1 //===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the generic AliasAnalysis interface, which is used as the
10 // common interface used by all clients of alias analysis information, and
11 // implemented by all alias analysis implementations.  Mod/Ref information is
12 // also captured by this interface.
13 //
14 // Implementations of this interface must implement the various virtual methods,
15 // which automatically provides functionality for the entire suite of client
16 // APIs.
17 //
18 // This API identifies memory regions with the MemoryLocation class. The pointer
19 // component specifies the base memory address of the region. The Size specifies
20 // the maximum size (in address units) of the memory region, or
21 // MemoryLocation::UnknownSize if the size is not known. The TBAA tag
22 // identifies the "type" of the memory reference; see the
23 // TypeBasedAliasAnalysis class for details.
24 //
25 // Some non-obvious details include:
26 //  - Pointers that point to two completely different objects in memory never
27 //    alias, regardless of the value of the Size component.
28 //  - NoAlias doesn't imply inequal pointers. The most obvious example of this
29 //    is two pointers to constant memory. Even if they are equal, constant
30 //    memory is never stored to, so there will never be any dependencies.
31 //    In this and other situations, the pointers may be both NoAlias and
32 //    MustAlias at the same time. The current API can only return one result,
33 //    though this is rarely a problem in practice.
34 //
35 //===----------------------------------------------------------------------===//
36 
37 #ifndef LLVM_ANALYSIS_ALIASANALYSIS_H
38 #define LLVM_ANALYSIS_ALIASANALYSIS_H
39 
40 #include "llvm/ADT/DenseMap.h"
41 #include "llvm/ADT/Sequence.h"
42 #include "llvm/ADT/SmallVector.h"
43 #include "llvm/Analysis/MemoryLocation.h"
44 #include "llvm/IR/PassManager.h"
45 #include "llvm/Pass.h"
46 #include "llvm/Support/ModRef.h"
47 #include <cstdint>
48 #include <functional>
49 #include <memory>
50 #include <optional>
51 #include <vector>
52 
53 namespace llvm {
54 
55 class AnalysisUsage;
56 class AtomicCmpXchgInst;
57 class BasicBlock;
58 class CatchPadInst;
59 class CatchReturnInst;
60 class DominatorTree;
61 class FenceInst;
62 class Function;
63 class LoopInfo;
64 class PreservedAnalyses;
65 class TargetLibraryInfo;
66 class Value;
67 
68 /// The possible results of an alias query.
69 ///
70 /// These results are always computed between two MemoryLocation objects as
71 /// a query to some alias analysis.
72 ///
73 /// Note that these are unscoped enumerations because we would like to support
74 /// implicitly testing a result for the existence of any possible aliasing with
75 /// a conversion to bool, but an "enum class" doesn't support this. The
76 /// canonical names from the literature are suffixed and unique anyways, and so
77 /// they serve as global constants in LLVM for these results.
78 ///
79 /// See docs/AliasAnalysis.html for more information on the specific meanings
80 /// of these values.
81 class AliasResult {
82 private:
83   static const int OffsetBits = 23;
84   static const int AliasBits = 8;
85   static_assert(AliasBits + 1 + OffsetBits <= 32,
86                 "AliasResult size is intended to be 4 bytes!");
87 
88   unsigned int Alias : AliasBits;
89   unsigned int HasOffset : 1;
90   signed int Offset : OffsetBits;
91 
92 public:
93   enum Kind : uint8_t {
94     /// The two locations do not alias at all.
95     ///
96     /// This value is arranged to convert to false, while all other values
97     /// convert to true. This allows a boolean context to convert the result to
98     /// a binary flag indicating whether there is the possibility of aliasing.
99     NoAlias = 0,
100     /// The two locations may or may not alias. This is the least precise
101     /// result.
102     MayAlias,
103     /// The two locations alias, but only due to a partial overlap.
104     PartialAlias,
105     /// The two locations precisely alias each other.
106     MustAlias,
107   };
108   static_assert(MustAlias < (1 << AliasBits),
109                 "Not enough bit field size for the enum!");
110 
111   explicit AliasResult() = delete;
112   constexpr AliasResult(const Kind &Alias)
113       : Alias(Alias), HasOffset(false), Offset(0) {}
114 
115   operator Kind() const { return static_cast<Kind>(Alias); }
116 
117   bool operator==(const AliasResult &Other) const {
118     return Alias == Other.Alias && HasOffset == Other.HasOffset &&
119            Offset == Other.Offset;
120   }
121   bool operator!=(const AliasResult &Other) const { return !(*this == Other); }
122 
123   bool operator==(Kind K) const { return Alias == K; }
124   bool operator!=(Kind K) const { return !(*this == K); }
125 
126   constexpr bool hasOffset() const { return HasOffset; }
127   constexpr int32_t getOffset() const {
128     assert(HasOffset && "No offset!");
129     return Offset;
130   }
131   void setOffset(int32_t NewOffset) {
132     if (isInt<OffsetBits>(NewOffset)) {
133       HasOffset = true;
134       Offset = NewOffset;
135     }
136   }
137 
138   /// Helper for processing AliasResult for swapped memory location pairs.
139   void swap(bool DoSwap = true) {
140     if (DoSwap && hasOffset())
141       setOffset(-getOffset());
142   }
143 };
144 
145 static_assert(sizeof(AliasResult) == 4,
146               "AliasResult size is intended to be 4 bytes!");
147 
148 /// << operator for AliasResult.
149 raw_ostream &operator<<(raw_ostream &OS, AliasResult AR);
150 
151 /// Virtual base class for providers of capture information.
152 struct CaptureInfo {
153   virtual ~CaptureInfo() = 0;
154 
155   /// Check whether Object is not captured before instruction I. If OrAt is
156   /// true, captures by instruction I itself are also considered.
157   virtual bool isNotCapturedBefore(const Value *Object, const Instruction *I,
158                                    bool OrAt) = 0;
159 };
160 
161 /// Context-free CaptureInfo provider, which computes and caches whether an
162 /// object is captured in the function at all, but does not distinguish whether
163 /// it was captured before or after the context instruction.
164 class SimpleCaptureInfo final : public CaptureInfo {
165   SmallDenseMap<const Value *, bool, 8> IsCapturedCache;
166 
167 public:
168   bool isNotCapturedBefore(const Value *Object, const Instruction *I,
169                            bool OrAt) override;
170 };
171 
172 /// Context-sensitive CaptureInfo provider, which computes and caches the
173 /// earliest common dominator closure of all captures. It provides a good
174 /// approximation to a precise "captures before" analysis.
175 class EarliestEscapeInfo final : public CaptureInfo {
176   DominatorTree &DT;
177   const LoopInfo *LI;
178 
179   /// Map from identified local object to an instruction before which it does
180   /// not escape, or nullptr if it never escapes. The "earliest" instruction
181   /// may be a conservative approximation, e.g. the first instruction in the
182   /// function is always a legal choice.
183   DenseMap<const Value *, Instruction *> EarliestEscapes;
184 
185   /// Reverse map from instruction to the objects it is the earliest escape for.
186   /// This is used for cache invalidation purposes.
187   DenseMap<Instruction *, TinyPtrVector<const Value *>> Inst2Obj;
188 
189 public:
190   EarliestEscapeInfo(DominatorTree &DT, const LoopInfo *LI = nullptr)
191       : DT(DT), LI(LI) {}
192 
193   bool isNotCapturedBefore(const Value *Object, const Instruction *I,
194                            bool OrAt) override;
195 
196   void removeInstruction(Instruction *I);
197 };
198 
199 /// Cache key for BasicAA results. It only includes the pointer and size from
200 /// MemoryLocation, as BasicAA is AATags independent. Additionally, it includes
201 /// the value of MayBeCrossIteration, which may affect BasicAA results.
202 struct AACacheLoc {
203   using PtrTy = PointerIntPair<const Value *, 1, bool>;
204   PtrTy Ptr;
205   LocationSize Size;
206 
207   AACacheLoc(PtrTy Ptr, LocationSize Size) : Ptr(Ptr), Size(Size) {}
208   AACacheLoc(const Value *Ptr, LocationSize Size, bool MayBeCrossIteration)
209       : Ptr(Ptr, MayBeCrossIteration), Size(Size) {}
210 };
211 
212 template <> struct DenseMapInfo<AACacheLoc> {
213   static inline AACacheLoc getEmptyKey() {
214     return {DenseMapInfo<AACacheLoc::PtrTy>::getEmptyKey(),
215             DenseMapInfo<LocationSize>::getEmptyKey()};
216   }
217   static inline AACacheLoc getTombstoneKey() {
218     return {DenseMapInfo<AACacheLoc::PtrTy>::getTombstoneKey(),
219             DenseMapInfo<LocationSize>::getTombstoneKey()};
220   }
221   static unsigned getHashValue(const AACacheLoc &Val) {
222     return DenseMapInfo<AACacheLoc::PtrTy>::getHashValue(Val.Ptr) ^
223            DenseMapInfo<LocationSize>::getHashValue(Val.Size);
224   }
225   static bool isEqual(const AACacheLoc &LHS, const AACacheLoc &RHS) {
226     return LHS.Ptr == RHS.Ptr && LHS.Size == RHS.Size;
227   }
228 };
229 
230 class AAResults;
231 
232 /// This class stores info we want to provide to or retain within an alias
233 /// query. By default, the root query is stateless and starts with a freshly
234 /// constructed info object. Specific alias analyses can use this query info to
235 /// store per-query state that is important for recursive or nested queries to
236 /// avoid recomputing. To enable preserving this state across multiple queries
237 /// where safe (due to the IR not changing), use a `BatchAAResults` wrapper.
238 /// The information stored in an `AAQueryInfo` is currently limitted to the
239 /// caches used by BasicAA, but can further be extended to fit other AA needs.
240 class AAQueryInfo {
241 public:
242   using LocPair = std::pair<AACacheLoc, AACacheLoc>;
243   struct CacheEntry {
244     AliasResult Result;
245     /// Number of times a NoAlias assumption has been used.
246     /// 0 for assumptions that have not been used, -1 for definitive results.
247     int NumAssumptionUses;
248     /// Whether this is a definitive (non-assumption) result.
249     bool isDefinitive() const { return NumAssumptionUses < 0; }
250   };
251 
252   // Alias analysis result aggregration using which this query is performed.
253   // Can be used to perform recursive queries.
254   AAResults &AAR;
255 
256   using AliasCacheT = SmallDenseMap<LocPair, CacheEntry, 8>;
257   AliasCacheT AliasCache;
258 
259   CaptureInfo *CI;
260 
261   /// Query depth used to distinguish recursive queries.
262   unsigned Depth = 0;
263 
264   /// How many active NoAlias assumption uses there are.
265   int NumAssumptionUses = 0;
266 
267   /// Location pairs for which an assumption based result is currently stored.
268   /// Used to remove all potentially incorrect results from the cache if an
269   /// assumption is disproven.
270   SmallVector<AAQueryInfo::LocPair, 4> AssumptionBasedResults;
271 
272   /// Tracks whether the accesses may be on different cycle iterations.
273   ///
274   /// When interpret "Value" pointer equality as value equality we need to make
275   /// sure that the "Value" is not part of a cycle. Otherwise, two uses could
276   /// come from different "iterations" of a cycle and see different values for
277   /// the same "Value" pointer.
278   ///
279   /// The following example shows the problem:
280   ///   %p = phi(%alloca1, %addr2)
281   ///   %l = load %ptr
282   ///   %addr1 = gep, %alloca2, 0, %l
283   ///   %addr2 = gep  %alloca2, 0, (%l + 1)
284   ///      alias(%p, %addr1) -> MayAlias !
285   ///   store %l, ...
286   bool MayBeCrossIteration = false;
287 
288   AAQueryInfo(AAResults &AAR, CaptureInfo *CI) : AAR(AAR), CI(CI) {}
289 };
290 
291 /// AAQueryInfo that uses SimpleCaptureInfo.
292 class SimpleAAQueryInfo : public AAQueryInfo {
293   SimpleCaptureInfo CI;
294 
295 public:
296   SimpleAAQueryInfo(AAResults &AAR) : AAQueryInfo(AAR, &CI) {}
297 };
298 
299 class BatchAAResults;
300 
301 class AAResults {
302 public:
303   // Make these results default constructable and movable. We have to spell
304   // these out because MSVC won't synthesize them.
305   AAResults(const TargetLibraryInfo &TLI) : TLI(TLI) {}
306   AAResults(AAResults &&Arg);
307   ~AAResults();
308 
309   /// Register a specific AA result.
310   template <typename AAResultT> void addAAResult(AAResultT &AAResult) {
311     // FIXME: We should use a much lighter weight system than the usual
312     // polymorphic pattern because we don't own AAResult. It should
313     // ideally involve two pointers and no separate allocation.
314     AAs.emplace_back(new Model<AAResultT>(AAResult, *this));
315   }
316 
317   /// Register a function analysis ID that the results aggregation depends on.
318   ///
319   /// This is used in the new pass manager to implement the invalidation logic
320   /// where we must invalidate the results aggregation if any of our component
321   /// analyses become invalid.
322   void addAADependencyID(AnalysisKey *ID) { AADeps.push_back(ID); }
323 
324   /// Handle invalidation events in the new pass manager.
325   ///
326   /// The aggregation is invalidated if any of the underlying analyses is
327   /// invalidated.
328   bool invalidate(Function &F, const PreservedAnalyses &PA,
329                   FunctionAnalysisManager::Invalidator &Inv);
330 
331   //===--------------------------------------------------------------------===//
332   /// \name Alias Queries
333   /// @{
334 
335   /// The main low level interface to the alias analysis implementation.
336   /// Returns an AliasResult indicating whether the two pointers are aliased to
337   /// each other. This is the interface that must be implemented by specific
338   /// alias analysis implementations.
339   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB);
340 
341   /// A convenience wrapper around the primary \c alias interface.
342   AliasResult alias(const Value *V1, LocationSize V1Size, const Value *V2,
343                     LocationSize V2Size) {
344     return alias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
345   }
346 
347   /// A convenience wrapper around the primary \c alias interface.
348   AliasResult alias(const Value *V1, const Value *V2) {
349     return alias(MemoryLocation::getBeforeOrAfter(V1),
350                  MemoryLocation::getBeforeOrAfter(V2));
351   }
352 
353   /// A trivial helper function to check to see if the specified pointers are
354   /// no-alias.
355   bool isNoAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
356     return alias(LocA, LocB) == AliasResult::NoAlias;
357   }
358 
359   /// A convenience wrapper around the \c isNoAlias helper interface.
360   bool isNoAlias(const Value *V1, LocationSize V1Size, const Value *V2,
361                  LocationSize V2Size) {
362     return isNoAlias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
363   }
364 
365   /// A convenience wrapper around the \c isNoAlias helper interface.
366   bool isNoAlias(const Value *V1, const Value *V2) {
367     return isNoAlias(MemoryLocation::getBeforeOrAfter(V1),
368                      MemoryLocation::getBeforeOrAfter(V2));
369   }
370 
371   /// A trivial helper function to check to see if the specified pointers are
372   /// must-alias.
373   bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
374     return alias(LocA, LocB) == AliasResult::MustAlias;
375   }
376 
377   /// A convenience wrapper around the \c isMustAlias helper interface.
378   bool isMustAlias(const Value *V1, const Value *V2) {
379     return alias(V1, LocationSize::precise(1), V2, LocationSize::precise(1)) ==
380            AliasResult::MustAlias;
381   }
382 
383   /// Checks whether the given location points to constant memory, or if
384   /// \p OrLocal is true whether it points to a local alloca.
385   bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal = false) {
386     return isNoModRef(getModRefInfoMask(Loc, OrLocal));
387   }
388 
389   /// A convenience wrapper around the primary \c pointsToConstantMemory
390   /// interface.
391   bool pointsToConstantMemory(const Value *P, bool OrLocal = false) {
392     return pointsToConstantMemory(MemoryLocation::getBeforeOrAfter(P), OrLocal);
393   }
394 
395   /// @}
396   //===--------------------------------------------------------------------===//
397   /// \name Simple mod/ref information
398   /// @{
399 
400   /// Returns a bitmask that should be unconditionally applied to the ModRef
401   /// info of a memory location. This allows us to eliminate Mod and/or Ref
402   /// from the ModRef info based on the knowledge that the memory location
403   /// points to constant and/or locally-invariant memory.
404   ///
405   /// If IgnoreLocals is true, then this method returns NoModRef for memory
406   /// that points to a local alloca.
407   ModRefInfo getModRefInfoMask(const MemoryLocation &Loc,
408                                bool IgnoreLocals = false);
409 
410   /// A convenience wrapper around the primary \c getModRefInfoMask
411   /// interface.
412   ModRefInfo getModRefInfoMask(const Value *P, bool IgnoreLocals = false) {
413     return getModRefInfoMask(MemoryLocation::getBeforeOrAfter(P), IgnoreLocals);
414   }
415 
416   /// Get the ModRef info associated with a pointer argument of a call. The
417   /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
418   /// that these bits do not necessarily account for the overall behavior of
419   /// the function, but rather only provide additional per-argument
420   /// information.
421   ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx);
422 
423   /// Return the behavior of the given call site.
424   MemoryEffects getMemoryEffects(const CallBase *Call);
425 
426   /// Return the behavior when calling the given function.
427   MemoryEffects getMemoryEffects(const Function *F);
428 
429   /// Checks if the specified call is known to never read or write memory.
430   ///
431   /// Note that if the call only reads from known-constant memory, it is also
432   /// legal to return true. Also, calls that unwind the stack are legal for
433   /// this predicate.
434   ///
435   /// Many optimizations (such as CSE and LICM) can be performed on such calls
436   /// without worrying about aliasing properties, and many calls have this
437   /// property (e.g. calls to 'sin' and 'cos').
438   ///
439   /// This property corresponds to the GCC 'const' attribute.
440   bool doesNotAccessMemory(const CallBase *Call) {
441     return getMemoryEffects(Call).doesNotAccessMemory();
442   }
443 
444   /// Checks if the specified function is known to never read or write memory.
445   ///
446   /// Note that if the function only reads from known-constant memory, it is
447   /// also legal to return true. Also, function that unwind the stack are legal
448   /// for this predicate.
449   ///
450   /// Many optimizations (such as CSE and LICM) can be performed on such calls
451   /// to such functions without worrying about aliasing properties, and many
452   /// functions have this property (e.g. 'sin' and 'cos').
453   ///
454   /// This property corresponds to the GCC 'const' attribute.
455   bool doesNotAccessMemory(const Function *F) {
456     return getMemoryEffects(F).doesNotAccessMemory();
457   }
458 
459   /// Checks if the specified call is known to only read from non-volatile
460   /// memory (or not access memory at all).
461   ///
462   /// Calls that unwind the stack are legal for this predicate.
463   ///
464   /// This property allows many common optimizations to be performed in the
465   /// absence of interfering store instructions, such as CSE of strlen calls.
466   ///
467   /// This property corresponds to the GCC 'pure' attribute.
468   bool onlyReadsMemory(const CallBase *Call) {
469     return getMemoryEffects(Call).onlyReadsMemory();
470   }
471 
472   /// Checks if the specified function is known to only read from non-volatile
473   /// memory (or not access memory at all).
474   ///
475   /// Functions that unwind the stack are legal for this predicate.
476   ///
477   /// This property allows many common optimizations to be performed in the
478   /// absence of interfering store instructions, such as CSE of strlen calls.
479   ///
480   /// This property corresponds to the GCC 'pure' attribute.
481   bool onlyReadsMemory(const Function *F) {
482     return getMemoryEffects(F).onlyReadsMemory();
483   }
484 
485   /// Check whether or not an instruction may read or write the optionally
486   /// specified memory location.
487   ///
488   ///
489   /// An instruction that doesn't read or write memory may be trivially LICM'd
490   /// for example.
491   ///
492   /// For function calls, this delegates to the alias-analysis specific
493   /// call-site mod-ref behavior queries. Otherwise it delegates to the specific
494   /// helpers above.
495   ModRefInfo getModRefInfo(const Instruction *I,
496                            const std::optional<MemoryLocation> &OptLoc) {
497     SimpleAAQueryInfo AAQIP(*this);
498     return getModRefInfo(I, OptLoc, AAQIP);
499   }
500 
501   /// A convenience wrapper for constructing the memory location.
502   ModRefInfo getModRefInfo(const Instruction *I, const Value *P,
503                            LocationSize Size) {
504     return getModRefInfo(I, MemoryLocation(P, Size));
505   }
506 
507   /// Return information about whether a call and an instruction may refer to
508   /// the same memory locations.
509   ModRefInfo getModRefInfo(const Instruction *I, const CallBase *Call);
510 
511   /// Return information about whether a particular call site modifies
512   /// or reads the specified memory location \p MemLoc before instruction \p I
513   /// in a BasicBlock.
514   ModRefInfo callCapturesBefore(const Instruction *I,
515                                 const MemoryLocation &MemLoc,
516                                 DominatorTree *DT) {
517     SimpleAAQueryInfo AAQIP(*this);
518     return callCapturesBefore(I, MemLoc, DT, AAQIP);
519   }
520 
521   /// A convenience wrapper to synthesize a memory location.
522   ModRefInfo callCapturesBefore(const Instruction *I, const Value *P,
523                                 LocationSize Size, DominatorTree *DT) {
524     return callCapturesBefore(I, MemoryLocation(P, Size), DT);
525   }
526 
527   /// @}
528   //===--------------------------------------------------------------------===//
529   /// \name Higher level methods for querying mod/ref information.
530   /// @{
531 
532   /// Check if it is possible for execution of the specified basic block to
533   /// modify the location Loc.
534   bool canBasicBlockModify(const BasicBlock &BB, const MemoryLocation &Loc);
535 
536   /// A convenience wrapper synthesizing a memory location.
537   bool canBasicBlockModify(const BasicBlock &BB, const Value *P,
538                            LocationSize Size) {
539     return canBasicBlockModify(BB, MemoryLocation(P, Size));
540   }
541 
542   /// Check if it is possible for the execution of the specified instructions
543   /// to mod\ref (according to the mode) the location Loc.
544   ///
545   /// The instructions to consider are all of the instructions in the range of
546   /// [I1,I2] INCLUSIVE. I1 and I2 must be in the same basic block.
547   bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
548                                  const MemoryLocation &Loc,
549                                  const ModRefInfo Mode);
550 
551   /// A convenience wrapper synthesizing a memory location.
552   bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
553                                  const Value *Ptr, LocationSize Size,
554                                  const ModRefInfo Mode) {
555     return canInstructionRangeModRef(I1, I2, MemoryLocation(Ptr, Size), Mode);
556   }
557 
558   // CtxI can be nullptr, in which case the query is whether or not the aliasing
559   // relationship holds through the entire function.
560   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
561                     AAQueryInfo &AAQI, const Instruction *CtxI = nullptr);
562 
563   bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
564                               bool OrLocal = false);
565   ModRefInfo getModRefInfoMask(const MemoryLocation &Loc, AAQueryInfo &AAQI,
566                                bool IgnoreLocals = false);
567   ModRefInfo getModRefInfo(const Instruction *I, const CallBase *Call2,
568                            AAQueryInfo &AAQIP);
569   ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
570                            AAQueryInfo &AAQI);
571   ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
572                            AAQueryInfo &AAQI);
573   ModRefInfo getModRefInfo(const VAArgInst *V, const MemoryLocation &Loc,
574                            AAQueryInfo &AAQI);
575   ModRefInfo getModRefInfo(const LoadInst *L, const MemoryLocation &Loc,
576                            AAQueryInfo &AAQI);
577   ModRefInfo getModRefInfo(const StoreInst *S, const MemoryLocation &Loc,
578                            AAQueryInfo &AAQI);
579   ModRefInfo getModRefInfo(const FenceInst *S, const MemoryLocation &Loc,
580                            AAQueryInfo &AAQI);
581   ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX,
582                            const MemoryLocation &Loc, AAQueryInfo &AAQI);
583   ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const MemoryLocation &Loc,
584                            AAQueryInfo &AAQI);
585   ModRefInfo getModRefInfo(const CatchPadInst *I, const MemoryLocation &Loc,
586                            AAQueryInfo &AAQI);
587   ModRefInfo getModRefInfo(const CatchReturnInst *I, const MemoryLocation &Loc,
588                            AAQueryInfo &AAQI);
589   ModRefInfo getModRefInfo(const Instruction *I,
590                            const std::optional<MemoryLocation> &OptLoc,
591                            AAQueryInfo &AAQIP);
592   ModRefInfo callCapturesBefore(const Instruction *I,
593                                 const MemoryLocation &MemLoc, DominatorTree *DT,
594                                 AAQueryInfo &AAQIP);
595   MemoryEffects getMemoryEffects(const CallBase *Call, AAQueryInfo &AAQI);
596 
597 private:
598   class Concept;
599 
600   template <typename T> class Model;
601 
602   friend class AAResultBase;
603 
604   const TargetLibraryInfo &TLI;
605 
606   std::vector<std::unique_ptr<Concept>> AAs;
607 
608   std::vector<AnalysisKey *> AADeps;
609 
610   friend class BatchAAResults;
611 };
612 
613 /// This class is a wrapper over an AAResults, and it is intended to be used
614 /// only when there are no IR changes inbetween queries. BatchAAResults is
615 /// reusing the same `AAQueryInfo` to preserve the state across queries,
616 /// esentially making AA work in "batch mode". The internal state cannot be
617 /// cleared, so to go "out-of-batch-mode", the user must either use AAResults,
618 /// or create a new BatchAAResults.
619 class BatchAAResults {
620   AAResults &AA;
621   AAQueryInfo AAQI;
622   SimpleCaptureInfo SimpleCI;
623 
624 public:
625   BatchAAResults(AAResults &AAR) : AA(AAR), AAQI(AAR, &SimpleCI) {}
626   BatchAAResults(AAResults &AAR, CaptureInfo *CI) : AA(AAR), AAQI(AAR, CI) {}
627 
628   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
629     return AA.alias(LocA, LocB, AAQI);
630   }
631   bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal = false) {
632     return AA.pointsToConstantMemory(Loc, AAQI, OrLocal);
633   }
634   ModRefInfo getModRefInfoMask(const MemoryLocation &Loc,
635                                bool IgnoreLocals = false) {
636     return AA.getModRefInfoMask(Loc, AAQI, IgnoreLocals);
637   }
638   ModRefInfo getModRefInfo(const Instruction *I,
639                            const std::optional<MemoryLocation> &OptLoc) {
640     return AA.getModRefInfo(I, OptLoc, AAQI);
641   }
642   ModRefInfo getModRefInfo(const Instruction *I, const CallBase *Call2) {
643     return AA.getModRefInfo(I, Call2, AAQI);
644   }
645   ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
646     return AA.getArgModRefInfo(Call, ArgIdx);
647   }
648   MemoryEffects getMemoryEffects(const CallBase *Call) {
649     return AA.getMemoryEffects(Call, AAQI);
650   }
651   bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
652     return alias(LocA, LocB) == AliasResult::MustAlias;
653   }
654   bool isMustAlias(const Value *V1, const Value *V2) {
655     return alias(MemoryLocation(V1, LocationSize::precise(1)),
656                  MemoryLocation(V2, LocationSize::precise(1))) ==
657            AliasResult::MustAlias;
658   }
659   ModRefInfo callCapturesBefore(const Instruction *I,
660                                 const MemoryLocation &MemLoc,
661                                 DominatorTree *DT) {
662     return AA.callCapturesBefore(I, MemLoc, DT, AAQI);
663   }
664 
665   /// Assume that values may come from different cycle iterations.
666   void enableCrossIterationMode() {
667     AAQI.MayBeCrossIteration = true;
668   }
669 };
670 
671 /// Temporary typedef for legacy code that uses a generic \c AliasAnalysis
672 /// pointer or reference.
673 using AliasAnalysis = AAResults;
674 
675 /// A private abstract base class describing the concept of an individual alias
676 /// analysis implementation.
677 ///
678 /// This interface is implemented by any \c Model instantiation. It is also the
679 /// interface which a type used to instantiate the model must provide.
680 ///
681 /// All of these methods model methods by the same name in the \c
682 /// AAResults class. Only differences and specifics to how the
683 /// implementations are called are documented here.
684 class AAResults::Concept {
685 public:
686   virtual ~Concept() = 0;
687 
688   //===--------------------------------------------------------------------===//
689   /// \name Alias Queries
690   /// @{
691 
692   /// The main low level interface to the alias analysis implementation.
693   /// Returns an AliasResult indicating whether the two pointers are aliased to
694   /// each other. This is the interface that must be implemented by specific
695   /// alias analysis implementations.
696   virtual AliasResult alias(const MemoryLocation &LocA,
697                             const MemoryLocation &LocB, AAQueryInfo &AAQI,
698                             const Instruction *CtxI) = 0;
699 
700   /// @}
701   //===--------------------------------------------------------------------===//
702   /// \name Simple mod/ref information
703   /// @{
704 
705   /// Returns a bitmask that should be unconditionally applied to the ModRef
706   /// info of a memory location. This allows us to eliminate Mod and/or Ref from
707   /// the ModRef info based on the knowledge that the memory location points to
708   /// constant and/or locally-invariant memory.
709   virtual ModRefInfo getModRefInfoMask(const MemoryLocation &Loc,
710                                        AAQueryInfo &AAQI,
711                                        bool IgnoreLocals) = 0;
712 
713   /// Get the ModRef info associated with a pointer argument of a callsite. The
714   /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
715   /// that these bits do not necessarily account for the overall behavior of
716   /// the function, but rather only provide additional per-argument
717   /// information.
718   virtual ModRefInfo getArgModRefInfo(const CallBase *Call,
719                                       unsigned ArgIdx) = 0;
720 
721   /// Return the behavior of the given call site.
722   virtual MemoryEffects getMemoryEffects(const CallBase *Call,
723                                          AAQueryInfo &AAQI) = 0;
724 
725   /// Return the behavior when calling the given function.
726   virtual MemoryEffects getMemoryEffects(const Function *F) = 0;
727 
728   /// getModRefInfo (for call sites) - Return information about whether
729   /// a particular call site modifies or reads the specified memory location.
730   virtual ModRefInfo getModRefInfo(const CallBase *Call,
731                                    const MemoryLocation &Loc,
732                                    AAQueryInfo &AAQI) = 0;
733 
734   /// Return information about whether two call sites may refer to the same set
735   /// of memory locations. See the AA documentation for details:
736   ///   http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
737   virtual ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
738                                    AAQueryInfo &AAQI) = 0;
739 
740   /// @}
741 };
742 
743 /// A private class template which derives from \c Concept and wraps some other
744 /// type.
745 ///
746 /// This models the concept by directly forwarding each interface point to the
747 /// wrapped type which must implement a compatible interface. This provides
748 /// a type erased binding.
749 template <typename AAResultT> class AAResults::Model final : public Concept {
750   AAResultT &Result;
751 
752 public:
753   explicit Model(AAResultT &Result, AAResults &AAR) : Result(Result) {}
754   ~Model() override = default;
755 
756   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
757                     AAQueryInfo &AAQI, const Instruction *CtxI) override {
758     return Result.alias(LocA, LocB, AAQI, CtxI);
759   }
760 
761   ModRefInfo getModRefInfoMask(const MemoryLocation &Loc, AAQueryInfo &AAQI,
762                                bool IgnoreLocals) override {
763     return Result.getModRefInfoMask(Loc, AAQI, IgnoreLocals);
764   }
765 
766   ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) override {
767     return Result.getArgModRefInfo(Call, ArgIdx);
768   }
769 
770   MemoryEffects getMemoryEffects(const CallBase *Call,
771                                  AAQueryInfo &AAQI) override {
772     return Result.getMemoryEffects(Call, AAQI);
773   }
774 
775   MemoryEffects getMemoryEffects(const Function *F) override {
776     return Result.getMemoryEffects(F);
777   }
778 
779   ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
780                            AAQueryInfo &AAQI) override {
781     return Result.getModRefInfo(Call, Loc, AAQI);
782   }
783 
784   ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
785                            AAQueryInfo &AAQI) override {
786     return Result.getModRefInfo(Call1, Call2, AAQI);
787   }
788 };
789 
790 /// A base class to help implement the function alias analysis results concept.
791 ///
792 /// Because of the nature of many alias analysis implementations, they often
793 /// only implement a subset of the interface. This base class will attempt to
794 /// implement the remaining portions of the interface in terms of simpler forms
795 /// of the interface where possible, and otherwise provide conservatively
796 /// correct fallback implementations.
797 ///
798 /// Implementors of an alias analysis should derive from this class, and then
799 /// override specific methods that they wish to customize. There is no need to
800 /// use virtual anywhere.
801 class AAResultBase {
802 protected:
803   explicit AAResultBase() = default;
804 
805   // Provide all the copy and move constructors so that derived types aren't
806   // constrained.
807   AAResultBase(const AAResultBase &Arg) {}
808   AAResultBase(AAResultBase &&Arg) {}
809 
810 public:
811   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
812                     AAQueryInfo &AAQI, const Instruction *I) {
813     return AliasResult::MayAlias;
814   }
815 
816   ModRefInfo getModRefInfoMask(const MemoryLocation &Loc, AAQueryInfo &AAQI,
817                                bool IgnoreLocals) {
818     return ModRefInfo::ModRef;
819   }
820 
821   ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
822     return ModRefInfo::ModRef;
823   }
824 
825   MemoryEffects getMemoryEffects(const CallBase *Call, AAQueryInfo &AAQI) {
826     return MemoryEffects::unknown();
827   }
828 
829   MemoryEffects getMemoryEffects(const Function *F) {
830     return MemoryEffects::unknown();
831   }
832 
833   ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
834                            AAQueryInfo &AAQI) {
835     return ModRefInfo::ModRef;
836   }
837 
838   ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
839                            AAQueryInfo &AAQI) {
840     return ModRefInfo::ModRef;
841   }
842 };
843 
844 /// Return true if this pointer is returned by a noalias function.
845 bool isNoAliasCall(const Value *V);
846 
847 /// Return true if this pointer refers to a distinct and identifiable object.
848 /// This returns true for:
849 ///    Global Variables and Functions (but not Global Aliases)
850 ///    Allocas
851 ///    ByVal and NoAlias Arguments
852 ///    NoAlias returns (e.g. calls to malloc)
853 ///
854 bool isIdentifiedObject(const Value *V);
855 
856 /// Return true if V is umabigously identified at the function-level.
857 /// Different IdentifiedFunctionLocals can't alias.
858 /// Further, an IdentifiedFunctionLocal can not alias with any function
859 /// arguments other than itself, which is not necessarily true for
860 /// IdentifiedObjects.
861 bool isIdentifiedFunctionLocal(const Value *V);
862 
863 /// Returns true if the pointer is one which would have been considered an
864 /// escape by isNonEscapingLocalObject.
865 bool isEscapeSource(const Value *V);
866 
867 /// Return true if Object memory is not visible after an unwind, in the sense
868 /// that program semantics cannot depend on Object containing any particular
869 /// value on unwind. If the RequiresNoCaptureBeforeUnwind out parameter is set
870 /// to true, then the memory is only not visible if the object has not been
871 /// captured prior to the unwind. Otherwise it is not visible even if captured.
872 bool isNotVisibleOnUnwind(const Value *Object,
873                           bool &RequiresNoCaptureBeforeUnwind);
874 
875 /// Return true if the Object is writable, in the sense that any location based
876 /// on this pointer that can be loaded can also be stored to without trapping.
877 /// Additionally, at the point Object is declared, stores can be introduced
878 /// without data races. At later points, this is only the case if the pointer
879 /// can not escape to a different thread.
880 ///
881 /// If ExplicitlyDereferenceableOnly is set to true, this property only holds
882 /// for the part of Object that is explicitly marked as dereferenceable, e.g.
883 /// using the dereferenceable(N) attribute. It does not necessarily hold for
884 /// parts that are only known to be dereferenceable due to the presence of
885 /// loads.
886 bool isWritableObject(const Value *Object, bool &ExplicitlyDereferenceableOnly);
887 
888 /// A manager for alias analyses.
889 ///
890 /// This class can have analyses registered with it and when run, it will run
891 /// all of them and aggregate their results into single AA results interface
892 /// that dispatches across all of the alias analysis results available.
893 ///
894 /// Note that the order in which analyses are registered is very significant.
895 /// That is the order in which the results will be aggregated and queried.
896 ///
897 /// This manager effectively wraps the AnalysisManager for registering alias
898 /// analyses. When you register your alias analysis with this manager, it will
899 /// ensure the analysis itself is registered with its AnalysisManager.
900 ///
901 /// The result of this analysis is only invalidated if one of the particular
902 /// aggregated AA results end up being invalidated. This removes the need to
903 /// explicitly preserve the results of `AAManager`. Note that analyses should no
904 /// longer be registered once the `AAManager` is run.
905 class AAManager : public AnalysisInfoMixin<AAManager> {
906 public:
907   using Result = AAResults;
908 
909   /// Register a specific AA result.
910   template <typename AnalysisT> void registerFunctionAnalysis() {
911     ResultGetters.push_back(&getFunctionAAResultImpl<AnalysisT>);
912   }
913 
914   /// Register a specific AA result.
915   template <typename AnalysisT> void registerModuleAnalysis() {
916     ResultGetters.push_back(&getModuleAAResultImpl<AnalysisT>);
917   }
918 
919   Result run(Function &F, FunctionAnalysisManager &AM);
920 
921 private:
922   friend AnalysisInfoMixin<AAManager>;
923 
924   static AnalysisKey Key;
925 
926   SmallVector<void (*)(Function &F, FunctionAnalysisManager &AM,
927                        AAResults &AAResults),
928               4> ResultGetters;
929 
930   template <typename AnalysisT>
931   static void getFunctionAAResultImpl(Function &F,
932                                       FunctionAnalysisManager &AM,
933                                       AAResults &AAResults) {
934     AAResults.addAAResult(AM.template getResult<AnalysisT>(F));
935     AAResults.addAADependencyID(AnalysisT::ID());
936   }
937 
938   template <typename AnalysisT>
939   static void getModuleAAResultImpl(Function &F, FunctionAnalysisManager &AM,
940                                     AAResults &AAResults) {
941     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
942     if (auto *R =
943             MAMProxy.template getCachedResult<AnalysisT>(*F.getParent())) {
944       AAResults.addAAResult(*R);
945       MAMProxy
946           .template registerOuterAnalysisInvalidation<AnalysisT, AAManager>();
947     }
948   }
949 };
950 
951 /// A wrapper pass to provide the legacy pass manager access to a suitably
952 /// prepared AAResults object.
953 class AAResultsWrapperPass : public FunctionPass {
954   std::unique_ptr<AAResults> AAR;
955 
956 public:
957   static char ID;
958 
959   AAResultsWrapperPass();
960 
961   AAResults &getAAResults() { return *AAR; }
962   const AAResults &getAAResults() const { return *AAR; }
963 
964   bool runOnFunction(Function &F) override;
965 
966   void getAnalysisUsage(AnalysisUsage &AU) const override;
967 };
968 
969 /// A wrapper pass for external alias analyses. This just squirrels away the
970 /// callback used to run any analyses and register their results.
971 struct ExternalAAWrapperPass : ImmutablePass {
972   using CallbackT = std::function<void(Pass &, Function &, AAResults &)>;
973 
974   CallbackT CB;
975 
976   static char ID;
977 
978   ExternalAAWrapperPass();
979 
980   explicit ExternalAAWrapperPass(CallbackT CB);
981 
982   void getAnalysisUsage(AnalysisUsage &AU) const override {
983     AU.setPreservesAll();
984   }
985 };
986 
987 /// A wrapper pass around a callback which can be used to populate the
988 /// AAResults in the AAResultsWrapperPass from an external AA.
989 ///
990 /// The callback provided here will be used each time we prepare an AAResults
991 /// object, and will receive a reference to the function wrapper pass, the
992 /// function, and the AAResults object to populate. This should be used when
993 /// setting up a custom pass pipeline to inject a hook into the AA results.
994 ImmutablePass *createExternalAAWrapperPass(
995     std::function<void(Pass &, Function &, AAResults &)> Callback);
996 
997 } // end namespace llvm
998 
999 #endif // LLVM_ANALYSIS_ALIASANALYSIS_H
1000