1 //===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the generic AliasAnalysis interface, which is used as the
10 // common interface used by all clients of alias analysis information, and
11 // implemented by all alias analysis implementations.  Mod/Ref information is
12 // also captured by this interface.
13 //
14 // Implementations of this interface must implement the various virtual methods,
15 // which automatically provides functionality for the entire suite of client
16 // APIs.
17 //
18 // This API identifies memory regions with the MemoryLocation class. The pointer
19 // component specifies the base memory address of the region. The Size specifies
20 // the maximum size (in address units) of the memory region, or
21 // MemoryLocation::UnknownSize if the size is not known. The TBAA tag
22 // identifies the "type" of the memory reference; see the
23 // TypeBasedAliasAnalysis class for details.
24 //
25 // Some non-obvious details include:
26 //  - Pointers that point to two completely different objects in memory never
27 //    alias, regardless of the value of the Size component.
28 //  - NoAlias doesn't imply inequal pointers. The most obvious example of this
29 //    is two pointers to constant memory. Even if they are equal, constant
30 //    memory is never stored to, so there will never be any dependencies.
31 //    In this and other situations, the pointers may be both NoAlias and
32 //    MustAlias at the same time. The current API can only return one result,
33 //    though this is rarely a problem in practice.
34 //
35 //===----------------------------------------------------------------------===//
36 
37 #ifndef LLVM_ANALYSIS_ALIASANALYSIS_H
38 #define LLVM_ANALYSIS_ALIASANALYSIS_H
39 
40 #include "llvm/ADT/DenseMap.h"
41 #include "llvm/ADT/None.h"
42 #include "llvm/ADT/Optional.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/Analysis/MemoryLocation.h"
45 #include "llvm/IR/PassManager.h"
46 #include "llvm/Pass.h"
47 #include <cstdint>
48 #include <functional>
49 #include <memory>
50 #include <vector>
51 
52 namespace llvm {
53 
54 class AnalysisUsage;
55 class AtomicCmpXchgInst;
56 class BasicAAResult;
57 class BasicBlock;
58 class CatchPadInst;
59 class CatchReturnInst;
60 class DominatorTree;
61 class FenceInst;
62 class Function;
63 class LoopInfo;
64 class PreservedAnalyses;
65 class TargetLibraryInfo;
66 class Value;
67 
68 /// The possible results of an alias query.
69 ///
70 /// These results are always computed between two MemoryLocation objects as
71 /// a query to some alias analysis.
72 ///
73 /// Note that these are unscoped enumerations because we would like to support
74 /// implicitly testing a result for the existence of any possible aliasing with
75 /// a conversion to bool, but an "enum class" doesn't support this. The
76 /// canonical names from the literature are suffixed and unique anyways, and so
77 /// they serve as global constants in LLVM for these results.
78 ///
79 /// See docs/AliasAnalysis.html for more information on the specific meanings
80 /// of these values.
81 class AliasResult {
82 private:
83   static const int OffsetBits = 23;
84   static const int AliasBits = 8;
85   static_assert(AliasBits + 1 + OffsetBits <= 32,
86                 "AliasResult size is intended to be 4 bytes!");
87 
88   unsigned int Alias : AliasBits;
89   unsigned int HasOffset : 1;
90   signed int Offset : OffsetBits;
91 
92 public:
93   enum Kind : uint8_t {
94     /// The two locations do not alias at all.
95     ///
96     /// This value is arranged to convert to false, while all other values
97     /// convert to true. This allows a boolean context to convert the result to
98     /// a binary flag indicating whether there is the possibility of aliasing.
99     NoAlias = 0,
100     /// The two locations may or may not alias. This is the least precise
101     /// result.
102     MayAlias,
103     /// The two locations alias, but only due to a partial overlap.
104     PartialAlias,
105     /// The two locations precisely alias each other.
106     MustAlias,
107   };
108   static_assert(MustAlias < (1 << AliasBits),
109                 "Not enough bit field size for the enum!");
110 
111   explicit AliasResult() = delete;
112   constexpr AliasResult(const Kind &Alias)
113       : Alias(Alias), HasOffset(false), Offset(0) {}
114 
115   operator Kind() const { return static_cast<Kind>(Alias); }
116 
117   constexpr bool hasOffset() const { return HasOffset; }
118   constexpr int32_t getOffset() const {
119     assert(HasOffset && "No offset!");
120     return Offset;
121   }
122   void setOffset(int32_t NewOffset) {
123     if (isInt<OffsetBits>(NewOffset)) {
124       HasOffset = true;
125       Offset = NewOffset;
126     }
127   }
128 
129   /// Helper for processing AliasResult for swapped memory location pairs.
130   void swap(bool DoSwap = true) {
131     if (DoSwap && hasOffset())
132       setOffset(-getOffset());
133   }
134 };
135 
136 static_assert(sizeof(AliasResult) == 4,
137               "AliasResult size is intended to be 4 bytes!");
138 
139 /// << operator for AliasResult.
140 raw_ostream &operator<<(raw_ostream &OS, AliasResult AR);
141 
142 /// Flags indicating whether a memory access modifies or references memory.
143 ///
144 /// This is no access at all, a modification, a reference, or both
145 /// a modification and a reference. These are specifically structured such that
146 /// they form a three bit matrix and bit-tests for 'mod' or 'ref' or 'must'
147 /// work with any of the possible values.
148 enum class ModRefInfo : uint8_t {
149   /// Must is provided for completeness, but no routines will return only
150   /// Must today. See definition of Must below.
151   Must = 0,
152   /// The access may reference the value stored in memory,
153   /// a mustAlias relation was found, and no mayAlias or partialAlias found.
154   MustRef = 1,
155   /// The access may modify the value stored in memory,
156   /// a mustAlias relation was found, and no mayAlias or partialAlias found.
157   MustMod = 2,
158   /// The access may reference, modify or both the value stored in memory,
159   /// a mustAlias relation was found, and no mayAlias or partialAlias found.
160   MustModRef = MustRef | MustMod,
161   /// The access neither references nor modifies the value stored in memory.
162   NoModRef = 4,
163   /// The access may reference the value stored in memory.
164   Ref = NoModRef | MustRef,
165   /// The access may modify the value stored in memory.
166   Mod = NoModRef | MustMod,
167   /// The access may reference and may modify the value stored in memory.
168   ModRef = Ref | Mod,
169 
170   /// About Must:
171   /// Must is set in a best effort manner.
172   /// We usually do not try our best to infer Must, instead it is merely
173   /// another piece of "free" information that is presented when available.
174   /// Must set means there was certainly a MustAlias found. For calls,
175   /// where multiple arguments are checked (argmemonly), this translates to
176   /// only MustAlias or NoAlias was found.
177   /// Must is not set for RAR accesses, even if the two locations must
178   /// alias. The reason is that two read accesses translate to an early return
179   /// of NoModRef. An additional alias check to set Must may be
180   /// expensive. Other cases may also not set Must(e.g. callCapturesBefore).
181   /// We refer to Must being *set* when the most significant bit is *cleared*.
182   /// Conversely we *clear* Must information by *setting* the Must bit to 1.
183 };
184 
185 LLVM_NODISCARD inline bool isNoModRef(const ModRefInfo MRI) {
186   return (static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustModRef)) ==
187          static_cast<int>(ModRefInfo::Must);
188 }
189 LLVM_NODISCARD inline bool isModOrRefSet(const ModRefInfo MRI) {
190   return static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustModRef);
191 }
192 LLVM_NODISCARD inline bool isModAndRefSet(const ModRefInfo MRI) {
193   return (static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustModRef)) ==
194          static_cast<int>(ModRefInfo::MustModRef);
195 }
196 LLVM_NODISCARD inline bool isModSet(const ModRefInfo MRI) {
197   return static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustMod);
198 }
199 LLVM_NODISCARD inline bool isRefSet(const ModRefInfo MRI) {
200   return static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustRef);
201 }
202 LLVM_NODISCARD inline bool isMustSet(const ModRefInfo MRI) {
203   return !(static_cast<int>(MRI) & static_cast<int>(ModRefInfo::NoModRef));
204 }
205 
206 LLVM_NODISCARD inline ModRefInfo setMod(const ModRefInfo MRI) {
207   return ModRefInfo(static_cast<int>(MRI) |
208                     static_cast<int>(ModRefInfo::MustMod));
209 }
210 LLVM_NODISCARD inline ModRefInfo setRef(const ModRefInfo MRI) {
211   return ModRefInfo(static_cast<int>(MRI) |
212                     static_cast<int>(ModRefInfo::MustRef));
213 }
214 LLVM_NODISCARD inline ModRefInfo setMust(const ModRefInfo MRI) {
215   return ModRefInfo(static_cast<int>(MRI) &
216                     static_cast<int>(ModRefInfo::MustModRef));
217 }
218 LLVM_NODISCARD inline ModRefInfo setModAndRef(const ModRefInfo MRI) {
219   return ModRefInfo(static_cast<int>(MRI) |
220                     static_cast<int>(ModRefInfo::MustModRef));
221 }
222 LLVM_NODISCARD inline ModRefInfo clearMod(const ModRefInfo MRI) {
223   return ModRefInfo(static_cast<int>(MRI) & static_cast<int>(ModRefInfo::Ref));
224 }
225 LLVM_NODISCARD inline ModRefInfo clearRef(const ModRefInfo MRI) {
226   return ModRefInfo(static_cast<int>(MRI) & static_cast<int>(ModRefInfo::Mod));
227 }
228 LLVM_NODISCARD inline ModRefInfo clearMust(const ModRefInfo MRI) {
229   return ModRefInfo(static_cast<int>(MRI) |
230                     static_cast<int>(ModRefInfo::NoModRef));
231 }
232 LLVM_NODISCARD inline ModRefInfo unionModRef(const ModRefInfo MRI1,
233                                              const ModRefInfo MRI2) {
234   return ModRefInfo(static_cast<int>(MRI1) | static_cast<int>(MRI2));
235 }
236 LLVM_NODISCARD inline ModRefInfo intersectModRef(const ModRefInfo MRI1,
237                                                  const ModRefInfo MRI2) {
238   return ModRefInfo(static_cast<int>(MRI1) & static_cast<int>(MRI2));
239 }
240 
241 /// The locations at which a function might access memory.
242 ///
243 /// These are primarily used in conjunction with the \c AccessKind bits to
244 /// describe both the nature of access and the locations of access for a
245 /// function call.
246 enum FunctionModRefLocation {
247   /// Base case is no access to memory.
248   FMRL_Nowhere = 0,
249   /// Access to memory via argument pointers.
250   FMRL_ArgumentPointees = 8,
251   /// Memory that is inaccessible via LLVM IR.
252   FMRL_InaccessibleMem = 16,
253   /// Access to any memory.
254   FMRL_Anywhere = 32 | FMRL_InaccessibleMem | FMRL_ArgumentPointees
255 };
256 
257 /// Summary of how a function affects memory in the program.
258 ///
259 /// Loads from constant globals are not considered memory accesses for this
260 /// interface. Also, functions may freely modify stack space local to their
261 /// invocation without having to report it through these interfaces.
262 enum FunctionModRefBehavior {
263   /// This function does not perform any non-local loads or stores to memory.
264   ///
265   /// This property corresponds to the GCC 'const' attribute.
266   /// This property corresponds to the LLVM IR 'readnone' attribute.
267   /// This property corresponds to the IntrNoMem LLVM intrinsic flag.
268   FMRB_DoesNotAccessMemory =
269       FMRL_Nowhere | static_cast<int>(ModRefInfo::NoModRef),
270 
271   /// The only memory references in this function (if it has any) are
272   /// non-volatile loads from objects pointed to by its pointer-typed
273   /// arguments, with arbitrary offsets.
274   ///
275   /// This property corresponds to the combination of the IntrReadMem
276   /// and IntrArgMemOnly LLVM intrinsic flags.
277   FMRB_OnlyReadsArgumentPointees =
278       FMRL_ArgumentPointees | static_cast<int>(ModRefInfo::Ref),
279 
280   /// The only memory references in this function (if it has any) are
281   /// non-volatile stores from objects pointed to by its pointer-typed
282   /// arguments, with arbitrary offsets.
283   ///
284   /// This property corresponds to the combination of the IntrWriteMem
285   /// and IntrArgMemOnly LLVM intrinsic flags.
286   FMRB_OnlyWritesArgumentPointees =
287       FMRL_ArgumentPointees | static_cast<int>(ModRefInfo::Mod),
288 
289   /// The only memory references in this function (if it has any) are
290   /// non-volatile loads and stores from objects pointed to by its
291   /// pointer-typed arguments, with arbitrary offsets.
292   ///
293   /// This property corresponds to the IntrArgMemOnly LLVM intrinsic flag.
294   FMRB_OnlyAccessesArgumentPointees =
295       FMRL_ArgumentPointees | static_cast<int>(ModRefInfo::ModRef),
296 
297   /// The only memory references in this function (if it has any) are
298   /// reads of memory that is otherwise inaccessible via LLVM IR.
299   ///
300   /// This property corresponds to the LLVM IR inaccessiblememonly attribute.
301   FMRB_OnlyReadsInaccessibleMem =
302       FMRL_InaccessibleMem | static_cast<int>(ModRefInfo::Ref),
303 
304   /// The only memory references in this function (if it has any) are
305   /// writes to memory that is otherwise inaccessible via LLVM IR.
306   ///
307   /// This property corresponds to the LLVM IR inaccessiblememonly attribute.
308   FMRB_OnlyWritesInaccessibleMem =
309       FMRL_InaccessibleMem | static_cast<int>(ModRefInfo::Mod),
310 
311   /// The only memory references in this function (if it has any) are
312   /// references of memory that is otherwise inaccessible via LLVM IR.
313   ///
314   /// This property corresponds to the LLVM IR inaccessiblememonly attribute.
315   FMRB_OnlyAccessesInaccessibleMem =
316       FMRL_InaccessibleMem | static_cast<int>(ModRefInfo::ModRef),
317 
318   /// The function may perform non-volatile loads from objects pointed
319   /// to by its pointer-typed arguments, with arbitrary offsets, and
320   /// it may also perform loads of memory that is otherwise
321   /// inaccessible via LLVM IR.
322   ///
323   /// This property corresponds to the LLVM IR
324   /// inaccessiblemem_or_argmemonly attribute.
325   FMRB_OnlyReadsInaccessibleOrArgMem = FMRL_InaccessibleMem |
326                                        FMRL_ArgumentPointees |
327                                        static_cast<int>(ModRefInfo::Ref),
328 
329   /// The function may perform non-volatile stores to objects pointed
330   /// to by its pointer-typed arguments, with arbitrary offsets, and
331   /// it may also perform stores of memory that is otherwise
332   /// inaccessible via LLVM IR.
333   ///
334   /// This property corresponds to the LLVM IR
335   /// inaccessiblemem_or_argmemonly attribute.
336   FMRB_OnlyWritesInaccessibleOrArgMem = FMRL_InaccessibleMem |
337                                         FMRL_ArgumentPointees |
338                                         static_cast<int>(ModRefInfo::Mod),
339 
340   /// The function may perform non-volatile loads and stores of objects
341   /// pointed to by its pointer-typed arguments, with arbitrary offsets, and
342   /// it may also perform loads and stores of memory that is otherwise
343   /// inaccessible via LLVM IR.
344   ///
345   /// This property corresponds to the LLVM IR
346   /// inaccessiblemem_or_argmemonly attribute.
347   FMRB_OnlyAccessesInaccessibleOrArgMem = FMRL_InaccessibleMem |
348                                           FMRL_ArgumentPointees |
349                                           static_cast<int>(ModRefInfo::ModRef),
350 
351   /// This function does not perform any non-local stores or volatile loads,
352   /// but may read from any memory location.
353   ///
354   /// This property corresponds to the GCC 'pure' attribute.
355   /// This property corresponds to the LLVM IR 'readonly' attribute.
356   /// This property corresponds to the IntrReadMem LLVM intrinsic flag.
357   FMRB_OnlyReadsMemory = FMRL_Anywhere | static_cast<int>(ModRefInfo::Ref),
358 
359   // This function does not read from memory anywhere, but may write to any
360   // memory location.
361   //
362   // This property corresponds to the LLVM IR 'writeonly' attribute.
363   // This property corresponds to the IntrWriteMem LLVM intrinsic flag.
364   FMRB_OnlyWritesMemory = FMRL_Anywhere | static_cast<int>(ModRefInfo::Mod),
365 
366   /// This indicates that the function could not be classified into one of the
367   /// behaviors above.
368   FMRB_UnknownModRefBehavior =
369       FMRL_Anywhere | static_cast<int>(ModRefInfo::ModRef)
370 };
371 
372 // Wrapper method strips bits significant only in FunctionModRefBehavior,
373 // to obtain a valid ModRefInfo. The benefit of using the wrapper is that if
374 // ModRefInfo enum changes, the wrapper can be updated to & with the new enum
375 // entry with all bits set to 1.
376 LLVM_NODISCARD inline ModRefInfo
377 createModRefInfo(const FunctionModRefBehavior FMRB) {
378   return ModRefInfo(FMRB & static_cast<int>(ModRefInfo::ModRef));
379 }
380 
381 /// Virtual base class for providers of capture information.
382 struct CaptureInfo {
383   virtual ~CaptureInfo() = 0;
384   virtual bool isNotCapturedBeforeOrAt(const Value *Object,
385                                        const Instruction *I) = 0;
386 };
387 
388 /// Context-free CaptureInfo provider, which computes and caches whether an
389 /// object is captured in the function at all, but does not distinguish whether
390 /// it was captured before or after the context instruction.
391 class SimpleCaptureInfo final : public CaptureInfo {
392   SmallDenseMap<const Value *, bool, 8> IsCapturedCache;
393 
394 public:
395   bool isNotCapturedBeforeOrAt(const Value *Object,
396                                const Instruction *I) override;
397 };
398 
399 /// Context-sensitive CaptureInfo provider, which computes and caches the
400 /// earliest common dominator closure of all captures. It provides a good
401 /// approximation to a precise "captures before" analysis.
402 class EarliestEscapeInfo final : public CaptureInfo {
403   DominatorTree &DT;
404   const LoopInfo &LI;
405 
406   /// Map from identified local object to an instruction before which it does
407   /// not escape, or nullptr if it never escapes. The "earliest" instruction
408   /// may be a conservative approximation, e.g. the first instruction in the
409   /// function is always a legal choice.
410   DenseMap<const Value *, Instruction *> EarliestEscapes;
411 
412   /// Reverse map from instruction to the objects it is the earliest escape for.
413   /// This is used for cache invalidation purposes.
414   DenseMap<Instruction *, TinyPtrVector<const Value *>> Inst2Obj;
415 
416 public:
417   EarliestEscapeInfo(DominatorTree &DT, const LoopInfo &LI) : DT(DT), LI(LI) {}
418 
419   bool isNotCapturedBeforeOrAt(const Value *Object,
420                                const Instruction *I) override;
421 
422   void removeInstruction(Instruction *I);
423 };
424 
425 /// Reduced version of MemoryLocation that only stores a pointer and size.
426 /// Used for caching AATags independent BasicAA results.
427 struct AACacheLoc {
428   const Value *Ptr;
429   LocationSize Size;
430 };
431 
432 template <> struct DenseMapInfo<AACacheLoc> {
433   static inline AACacheLoc getEmptyKey() {
434     return {DenseMapInfo<const Value *>::getEmptyKey(),
435             DenseMapInfo<LocationSize>::getEmptyKey()};
436   }
437   static inline AACacheLoc getTombstoneKey() {
438     return {DenseMapInfo<const Value *>::getTombstoneKey(),
439             DenseMapInfo<LocationSize>::getTombstoneKey()};
440   }
441   static unsigned getHashValue(const AACacheLoc &Val) {
442     return DenseMapInfo<const Value *>::getHashValue(Val.Ptr) ^
443            DenseMapInfo<LocationSize>::getHashValue(Val.Size);
444   }
445   static bool isEqual(const AACacheLoc &LHS, const AACacheLoc &RHS) {
446     return LHS.Ptr == RHS.Ptr && LHS.Size == RHS.Size;
447   }
448 };
449 
450 /// This class stores info we want to provide to or retain within an alias
451 /// query. By default, the root query is stateless and starts with a freshly
452 /// constructed info object. Specific alias analyses can use this query info to
453 /// store per-query state that is important for recursive or nested queries to
454 /// avoid recomputing. To enable preserving this state across multiple queries
455 /// where safe (due to the IR not changing), use a `BatchAAResults` wrapper.
456 /// The information stored in an `AAQueryInfo` is currently limitted to the
457 /// caches used by BasicAA, but can further be extended to fit other AA needs.
458 class AAQueryInfo {
459 public:
460   using LocPair = std::pair<AACacheLoc, AACacheLoc>;
461   struct CacheEntry {
462     AliasResult Result;
463     /// Number of times a NoAlias assumption has been used.
464     /// 0 for assumptions that have not been used, -1 for definitive results.
465     int NumAssumptionUses;
466     /// Whether this is a definitive (non-assumption) result.
467     bool isDefinitive() const { return NumAssumptionUses < 0; }
468   };
469   using AliasCacheT = SmallDenseMap<LocPair, CacheEntry, 8>;
470   AliasCacheT AliasCache;
471 
472   CaptureInfo *CI;
473 
474   /// Query depth used to distinguish recursive queries.
475   unsigned Depth = 0;
476 
477   /// How many active NoAlias assumption uses there are.
478   int NumAssumptionUses = 0;
479 
480   /// Location pairs for which an assumption based result is currently stored.
481   /// Used to remove all potentially incorrect results from the cache if an
482   /// assumption is disproven.
483   SmallVector<AAQueryInfo::LocPair, 4> AssumptionBasedResults;
484 
485   AAQueryInfo(CaptureInfo *CI) : CI(CI) {}
486 
487   /// Create a new AAQueryInfo based on this one, but with the cache cleared.
488   /// This is used for recursive queries across phis, where cache results may
489   /// not be valid.
490   AAQueryInfo withEmptyCache() {
491     AAQueryInfo NewAAQI(CI);
492     NewAAQI.Depth = Depth;
493     return NewAAQI;
494   }
495 };
496 
497 /// AAQueryInfo that uses SimpleCaptureInfo.
498 class SimpleAAQueryInfo : public AAQueryInfo {
499   SimpleCaptureInfo CI;
500 
501 public:
502   SimpleAAQueryInfo() : AAQueryInfo(&CI) {}
503 };
504 
505 class BatchAAResults;
506 
507 class AAResults {
508 public:
509   // Make these results default constructable and movable. We have to spell
510   // these out because MSVC won't synthesize them.
511   AAResults(const TargetLibraryInfo &TLI) : TLI(TLI) {}
512   AAResults(AAResults &&Arg);
513   ~AAResults();
514 
515   /// Register a specific AA result.
516   template <typename AAResultT> void addAAResult(AAResultT &AAResult) {
517     // FIXME: We should use a much lighter weight system than the usual
518     // polymorphic pattern because we don't own AAResult. It should
519     // ideally involve two pointers and no separate allocation.
520     AAs.emplace_back(new Model<AAResultT>(AAResult, *this));
521   }
522 
523   /// Register a function analysis ID that the results aggregation depends on.
524   ///
525   /// This is used in the new pass manager to implement the invalidation logic
526   /// where we must invalidate the results aggregation if any of our component
527   /// analyses become invalid.
528   void addAADependencyID(AnalysisKey *ID) { AADeps.push_back(ID); }
529 
530   /// Handle invalidation events in the new pass manager.
531   ///
532   /// The aggregation is invalidated if any of the underlying analyses is
533   /// invalidated.
534   bool invalidate(Function &F, const PreservedAnalyses &PA,
535                   FunctionAnalysisManager::Invalidator &Inv);
536 
537   //===--------------------------------------------------------------------===//
538   /// \name Alias Queries
539   /// @{
540 
541   /// The main low level interface to the alias analysis implementation.
542   /// Returns an AliasResult indicating whether the two pointers are aliased to
543   /// each other. This is the interface that must be implemented by specific
544   /// alias analysis implementations.
545   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB);
546 
547   /// A convenience wrapper around the primary \c alias interface.
548   AliasResult alias(const Value *V1, LocationSize V1Size, const Value *V2,
549                     LocationSize V2Size) {
550     return alias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
551   }
552 
553   /// A convenience wrapper around the primary \c alias interface.
554   AliasResult alias(const Value *V1, const Value *V2) {
555     return alias(MemoryLocation::getBeforeOrAfter(V1),
556                  MemoryLocation::getBeforeOrAfter(V2));
557   }
558 
559   /// A trivial helper function to check to see if the specified pointers are
560   /// no-alias.
561   bool isNoAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
562     return alias(LocA, LocB) == AliasResult::NoAlias;
563   }
564 
565   /// A convenience wrapper around the \c isNoAlias helper interface.
566   bool isNoAlias(const Value *V1, LocationSize V1Size, const Value *V2,
567                  LocationSize V2Size) {
568     return isNoAlias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
569   }
570 
571   /// A convenience wrapper around the \c isNoAlias helper interface.
572   bool isNoAlias(const Value *V1, const Value *V2) {
573     return isNoAlias(MemoryLocation::getBeforeOrAfter(V1),
574                      MemoryLocation::getBeforeOrAfter(V2));
575   }
576 
577   /// A trivial helper function to check to see if the specified pointers are
578   /// must-alias.
579   bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
580     return alias(LocA, LocB) == AliasResult::MustAlias;
581   }
582 
583   /// A convenience wrapper around the \c isMustAlias helper interface.
584   bool isMustAlias(const Value *V1, const Value *V2) {
585     return alias(V1, LocationSize::precise(1), V2, LocationSize::precise(1)) ==
586            AliasResult::MustAlias;
587   }
588 
589   /// Checks whether the given location points to constant memory, or if
590   /// \p OrLocal is true whether it points to a local alloca.
591   bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal = false);
592 
593   /// A convenience wrapper around the primary \c pointsToConstantMemory
594   /// interface.
595   bool pointsToConstantMemory(const Value *P, bool OrLocal = false) {
596     return pointsToConstantMemory(MemoryLocation::getBeforeOrAfter(P), OrLocal);
597   }
598 
599   /// @}
600   //===--------------------------------------------------------------------===//
601   /// \name Simple mod/ref information
602   /// @{
603 
604   /// Get the ModRef info associated with a pointer argument of a call. The
605   /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
606   /// that these bits do not necessarily account for the overall behavior of
607   /// the function, but rather only provide additional per-argument
608   /// information. This never sets ModRefInfo::Must.
609   ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx);
610 
611   /// Return the behavior of the given call site.
612   FunctionModRefBehavior getModRefBehavior(const CallBase *Call);
613 
614   /// Return the behavior when calling the given function.
615   FunctionModRefBehavior getModRefBehavior(const Function *F);
616 
617   /// Checks if the specified call is known to never read or write memory.
618   ///
619   /// Note that if the call only reads from known-constant memory, it is also
620   /// legal to return true. Also, calls that unwind the stack are legal for
621   /// this predicate.
622   ///
623   /// Many optimizations (such as CSE and LICM) can be performed on such calls
624   /// without worrying about aliasing properties, and many calls have this
625   /// property (e.g. calls to 'sin' and 'cos').
626   ///
627   /// This property corresponds to the GCC 'const' attribute.
628   bool doesNotAccessMemory(const CallBase *Call) {
629     return getModRefBehavior(Call) == FMRB_DoesNotAccessMemory;
630   }
631 
632   /// Checks if the specified function is known to never read or write memory.
633   ///
634   /// Note that if the function only reads from known-constant memory, it is
635   /// also legal to return true. Also, function that unwind the stack are legal
636   /// for this predicate.
637   ///
638   /// Many optimizations (such as CSE and LICM) can be performed on such calls
639   /// to such functions without worrying about aliasing properties, and many
640   /// functions have this property (e.g. 'sin' and 'cos').
641   ///
642   /// This property corresponds to the GCC 'const' attribute.
643   bool doesNotAccessMemory(const Function *F) {
644     return getModRefBehavior(F) == FMRB_DoesNotAccessMemory;
645   }
646 
647   /// Checks if the specified call is known to only read from non-volatile
648   /// memory (or not access memory at all).
649   ///
650   /// Calls that unwind the stack are legal for this predicate.
651   ///
652   /// This property allows many common optimizations to be performed in the
653   /// absence of interfering store instructions, such as CSE of strlen calls.
654   ///
655   /// This property corresponds to the GCC 'pure' attribute.
656   bool onlyReadsMemory(const CallBase *Call) {
657     return onlyReadsMemory(getModRefBehavior(Call));
658   }
659 
660   /// Checks if the specified function is known to only read from non-volatile
661   /// memory (or not access memory at all).
662   ///
663   /// Functions that unwind the stack are legal for this predicate.
664   ///
665   /// This property allows many common optimizations to be performed in the
666   /// absence of interfering store instructions, such as CSE of strlen calls.
667   ///
668   /// This property corresponds to the GCC 'pure' attribute.
669   bool onlyReadsMemory(const Function *F) {
670     return onlyReadsMemory(getModRefBehavior(F));
671   }
672 
673   /// Checks if functions with the specified behavior are known to only read
674   /// from non-volatile memory (or not access memory at all).
675   static bool onlyReadsMemory(FunctionModRefBehavior MRB) {
676     return !isModSet(createModRefInfo(MRB));
677   }
678 
679   /// Checks if functions with the specified behavior are known to only write
680   /// memory (or not access memory at all).
681   static bool onlyWritesMemory(FunctionModRefBehavior MRB) {
682     return !isRefSet(createModRefInfo(MRB));
683   }
684 
685   /// Checks if functions with the specified behavior are known to read and
686   /// write at most from objects pointed to by their pointer-typed arguments
687   /// (with arbitrary offsets).
688   static bool onlyAccessesArgPointees(FunctionModRefBehavior MRB) {
689     return !((unsigned)MRB & FMRL_Anywhere & ~FMRL_ArgumentPointees);
690   }
691 
692   /// Checks if functions with the specified behavior are known to potentially
693   /// read or write from objects pointed to be their pointer-typed arguments
694   /// (with arbitrary offsets).
695   static bool doesAccessArgPointees(FunctionModRefBehavior MRB) {
696     return isModOrRefSet(createModRefInfo(MRB)) &&
697            ((unsigned)MRB & FMRL_ArgumentPointees);
698   }
699 
700   /// Checks if functions with the specified behavior are known to read and
701   /// write at most from memory that is inaccessible from LLVM IR.
702   static bool onlyAccessesInaccessibleMem(FunctionModRefBehavior MRB) {
703     return !((unsigned)MRB & FMRL_Anywhere & ~FMRL_InaccessibleMem);
704   }
705 
706   /// Checks if functions with the specified behavior are known to potentially
707   /// read or write from memory that is inaccessible from LLVM IR.
708   static bool doesAccessInaccessibleMem(FunctionModRefBehavior MRB) {
709     return isModOrRefSet(createModRefInfo(MRB)) &&
710              ((unsigned)MRB & FMRL_InaccessibleMem);
711   }
712 
713   /// Checks if functions with the specified behavior are known to read and
714   /// write at most from memory that is inaccessible from LLVM IR or objects
715   /// pointed to by their pointer-typed arguments (with arbitrary offsets).
716   static bool onlyAccessesInaccessibleOrArgMem(FunctionModRefBehavior MRB) {
717     return !((unsigned)MRB & FMRL_Anywhere &
718              ~(FMRL_InaccessibleMem | FMRL_ArgumentPointees));
719   }
720 
721   /// getModRefInfo (for call sites) - Return information about whether
722   /// a particular call site modifies or reads the specified memory location.
723   ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc);
724 
725   /// getModRefInfo (for call sites) - A convenience wrapper.
726   ModRefInfo getModRefInfo(const CallBase *Call, const Value *P,
727                            LocationSize Size) {
728     return getModRefInfo(Call, MemoryLocation(P, Size));
729   }
730 
731   /// getModRefInfo (for loads) - Return information about whether
732   /// a particular load modifies or reads the specified memory location.
733   ModRefInfo getModRefInfo(const LoadInst *L, const MemoryLocation &Loc);
734 
735   /// getModRefInfo (for loads) - A convenience wrapper.
736   ModRefInfo getModRefInfo(const LoadInst *L, const Value *P,
737                            LocationSize Size) {
738     return getModRefInfo(L, MemoryLocation(P, Size));
739   }
740 
741   /// getModRefInfo (for stores) - Return information about whether
742   /// a particular store modifies or reads the specified memory location.
743   ModRefInfo getModRefInfo(const StoreInst *S, const MemoryLocation &Loc);
744 
745   /// getModRefInfo (for stores) - A convenience wrapper.
746   ModRefInfo getModRefInfo(const StoreInst *S, const Value *P,
747                            LocationSize Size) {
748     return getModRefInfo(S, MemoryLocation(P, Size));
749   }
750 
751   /// getModRefInfo (for fences) - Return information about whether
752   /// a particular store modifies or reads the specified memory location.
753   ModRefInfo getModRefInfo(const FenceInst *S, const MemoryLocation &Loc);
754 
755   /// getModRefInfo (for fences) - A convenience wrapper.
756   ModRefInfo getModRefInfo(const FenceInst *S, const Value *P,
757                            LocationSize Size) {
758     return getModRefInfo(S, MemoryLocation(P, Size));
759   }
760 
761   /// getModRefInfo (for cmpxchges) - Return information about whether
762   /// a particular cmpxchg modifies or reads the specified memory location.
763   ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX,
764                            const MemoryLocation &Loc);
765 
766   /// getModRefInfo (for cmpxchges) - A convenience wrapper.
767   ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX, const Value *P,
768                            LocationSize Size) {
769     return getModRefInfo(CX, MemoryLocation(P, Size));
770   }
771 
772   /// getModRefInfo (for atomicrmws) - Return information about whether
773   /// a particular atomicrmw modifies or reads the specified memory location.
774   ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const MemoryLocation &Loc);
775 
776   /// getModRefInfo (for atomicrmws) - A convenience wrapper.
777   ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const Value *P,
778                            LocationSize Size) {
779     return getModRefInfo(RMW, MemoryLocation(P, Size));
780   }
781 
782   /// getModRefInfo (for va_args) - Return information about whether
783   /// a particular va_arg modifies or reads the specified memory location.
784   ModRefInfo getModRefInfo(const VAArgInst *I, const MemoryLocation &Loc);
785 
786   /// getModRefInfo (for va_args) - A convenience wrapper.
787   ModRefInfo getModRefInfo(const VAArgInst *I, const Value *P,
788                            LocationSize Size) {
789     return getModRefInfo(I, MemoryLocation(P, Size));
790   }
791 
792   /// getModRefInfo (for catchpads) - Return information about whether
793   /// a particular catchpad modifies or reads the specified memory location.
794   ModRefInfo getModRefInfo(const CatchPadInst *I, const MemoryLocation &Loc);
795 
796   /// getModRefInfo (for catchpads) - A convenience wrapper.
797   ModRefInfo getModRefInfo(const CatchPadInst *I, const Value *P,
798                            LocationSize Size) {
799     return getModRefInfo(I, MemoryLocation(P, Size));
800   }
801 
802   /// getModRefInfo (for catchrets) - Return information about whether
803   /// a particular catchret modifies or reads the specified memory location.
804   ModRefInfo getModRefInfo(const CatchReturnInst *I, const MemoryLocation &Loc);
805 
806   /// getModRefInfo (for catchrets) - A convenience wrapper.
807   ModRefInfo getModRefInfo(const CatchReturnInst *I, const Value *P,
808                            LocationSize Size) {
809     return getModRefInfo(I, MemoryLocation(P, Size));
810   }
811 
812   /// Check whether or not an instruction may read or write the optionally
813   /// specified memory location.
814   ///
815   ///
816   /// An instruction that doesn't read or write memory may be trivially LICM'd
817   /// for example.
818   ///
819   /// For function calls, this delegates to the alias-analysis specific
820   /// call-site mod-ref behavior queries. Otherwise it delegates to the specific
821   /// helpers above.
822   ModRefInfo getModRefInfo(const Instruction *I,
823                            const Optional<MemoryLocation> &OptLoc) {
824     SimpleAAQueryInfo AAQIP;
825     return getModRefInfo(I, OptLoc, AAQIP);
826   }
827 
828   /// A convenience wrapper for constructing the memory location.
829   ModRefInfo getModRefInfo(const Instruction *I, const Value *P,
830                            LocationSize Size) {
831     return getModRefInfo(I, MemoryLocation(P, Size));
832   }
833 
834   /// Return information about whether a call and an instruction may refer to
835   /// the same memory locations.
836   ModRefInfo getModRefInfo(Instruction *I, const CallBase *Call);
837 
838   /// Return information about whether two call sites may refer to the same set
839   /// of memory locations. See the AA documentation for details:
840   ///   http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
841   ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2);
842 
843   /// Return information about whether a particular call site modifies
844   /// or reads the specified memory location \p MemLoc before instruction \p I
845   /// in a BasicBlock.
846   /// Early exits in callCapturesBefore may lead to ModRefInfo::Must not being
847   /// set.
848   ModRefInfo callCapturesBefore(const Instruction *I,
849                                 const MemoryLocation &MemLoc,
850                                 DominatorTree *DT) {
851     SimpleAAQueryInfo AAQIP;
852     return callCapturesBefore(I, MemLoc, DT, AAQIP);
853   }
854 
855   /// A convenience wrapper to synthesize a memory location.
856   ModRefInfo callCapturesBefore(const Instruction *I, const Value *P,
857                                 LocationSize Size, DominatorTree *DT) {
858     return callCapturesBefore(I, MemoryLocation(P, Size), DT);
859   }
860 
861   /// @}
862   //===--------------------------------------------------------------------===//
863   /// \name Higher level methods for querying mod/ref information.
864   /// @{
865 
866   /// Check if it is possible for execution of the specified basic block to
867   /// modify the location Loc.
868   bool canBasicBlockModify(const BasicBlock &BB, const MemoryLocation &Loc);
869 
870   /// A convenience wrapper synthesizing a memory location.
871   bool canBasicBlockModify(const BasicBlock &BB, const Value *P,
872                            LocationSize Size) {
873     return canBasicBlockModify(BB, MemoryLocation(P, Size));
874   }
875 
876   /// Check if it is possible for the execution of the specified instructions
877   /// to mod\ref (according to the mode) the location Loc.
878   ///
879   /// The instructions to consider are all of the instructions in the range of
880   /// [I1,I2] INCLUSIVE. I1 and I2 must be in the same basic block.
881   bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
882                                  const MemoryLocation &Loc,
883                                  const ModRefInfo Mode);
884 
885   /// A convenience wrapper synthesizing a memory location.
886   bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
887                                  const Value *Ptr, LocationSize Size,
888                                  const ModRefInfo Mode) {
889     return canInstructionRangeModRef(I1, I2, MemoryLocation(Ptr, Size), Mode);
890   }
891 
892 private:
893   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
894                     AAQueryInfo &AAQI);
895   bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
896                               bool OrLocal = false);
897   ModRefInfo getModRefInfo(Instruction *I, const CallBase *Call2,
898                            AAQueryInfo &AAQIP);
899   ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
900                            AAQueryInfo &AAQI);
901   ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
902                            AAQueryInfo &AAQI);
903   ModRefInfo getModRefInfo(const VAArgInst *V, const MemoryLocation &Loc,
904                            AAQueryInfo &AAQI);
905   ModRefInfo getModRefInfo(const LoadInst *L, const MemoryLocation &Loc,
906                            AAQueryInfo &AAQI);
907   ModRefInfo getModRefInfo(const StoreInst *S, const MemoryLocation &Loc,
908                            AAQueryInfo &AAQI);
909   ModRefInfo getModRefInfo(const FenceInst *S, const MemoryLocation &Loc,
910                            AAQueryInfo &AAQI);
911   ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX,
912                            const MemoryLocation &Loc, AAQueryInfo &AAQI);
913   ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const MemoryLocation &Loc,
914                            AAQueryInfo &AAQI);
915   ModRefInfo getModRefInfo(const CatchPadInst *I, const MemoryLocation &Loc,
916                            AAQueryInfo &AAQI);
917   ModRefInfo getModRefInfo(const CatchReturnInst *I, const MemoryLocation &Loc,
918                            AAQueryInfo &AAQI);
919   ModRefInfo getModRefInfo(const Instruction *I,
920                            const Optional<MemoryLocation> &OptLoc,
921                            AAQueryInfo &AAQIP);
922   ModRefInfo callCapturesBefore(const Instruction *I,
923                                 const MemoryLocation &MemLoc, DominatorTree *DT,
924                                 AAQueryInfo &AAQIP);
925 
926   class Concept;
927 
928   template <typename T> class Model;
929 
930   template <typename T> friend class AAResultBase;
931 
932   const TargetLibraryInfo &TLI;
933 
934   std::vector<std::unique_ptr<Concept>> AAs;
935 
936   std::vector<AnalysisKey *> AADeps;
937 
938   friend class BatchAAResults;
939 };
940 
941 /// This class is a wrapper over an AAResults, and it is intended to be used
942 /// only when there are no IR changes inbetween queries. BatchAAResults is
943 /// reusing the same `AAQueryInfo` to preserve the state across queries,
944 /// esentially making AA work in "batch mode". The internal state cannot be
945 /// cleared, so to go "out-of-batch-mode", the user must either use AAResults,
946 /// or create a new BatchAAResults.
947 class BatchAAResults {
948   AAResults &AA;
949   AAQueryInfo AAQI;
950   SimpleCaptureInfo SimpleCI;
951 
952 public:
953   BatchAAResults(AAResults &AAR) : AA(AAR), AAQI(&SimpleCI) {}
954   BatchAAResults(AAResults &AAR, CaptureInfo *CI) : AA(AAR), AAQI(CI) {}
955 
956   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
957     return AA.alias(LocA, LocB, AAQI);
958   }
959   bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal = false) {
960     return AA.pointsToConstantMemory(Loc, AAQI, OrLocal);
961   }
962   ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc) {
963     return AA.getModRefInfo(Call, Loc, AAQI);
964   }
965   ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2) {
966     return AA.getModRefInfo(Call1, Call2, AAQI);
967   }
968   ModRefInfo getModRefInfo(const Instruction *I,
969                            const Optional<MemoryLocation> &OptLoc) {
970     return AA.getModRefInfo(I, OptLoc, AAQI);
971   }
972   ModRefInfo getModRefInfo(Instruction *I, const CallBase *Call2) {
973     return AA.getModRefInfo(I, Call2, AAQI);
974   }
975   ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
976     return AA.getArgModRefInfo(Call, ArgIdx);
977   }
978   FunctionModRefBehavior getModRefBehavior(const CallBase *Call) {
979     return AA.getModRefBehavior(Call);
980   }
981   bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
982     return alias(LocA, LocB) == AliasResult::MustAlias;
983   }
984   bool isMustAlias(const Value *V1, const Value *V2) {
985     return alias(MemoryLocation(V1, LocationSize::precise(1)),
986                  MemoryLocation(V2, LocationSize::precise(1))) ==
987            AliasResult::MustAlias;
988   }
989   ModRefInfo callCapturesBefore(const Instruction *I,
990                                 const MemoryLocation &MemLoc,
991                                 DominatorTree *DT) {
992     return AA.callCapturesBefore(I, MemLoc, DT, AAQI);
993   }
994 };
995 
996 /// Temporary typedef for legacy code that uses a generic \c AliasAnalysis
997 /// pointer or reference.
998 using AliasAnalysis = AAResults;
999 
1000 /// A private abstract base class describing the concept of an individual alias
1001 /// analysis implementation.
1002 ///
1003 /// This interface is implemented by any \c Model instantiation. It is also the
1004 /// interface which a type used to instantiate the model must provide.
1005 ///
1006 /// All of these methods model methods by the same name in the \c
1007 /// AAResults class. Only differences and specifics to how the
1008 /// implementations are called are documented here.
1009 class AAResults::Concept {
1010 public:
1011   virtual ~Concept() = 0;
1012 
1013   /// An update API used internally by the AAResults to provide
1014   /// a handle back to the top level aggregation.
1015   virtual void setAAResults(AAResults *NewAAR) = 0;
1016 
1017   //===--------------------------------------------------------------------===//
1018   /// \name Alias Queries
1019   /// @{
1020 
1021   /// The main low level interface to the alias analysis implementation.
1022   /// Returns an AliasResult indicating whether the two pointers are aliased to
1023   /// each other. This is the interface that must be implemented by specific
1024   /// alias analysis implementations.
1025   virtual AliasResult alias(const MemoryLocation &LocA,
1026                             const MemoryLocation &LocB, AAQueryInfo &AAQI) = 0;
1027 
1028   /// Checks whether the given location points to constant memory, or if
1029   /// \p OrLocal is true whether it points to a local alloca.
1030   virtual bool pointsToConstantMemory(const MemoryLocation &Loc,
1031                                       AAQueryInfo &AAQI, bool OrLocal) = 0;
1032 
1033   /// @}
1034   //===--------------------------------------------------------------------===//
1035   /// \name Simple mod/ref information
1036   /// @{
1037 
1038   /// Get the ModRef info associated with a pointer argument of a callsite. The
1039   /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
1040   /// that these bits do not necessarily account for the overall behavior of
1041   /// the function, but rather only provide additional per-argument
1042   /// information.
1043   virtual ModRefInfo getArgModRefInfo(const CallBase *Call,
1044                                       unsigned ArgIdx) = 0;
1045 
1046   /// Return the behavior of the given call site.
1047   virtual FunctionModRefBehavior getModRefBehavior(const CallBase *Call) = 0;
1048 
1049   /// Return the behavior when calling the given function.
1050   virtual FunctionModRefBehavior getModRefBehavior(const Function *F) = 0;
1051 
1052   /// getModRefInfo (for call sites) - Return information about whether
1053   /// a particular call site modifies or reads the specified memory location.
1054   virtual ModRefInfo getModRefInfo(const CallBase *Call,
1055                                    const MemoryLocation &Loc,
1056                                    AAQueryInfo &AAQI) = 0;
1057 
1058   /// Return information about whether two call sites may refer to the same set
1059   /// of memory locations. See the AA documentation for details:
1060   ///   http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
1061   virtual ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
1062                                    AAQueryInfo &AAQI) = 0;
1063 
1064   /// @}
1065 };
1066 
1067 /// A private class template which derives from \c Concept and wraps some other
1068 /// type.
1069 ///
1070 /// This models the concept by directly forwarding each interface point to the
1071 /// wrapped type which must implement a compatible interface. This provides
1072 /// a type erased binding.
1073 template <typename AAResultT> class AAResults::Model final : public Concept {
1074   AAResultT &Result;
1075 
1076 public:
1077   explicit Model(AAResultT &Result, AAResults &AAR) : Result(Result) {
1078     Result.setAAResults(&AAR);
1079   }
1080   ~Model() override = default;
1081 
1082   void setAAResults(AAResults *NewAAR) override { Result.setAAResults(NewAAR); }
1083 
1084   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
1085                     AAQueryInfo &AAQI) override {
1086     return Result.alias(LocA, LocB, AAQI);
1087   }
1088 
1089   bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
1090                               bool OrLocal) override {
1091     return Result.pointsToConstantMemory(Loc, AAQI, OrLocal);
1092   }
1093 
1094   ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) override {
1095     return Result.getArgModRefInfo(Call, ArgIdx);
1096   }
1097 
1098   FunctionModRefBehavior getModRefBehavior(const CallBase *Call) override {
1099     return Result.getModRefBehavior(Call);
1100   }
1101 
1102   FunctionModRefBehavior getModRefBehavior(const Function *F) override {
1103     return Result.getModRefBehavior(F);
1104   }
1105 
1106   ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
1107                            AAQueryInfo &AAQI) override {
1108     return Result.getModRefInfo(Call, Loc, AAQI);
1109   }
1110 
1111   ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
1112                            AAQueryInfo &AAQI) override {
1113     return Result.getModRefInfo(Call1, Call2, AAQI);
1114   }
1115 };
1116 
1117 /// A CRTP-driven "mixin" base class to help implement the function alias
1118 /// analysis results concept.
1119 ///
1120 /// Because of the nature of many alias analysis implementations, they often
1121 /// only implement a subset of the interface. This base class will attempt to
1122 /// implement the remaining portions of the interface in terms of simpler forms
1123 /// of the interface where possible, and otherwise provide conservatively
1124 /// correct fallback implementations.
1125 ///
1126 /// Implementors of an alias analysis should derive from this CRTP, and then
1127 /// override specific methods that they wish to customize. There is no need to
1128 /// use virtual anywhere, the CRTP base class does static dispatch to the
1129 /// derived type passed into it.
1130 template <typename DerivedT> class AAResultBase {
1131   // Expose some parts of the interface only to the AAResults::Model
1132   // for wrapping. Specifically, this allows the model to call our
1133   // setAAResults method without exposing it as a fully public API.
1134   friend class AAResults::Model<DerivedT>;
1135 
1136   /// A pointer to the AAResults object that this AAResult is
1137   /// aggregated within. May be null if not aggregated.
1138   AAResults *AAR = nullptr;
1139 
1140   /// Helper to dispatch calls back through the derived type.
1141   DerivedT &derived() { return static_cast<DerivedT &>(*this); }
1142 
1143   /// A setter for the AAResults pointer, which is used to satisfy the
1144   /// AAResults::Model contract.
1145   void setAAResults(AAResults *NewAAR) { AAR = NewAAR; }
1146 
1147 protected:
1148   /// This proxy class models a common pattern where we delegate to either the
1149   /// top-level \c AAResults aggregation if one is registered, or to the
1150   /// current result if none are registered.
1151   class AAResultsProxy {
1152     AAResults *AAR;
1153     DerivedT &CurrentResult;
1154 
1155   public:
1156     AAResultsProxy(AAResults *AAR, DerivedT &CurrentResult)
1157         : AAR(AAR), CurrentResult(CurrentResult) {}
1158 
1159     AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
1160                       AAQueryInfo &AAQI) {
1161       return AAR ? AAR->alias(LocA, LocB, AAQI)
1162                  : CurrentResult.alias(LocA, LocB, AAQI);
1163     }
1164 
1165     bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
1166                                 bool OrLocal) {
1167       return AAR ? AAR->pointsToConstantMemory(Loc, AAQI, OrLocal)
1168                  : CurrentResult.pointsToConstantMemory(Loc, AAQI, OrLocal);
1169     }
1170 
1171     ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
1172       return AAR ? AAR->getArgModRefInfo(Call, ArgIdx)
1173                  : CurrentResult.getArgModRefInfo(Call, ArgIdx);
1174     }
1175 
1176     FunctionModRefBehavior getModRefBehavior(const CallBase *Call) {
1177       return AAR ? AAR->getModRefBehavior(Call)
1178                  : CurrentResult.getModRefBehavior(Call);
1179     }
1180 
1181     FunctionModRefBehavior getModRefBehavior(const Function *F) {
1182       return AAR ? AAR->getModRefBehavior(F) : CurrentResult.getModRefBehavior(F);
1183     }
1184 
1185     ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
1186                              AAQueryInfo &AAQI) {
1187       return AAR ? AAR->getModRefInfo(Call, Loc, AAQI)
1188                  : CurrentResult.getModRefInfo(Call, Loc, AAQI);
1189     }
1190 
1191     ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
1192                              AAQueryInfo &AAQI) {
1193       return AAR ? AAR->getModRefInfo(Call1, Call2, AAQI)
1194                  : CurrentResult.getModRefInfo(Call1, Call2, AAQI);
1195     }
1196   };
1197 
1198   explicit AAResultBase() = default;
1199 
1200   // Provide all the copy and move constructors so that derived types aren't
1201   // constrained.
1202   AAResultBase(const AAResultBase &Arg) {}
1203   AAResultBase(AAResultBase &&Arg) {}
1204 
1205   /// Get a proxy for the best AA result set to query at this time.
1206   ///
1207   /// When this result is part of a larger aggregation, this will proxy to that
1208   /// aggregation. When this result is used in isolation, it will just delegate
1209   /// back to the derived class's implementation.
1210   ///
1211   /// Note that callers of this need to take considerable care to not cause
1212   /// performance problems when they use this routine, in the case of a large
1213   /// number of alias analyses being aggregated, it can be expensive to walk
1214   /// back across the chain.
1215   AAResultsProxy getBestAAResults() { return AAResultsProxy(AAR, derived()); }
1216 
1217 public:
1218   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
1219                     AAQueryInfo &AAQI) {
1220     return AliasResult::MayAlias;
1221   }
1222 
1223   bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
1224                               bool OrLocal) {
1225     return false;
1226   }
1227 
1228   ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
1229     return ModRefInfo::ModRef;
1230   }
1231 
1232   FunctionModRefBehavior getModRefBehavior(const CallBase *Call) {
1233     return FMRB_UnknownModRefBehavior;
1234   }
1235 
1236   FunctionModRefBehavior getModRefBehavior(const Function *F) {
1237     return FMRB_UnknownModRefBehavior;
1238   }
1239 
1240   ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
1241                            AAQueryInfo &AAQI) {
1242     return ModRefInfo::ModRef;
1243   }
1244 
1245   ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
1246                            AAQueryInfo &AAQI) {
1247     return ModRefInfo::ModRef;
1248   }
1249 };
1250 
1251 /// Return true if this pointer is returned by a noalias function.
1252 bool isNoAliasCall(const Value *V);
1253 
1254 /// Return true if this pointer refers to a distinct and identifiable object.
1255 /// This returns true for:
1256 ///    Global Variables and Functions (but not Global Aliases)
1257 ///    Allocas
1258 ///    ByVal and NoAlias Arguments
1259 ///    NoAlias returns (e.g. calls to malloc)
1260 ///
1261 bool isIdentifiedObject(const Value *V);
1262 
1263 /// Return true if V is umabigously identified at the function-level.
1264 /// Different IdentifiedFunctionLocals can't alias.
1265 /// Further, an IdentifiedFunctionLocal can not alias with any function
1266 /// arguments other than itself, which is not necessarily true for
1267 /// IdentifiedObjects.
1268 bool isIdentifiedFunctionLocal(const Value *V);
1269 
1270 /// Return true if Object memory is not visible after an unwind, in the sense
1271 /// that program semantics cannot depend on Object containing any particular
1272 /// value on unwind. If the RequiresNoCaptureBeforeUnwind out parameter is set
1273 /// to true, then the memory is only not visible if the object has not been
1274 /// captured prior to the unwind. Otherwise it is not visible even if captured.
1275 bool isNotVisibleOnUnwind(const Value *Object,
1276                           bool &RequiresNoCaptureBeforeUnwind);
1277 
1278 /// A manager for alias analyses.
1279 ///
1280 /// This class can have analyses registered with it and when run, it will run
1281 /// all of them and aggregate their results into single AA results interface
1282 /// that dispatches across all of the alias analysis results available.
1283 ///
1284 /// Note that the order in which analyses are registered is very significant.
1285 /// That is the order in which the results will be aggregated and queried.
1286 ///
1287 /// This manager effectively wraps the AnalysisManager for registering alias
1288 /// analyses. When you register your alias analysis with this manager, it will
1289 /// ensure the analysis itself is registered with its AnalysisManager.
1290 ///
1291 /// The result of this analysis is only invalidated if one of the particular
1292 /// aggregated AA results end up being invalidated. This removes the need to
1293 /// explicitly preserve the results of `AAManager`. Note that analyses should no
1294 /// longer be registered once the `AAManager` is run.
1295 class AAManager : public AnalysisInfoMixin<AAManager> {
1296 public:
1297   using Result = AAResults;
1298 
1299   /// Register a specific AA result.
1300   template <typename AnalysisT> void registerFunctionAnalysis() {
1301     ResultGetters.push_back(&getFunctionAAResultImpl<AnalysisT>);
1302   }
1303 
1304   /// Register a specific AA result.
1305   template <typename AnalysisT> void registerModuleAnalysis() {
1306     ResultGetters.push_back(&getModuleAAResultImpl<AnalysisT>);
1307   }
1308 
1309   Result run(Function &F, FunctionAnalysisManager &AM);
1310 
1311 private:
1312   friend AnalysisInfoMixin<AAManager>;
1313 
1314   static AnalysisKey Key;
1315 
1316   SmallVector<void (*)(Function &F, FunctionAnalysisManager &AM,
1317                        AAResults &AAResults),
1318               4> ResultGetters;
1319 
1320   template <typename AnalysisT>
1321   static void getFunctionAAResultImpl(Function &F,
1322                                       FunctionAnalysisManager &AM,
1323                                       AAResults &AAResults) {
1324     AAResults.addAAResult(AM.template getResult<AnalysisT>(F));
1325     AAResults.addAADependencyID(AnalysisT::ID());
1326   }
1327 
1328   template <typename AnalysisT>
1329   static void getModuleAAResultImpl(Function &F, FunctionAnalysisManager &AM,
1330                                     AAResults &AAResults) {
1331     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
1332     if (auto *R =
1333             MAMProxy.template getCachedResult<AnalysisT>(*F.getParent())) {
1334       AAResults.addAAResult(*R);
1335       MAMProxy
1336           .template registerOuterAnalysisInvalidation<AnalysisT, AAManager>();
1337     }
1338   }
1339 };
1340 
1341 /// A wrapper pass to provide the legacy pass manager access to a suitably
1342 /// prepared AAResults object.
1343 class AAResultsWrapperPass : public FunctionPass {
1344   std::unique_ptr<AAResults> AAR;
1345 
1346 public:
1347   static char ID;
1348 
1349   AAResultsWrapperPass();
1350 
1351   AAResults &getAAResults() { return *AAR; }
1352   const AAResults &getAAResults() const { return *AAR; }
1353 
1354   bool runOnFunction(Function &F) override;
1355 
1356   void getAnalysisUsage(AnalysisUsage &AU) const override;
1357 };
1358 
1359 /// A wrapper pass for external alias analyses. This just squirrels away the
1360 /// callback used to run any analyses and register their results.
1361 struct ExternalAAWrapperPass : ImmutablePass {
1362   using CallbackT = std::function<void(Pass &, Function &, AAResults &)>;
1363 
1364   CallbackT CB;
1365 
1366   static char ID;
1367 
1368   ExternalAAWrapperPass();
1369 
1370   explicit ExternalAAWrapperPass(CallbackT CB);
1371 
1372   void getAnalysisUsage(AnalysisUsage &AU) const override {
1373     AU.setPreservesAll();
1374   }
1375 };
1376 
1377 FunctionPass *createAAResultsWrapperPass();
1378 
1379 /// A wrapper pass around a callback which can be used to populate the
1380 /// AAResults in the AAResultsWrapperPass from an external AA.
1381 ///
1382 /// The callback provided here will be used each time we prepare an AAResults
1383 /// object, and will receive a reference to the function wrapper pass, the
1384 /// function, and the AAResults object to populate. This should be used when
1385 /// setting up a custom pass pipeline to inject a hook into the AA results.
1386 ImmutablePass *createExternalAAWrapperPass(
1387     std::function<void(Pass &, Function &, AAResults &)> Callback);
1388 
1389 /// A helper for the legacy pass manager to create a \c AAResults
1390 /// object populated to the best of our ability for a particular function when
1391 /// inside of a \c ModulePass or a \c CallGraphSCCPass.
1392 ///
1393 /// If a \c ModulePass or a \c CallGraphSCCPass calls \p
1394 /// createLegacyPMAAResults, it also needs to call \p addUsedAAAnalyses in \p
1395 /// getAnalysisUsage.
1396 AAResults createLegacyPMAAResults(Pass &P, Function &F, BasicAAResult &BAR);
1397 
1398 /// A helper for the legacy pass manager to populate \p AU to add uses to make
1399 /// sure the analyses required by \p createLegacyPMAAResults are available.
1400 void getAAResultsAnalysisUsage(AnalysisUsage &AU);
1401 
1402 } // end namespace llvm
1403 
1404 #endif // LLVM_ANALYSIS_ALIASANALYSIS_H
1405