insert(iterator I, size_type NumToInsert, const T &Elt) {
527     // Convert iterator to elt# to avoid invalidating iterator when we reserve()
528     size_t InsertElt = I - this->begin();
529 
530     if (I == this->end()) {  // Important special case for empty vector.
531       append(NumToInsert, Elt);
532       return this->begin()+InsertElt;
533     }
534 
535     assert(I >= this->begin() && "Insertion iterator is out of bounds.");
536     assert(I <= this->end() && "Inserting past the end of the vector.");
537 
538     // Ensure there is enough space.
539     reserve(this->size() + NumToInsert);
540 
541     // Uninvalidate the iterator.
542     I = this->begin()+InsertElt;
543 
544     // If there are more elements between the insertion point and the end of the
545     // range than there are being inserted, we can use a simple approach to
546     // insertion.  Since we already reserved space, we know that this won't
547     // reallocate the vector.
548     if (size_t(this->end()-I) >= NumToInsert) {
549       T *OldEnd = this->end();
550       append(std::move_iterator<iterator>(this->end() - NumToInsert),
551              std::move_iterator<iterator>(this->end()));
552 
553       // Copy the existing elements that get replaced.
554       std::move_backward(I, OldEnd-NumToInsert, OldEnd);
555 
556       std::fill_n(I, NumToInsert, Elt);
557       return I;
558     }
559 
560     // Otherwise, we're inserting more elements than exist already, and we're
561     // not inserting at the end.
562 
563     // Move over the elements that we're about to overwrite.
564     T *OldEnd = this->end();
565     this->set_size(this->size() + NumToInsert);
566     size_t NumOverwritten = OldEnd-I;
567     this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
568 
569     // Replace the overwritten part.
570     std::fill_n(I, NumOverwritten, Elt);
571 
572     // Insert the non-overwritten middle part.
573     std::uninitialized_fill_n(OldEnd, NumToInsert-NumOverwritten, Elt);
574     return I;
575   }
576 
577   template <typename ItTy,
578             typename = typename std::enable_if<std::is_convertible<
579                 typename std::iterator_traits<ItTy>::iterator_category,
580                 std::input_iterator_tag>::value>::type>
581   iterator insert(iterator I, ItTy From, ItTy To) {
582     // Convert iterator to elt# to avoid invalidating iterator when we reserve()
583     size_t InsertElt = I - this->begin();
584 
585     if (I == this->end()) {  // Important special case for empty vector.
586       append(From, To);
587       return this->begin()+InsertElt;
588     }
589 
590     assert(I >= this->begin() && "Insertion iterator is out of bounds.");
591     assert(I <= this->end() && "Inserting past the end of the vector.");
592 
593     size_t NumToInsert = std::distance(From, To);
594 
595     // Ensure there is enough space.
596     reserve(this->size() + NumToInsert);
597 
598     // Uninvalidate the iterator.
599     I = this->begin()+InsertElt;
600 
601     // If there are more elements between the insertion point and the end of the
602     // range than there are being inserted, we can use a simple approach to
603     // insertion.  Since we already reserved space, we know that this won't
604     // reallocate the vector.
605     if (size_t(this->end()-I) >= NumToInsert) {
606       T *OldEnd = this->end();
607       append(std::move_iterator<iterator>(this->end() - NumToInsert),
608              std::move_iterator<iterator>(this->end()));
609 
610       // Copy the existing elements that get replaced.
611       std::move_backward(I, OldEnd-NumToInsert, OldEnd);
612 
613       std::copy(From, To, I);
614       return I;
615     }
616 
617     // Otherwise, we're inserting more elements than exist already, and we're
618     // not inserting at the end.
619 
620     // Move over the elements that we're about to overwrite.
621     T *OldEnd = this->end();
622     this->set_size(this->size() + NumToInsert);
623     size_t NumOverwritten = OldEnd-I;
624     this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
625 
626     // Replace the overwritten part.
627     for (T *J = I; NumOverwritten > 0; --NumOverwritten) {
628       *J = *From;
629       ++J; ++From;
630     }
631 
632     // Insert the non-overwritten middle part.
633     this->uninitialized_copy(From, To, OldEnd);
634     return I;
635   }
636 
637   void insert(iterator I, std::initializer_list<T> IL) {
638     insert(I, IL.begin(), IL.end());
639   }
640 
641   template <typename... ArgTypes> reference emplace_back(ArgTypes &&... Args) {
642     if (LLVM_UNLIKELY(this->size() >= this->capacity()))
643       this->grow();
644     ::new ((void *)this->end()) T(std::forward<ArgTypes>(Args)...);
645     this->set_size(this->size() + 1);
646     return this->back();
647   }
648 
649   SmallVectorImpl &operator=(const SmallVectorImpl &RHS);
650 
651   SmallVectorImpl &operator=(SmallVectorImpl &&RHS);
652 
653   bool operator==(const SmallVectorImpl &RHS) const {
654     if (this->size() != RHS.size()) return false;
655     return std::equal(this->begin(), this->end(), RHS.begin());
656   }
657   bool operator!=(const SmallVectorImpl &RHS) const {
658     return !(*this == RHS);
659   }
660 
661   bool operator<(const SmallVectorImpl &RHS) const {
662     return std::lexicographical_compare(this->begin(), this->end(),
663                                         RHS.begin(), RHS.end());
664   }
665 };
666 
667 template <typename T>
668 void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) {
669   if (this == &RHS) return;
670 
671   // We can only avoid copying elements if neither vector is small.
672   if (!this->isSmall() && !RHS.isSmall()) {
673     std::swap(this->BeginX, RHS.BeginX);
674     std::swap(this->Size, RHS.Size);
675     std::swap(this->Capacity, RHS.Capacity);
676     return;
677   }
678   if (RHS.size() > this->capacity())
679     this->grow(RHS.size());
680   if (this->size() > RHS.capacity())
681     RHS.grow(this->size());
682 
683   // Swap the shared elements.
684   size_t NumShared = this->size();
685   if (NumShared > RHS.size()) NumShared = RHS.size();
686   for (size_type i = 0; i != NumShared; ++i)
687     std::swap((*this)[i], RHS[i]);
688 
689   // Copy over the extra elts.
690   if (this->size() > RHS.size()) {
691     size_t EltDiff = this->size() - RHS.size();
692     this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end());
693     RHS.set_size(RHS.size() + EltDiff);
694     this->destroy_range(this->begin()+NumShared, this->end());
695     this->set_size(NumShared);
696   } else if (RHS.size() > this->size()) {
697     size_t EltDiff = RHS.size() - this->size();
698     this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end());
699     this->set_size(this->size() + EltDiff);
700     this->destroy_range(RHS.begin()+NumShared, RHS.end());
701     RHS.set_size(NumShared);
702   }
703 }
704 
705 template <typename T>
706 SmallVectorImpl<T> &SmallVectorImpl<T>::
707   operator=(const SmallVectorImpl<T> &RHS) {
708   // Avoid self-assignment.
709   if (this == &RHS) return *this;
710 
711   // If we already have sufficient space, assign the common elements, then
712   // destroy any excess.
713   size_t RHSSize = RHS.size();
714   size_t CurSize = this->size();
715   if (CurSize >= RHSSize) {
716     // Assign common elements.
717     iterator NewEnd;
718     if (RHSSize)
719       NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin());
720     else
721       NewEnd = this->begin();
722 
723     // Destroy excess elements.
724     this->destroy_range(NewEnd, this->end());
725 
726     // Trim.
727     this->set_size(RHSSize);
728     return *this;
729   }
730 
731   // If we have to grow to have enough elements, destroy the current elements.
732   // This allows us to avoid copying them during the grow.
733   // FIXME: don't do this if they're efficiently moveable.
734   if (this->capacity() < RHSSize) {
735     // Destroy current elements.
736     this->destroy_range(this->begin(), this->end());
737     this->set_size(0);
738     CurSize = 0;
739     this->grow(RHSSize);
740   } else if (CurSize) {
741     // Otherwise, use assignment for the already-constructed elements.
742     std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin());
743   }
744 
745   // Copy construct the new elements in place.
746   this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(),
747                            this->begin()+CurSize);
748 
749   // Set end.
750   this->set_size(RHSSize);
751   return *this;
752 }
753 
754 template <typename T>
755 SmallVectorImpl<T> &SmallVectorImpl<T>::operator=(SmallVectorImpl<T> &&RHS) {
756   // Avoid self-assignment.
757   if (this == &RHS) return *this;
758 
759   // If the RHS isn't small, clear this vector and then steal its buffer.
760   if (!RHS.isSmall()) {
761     this->destroy_range(this->begin(), this->end());
762     if (!this->isSmall()) free(this->begin());
763     this->BeginX = RHS.BeginX;
764     this->Size = RHS.Size;
765     this->Capacity = RHS.Capacity;
766     RHS.resetToSmall();
767     return *this;
768   }
769 
770   // If we already have sufficient space, assign the common elements, then
771   // destroy any excess.
772   size_t RHSSize = RHS.size();
773   size_t CurSize = this->size();
774   if (CurSize >= RHSSize) {
775     // Assign common elements.
776     iterator NewEnd = this->begin();
777     if (RHSSize)
778       NewEnd = std::move(RHS.begin(), RHS.end(), NewEnd);
779 
780     // Destroy excess elements and trim the bounds.
781     this->destroy_range(NewEnd, this->end());
782     this->set_size(RHSSize);
783 
784     // Clear the RHS.
785     RHS.clear();
786 
787     return *this;
788   }
789 
790   // If we have to grow to have enough elements, destroy the current elements.
791   // This allows us to avoid copying them during the grow.
792   // FIXME: this may not actually make any sense if we can efficiently move
793   // elements.
794   if (this->capacity() < RHSSize) {
795     // Destroy current elements.
796     this->destroy_range(this->begin(), this->end());
797     this->set_size(0);
798     CurSize = 0;
799     this->grow(RHSSize);
800   } else if (CurSize) {
801     // Otherwise, use assignment for the already-constructed elements.
802     std::move(RHS.begin(), RHS.begin()+CurSize, this->begin());
803   }
804 
805   // Move-construct the new elements in place.
806   this->uninitialized_move(RHS.begin()+CurSize, RHS.end(),
807                            this->begin()+CurSize);
808 
809   // Set end.
810   this->set_size(RHSSize);
811 
812   RHS.clear();
813   return *this;
814 }
815 
816 /// Storage for the SmallVector elements.  This is specialized for the N=0 case
817 /// to avoid allocating unnecessary storage.
818 template <typename T, unsigned N>
819 struct SmallVectorStorage {
820   AlignedCharArrayUnion<T> InlineElts[N];
821 };
822 
823 /// We need the storage to be properly aligned even for small-size of 0 so that
824 /// the pointer math in \a SmallVectorTemplateCommon::getFirstEl() is
825 /// well-defined.
826 template <typename T> struct alignas(alignof(T)) SmallVectorStorage<T, 0> {};
827 
828 /// This is a 'vector' (really, a variable-sized array), optimized
829 /// for the case when the array is small.  It contains some number of elements
830 /// in-place, which allows it to avoid heap allocation when the actual number of
831 /// elements is below that threshold.  This allows normal "small" cases to be
832 /// fast without losing generality for large inputs.
833 ///
834 /// Note that this does not attempt to be exception safe.
835 ///
836 template <typename T, unsigned N>
837 class SmallVector : public SmallVectorImpl<T>, SmallVectorStorage<T, N> {
838 public:
839   SmallVector() : SmallVectorImpl<T>(N) {}
840 
841   ~SmallVector() {
842     // Destroy the constructed elements in the vector.
843     this->destroy_range(this->begin(), this->end());
844   }
845 
846   explicit SmallVector(size_t Size, const T &Value = T())
847     : SmallVectorImpl<T>(N) {
848     this->assign(Size, Value);
849   }
850 
851   template <typename ItTy,
852             typename = typename std::enable_if<std::is_convertible<
853                 typename std::iterator_traits<ItTy>::iterator_category,
854                 std::input_iterator_tag>::value>::type>
855   SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(N) {
856     this->append(S, E);
857   }
858 
859   template <typename RangeTy>
860   explicit SmallVector(const iterator_range<RangeTy> &R)
861       : SmallVectorImpl<T>(N) {
862     this->append(R.begin(), R.end());
863   }
864 
865   SmallVector(std::initializer_list<T> IL) : SmallVectorImpl<T>(N) {
866     this->assign(IL);
867   }
868 
869   SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(N) {
870     if (!RHS.empty())
871       SmallVectorImpl<T>::operator=(RHS);
872   }
873 
874   const SmallVector &operator=(const SmallVector &RHS) {
875     SmallVectorImpl<T>::operator=(RHS);
876     return *this;
877   }
878 
879   SmallVector(SmallVector &&RHS) : SmallVectorImpl<T>(N) {
880     if (!RHS.empty())
881       SmallVectorImpl<T>::operator=(::std::move(RHS));
882   }
883 
884   SmallVector(SmallVectorImpl<T> &&RHS) : SmallVectorImpl<T>(N) {
885     if (!RHS.empty())
886       SmallVectorImpl<T>::operator=(::std::move(RHS));
887   }
888 
889   const SmallVector &operator=(SmallVector &&RHS) {
890     SmallVectorImpl<T>::operator=(::std::move(RHS));
891     return *this;
892   }
893 
894   const SmallVector &operator=(SmallVectorImpl<T> &&RHS) {
895     SmallVectorImpl<T>::operator=(::std::move(RHS));
896     return *this;
897   }
898 
899   const SmallVector &operator=(std::initializer_list<T> IL) {
900     this->assign(IL);
901     return *this;
902   }
903 };
904 
905 template <typename T, unsigned N>
906 inline size_t capacity_in_bytes(const SmallVector<T, N> &X) {
907   return X.capacity_in_bytes();
908 }
909 
910 /// Given a range of type R, iterate the entire range and return a
911 /// SmallVector with elements of the vector.  This is useful, for example,
912 /// when you want to iterate a range and then sort the results.
913 template <unsigned Size, typename R>
914 SmallVector<typename std::remove_const<typename std::remove_reference<
915                 decltype(*std::begin(std::declval<R &>()))>::type>::type,
916             Size>
917 to_vector(R &&Range) {
918   return {std::begin(Range), std::end(Range)};
919 }
920 
921 } // end namespace llvm
922 
923 namespace std {
924 
925   /// Implement std::swap in terms of SmallVector swap.
926   template<typename T>
927   inline void
928   swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) {
929     LHS.swap(RHS);
930   }
931 
932   /// Implement std::swap in terms of SmallVector swap.
933   template<typename T, unsigned N>
934   inline void
935   swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) {
936     LHS.swap(RHS);
937   }
938 
939 } // end namespace std
940 
941 #endif // LLVM_ADT_SMALLVECTOR_H
942