1 //===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the generic AliasAnalysis interface, which is used as the
10 // common interface used by all clients of alias analysis information, and
11 // implemented by all alias analysis implementations.  Mod/Ref information is
12 // also captured by this interface.
13 //
14 // Implementations of this interface must implement the various virtual methods,
15 // which automatically provides functionality for the entire suite of client
16 // APIs.
17 //
18 // This API identifies memory regions with the MemoryLocation class. The pointer
19 // component specifies the base memory address of the region. The Size specifies
20 // the maximum size (in address units) of the memory region, or
21 // MemoryLocation::UnknownSize if the size is not known. The TBAA tag
22 // identifies the "type" of the memory reference; see the
23 // TypeBasedAliasAnalysis class for details.
24 //
25 // Some non-obvious details include:
26 //  - Pointers that point to two completely different objects in memory never
27 //    alias, regardless of the value of the Size component.
28 //  - NoAlias doesn't imply inequal pointers. The most obvious example of this
29 //    is two pointers to constant memory. Even if they are equal, constant
30 //    memory is never stored to, so there will never be any dependencies.
31 //    In this and other situations, the pointers may be both NoAlias and
32 //    MustAlias at the same time. The current API can only return one result,
33 //    though this is rarely a problem in practice.
34 //
35 //===----------------------------------------------------------------------===//
36 
37 #ifndef LLVM_ANALYSIS_ALIASANALYSIS_H
38 #define LLVM_ANALYSIS_ALIASANALYSIS_H
39 
40 #include "llvm/ADT/DenseMap.h"
41 #include "llvm/ADT/Optional.h"
42 #include "llvm/ADT/SmallVector.h"
43 #include "llvm/Analysis/MemoryLocation.h"
44 #include "llvm/IR/PassManager.h"
45 #include "llvm/Pass.h"
46 #include <cstdint>
47 #include <functional>
48 #include <memory>
49 #include <vector>
50 
51 namespace llvm {
52 
53 class AnalysisUsage;
54 class AtomicCmpXchgInst;
55 class BasicAAResult;
56 class BasicBlock;
57 class CatchPadInst;
58 class CatchReturnInst;
59 class DominatorTree;
60 class FenceInst;
61 class Function;
62 class LoopInfo;
63 class PreservedAnalyses;
64 class TargetLibraryInfo;
65 class Value;
66 template <typename> class SmallPtrSetImpl;
67 
68 /// The possible results of an alias query.
69 ///
70 /// These results are always computed between two MemoryLocation objects as
71 /// a query to some alias analysis.
72 ///
73 /// Note that these are unscoped enumerations because we would like to support
74 /// implicitly testing a result for the existence of any possible aliasing with
75 /// a conversion to bool, but an "enum class" doesn't support this. The
76 /// canonical names from the literature are suffixed and unique anyways, and so
77 /// they serve as global constants in LLVM for these results.
78 ///
79 /// See docs/AliasAnalysis.html for more information on the specific meanings
80 /// of these values.
81 class AliasResult {
82 private:
83   static const int OffsetBits = 23;
84   static const int AliasBits = 8;
85   static_assert(AliasBits + 1 + OffsetBits <= 32,
86                 "AliasResult size is intended to be 4 bytes!");
87 
88   unsigned int Alias : AliasBits;
89   unsigned int HasOffset : 1;
90   signed int Offset : OffsetBits;
91 
92 public:
93   enum Kind : uint8_t {
94     /// The two locations do not alias at all.
95     ///
96     /// This value is arranged to convert to false, while all other values
97     /// convert to true. This allows a boolean context to convert the result to
98     /// a binary flag indicating whether there is the possibility of aliasing.
99     NoAlias = 0,
100     /// The two locations may or may not alias. This is the least precise
101     /// result.
102     MayAlias,
103     /// The two locations alias, but only due to a partial overlap.
104     PartialAlias,
105     /// The two locations precisely alias each other.
106     MustAlias,
107   };
108   static_assert(MustAlias < (1 << AliasBits),
109                 "Not enough bit field size for the enum!");
110 
111   explicit AliasResult() = delete;
112   constexpr AliasResult(const Kind &Alias)
113       : Alias(Alias), HasOffset(false), Offset(0) {}
114 
115   operator Kind() const { return static_cast<Kind>(Alias); }
116 
117   constexpr bool hasOffset() const { return HasOffset; }
118   constexpr int32_t getOffset() const {
119     assert(HasOffset && "No offset!");
120     return Offset;
121   }
122   void setOffset(int32_t NewOffset) {
123     if (isInt<OffsetBits>(NewOffset)) {
124       HasOffset = true;
125       Offset = NewOffset;
126     }
127   }
128 
129   /// Helper for processing AliasResult for swapped memory location pairs.
130   void swap(bool DoSwap = true) {
131     if (DoSwap && hasOffset())
132       setOffset(-getOffset());
133   }
134 };
135 
136 static_assert(sizeof(AliasResult) == 4,
137               "AliasResult size is intended to be 4 bytes!");
138 
139 /// << operator for AliasResult.
140 raw_ostream &operator<<(raw_ostream &OS, AliasResult AR);
141 
142 /// Flags indicating whether a memory access modifies or references memory.
143 ///
144 /// This is no access at all, a modification, a reference, or both
145 /// a modification and a reference. These are specifically structured such that
146 /// they form a three bit matrix and bit-tests for 'mod' or 'ref' or 'must'
147 /// work with any of the possible values.
148 enum class ModRefInfo : uint8_t {
149   /// Must is provided for completeness, but no routines will return only
150   /// Must today. See definition of Must below.
151   Must = 0,
152   /// The access may reference the value stored in memory,
153   /// a mustAlias relation was found, and no mayAlias or partialAlias found.
154   MustRef = 1,
155   /// The access may modify the value stored in memory,
156   /// a mustAlias relation was found, and no mayAlias or partialAlias found.
157   MustMod = 2,
158   /// The access may reference, modify or both the value stored in memory,
159   /// a mustAlias relation was found, and no mayAlias or partialAlias found.
160   MustModRef = MustRef | MustMod,
161   /// The access neither references nor modifies the value stored in memory.
162   NoModRef = 4,
163   /// The access may reference the value stored in memory.
164   Ref = NoModRef | MustRef,
165   /// The access may modify the value stored in memory.
166   Mod = NoModRef | MustMod,
167   /// The access may reference and may modify the value stored in memory.
168   ModRef = Ref | Mod,
169 
170   /// About Must:
171   /// Must is set in a best effort manner.
172   /// We usually do not try our best to infer Must, instead it is merely
173   /// another piece of "free" information that is presented when available.
174   /// Must set means there was certainly a MustAlias found. For calls,
175   /// where multiple arguments are checked (argmemonly), this translates to
176   /// only MustAlias or NoAlias was found.
177   /// Must is not set for RAR accesses, even if the two locations must
178   /// alias. The reason is that two read accesses translate to an early return
179   /// of NoModRef. An additional alias check to set Must may be
180   /// expensive. Other cases may also not set Must(e.g. callCapturesBefore).
181   /// We refer to Must being *set* when the most significant bit is *cleared*.
182   /// Conversely we *clear* Must information by *setting* the Must bit to 1.
183 };
184 
185 LLVM_NODISCARD inline bool isNoModRef(const ModRefInfo MRI) {
186   return (static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustModRef)) ==
187          static_cast<int>(ModRefInfo::Must);
188 }
189 LLVM_NODISCARD inline bool isModOrRefSet(const ModRefInfo MRI) {
190   return static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustModRef);
191 }
192 LLVM_NODISCARD inline bool isModAndRefSet(const ModRefInfo MRI) {
193   return (static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustModRef)) ==
194          static_cast<int>(ModRefInfo::MustModRef);
195 }
196 LLVM_NODISCARD inline bool isModSet(const ModRefInfo MRI) {
197   return static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustMod);
198 }
199 LLVM_NODISCARD inline bool isRefSet(const ModRefInfo MRI) {
200   return static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustRef);
201 }
202 LLVM_NODISCARD inline bool isMustSet(const ModRefInfo MRI) {
203   return !(static_cast<int>(MRI) & static_cast<int>(ModRefInfo::NoModRef));
204 }
205 
206 LLVM_NODISCARD inline ModRefInfo setMod(const ModRefInfo MRI) {
207   return ModRefInfo(static_cast<int>(MRI) |
208                     static_cast<int>(ModRefInfo::MustMod));
209 }
210 LLVM_NODISCARD inline ModRefInfo setRef(const ModRefInfo MRI) {
211   return ModRefInfo(static_cast<int>(MRI) |
212                     static_cast<int>(ModRefInfo::MustRef));
213 }
214 LLVM_NODISCARD inline ModRefInfo setMust(const ModRefInfo MRI) {
215   return ModRefInfo(static_cast<int>(MRI) &
216                     static_cast<int>(ModRefInfo::MustModRef));
217 }
218 LLVM_NODISCARD inline ModRefInfo setModAndRef(const ModRefInfo MRI) {
219   return ModRefInfo(static_cast<int>(MRI) |
220                     static_cast<int>(ModRefInfo::MustModRef));
221 }
222 LLVM_NODISCARD inline ModRefInfo clearMod(const ModRefInfo MRI) {
223   return ModRefInfo(static_cast<int>(MRI) & static_cast<int>(ModRefInfo::Ref));
224 }
225 LLVM_NODISCARD inline ModRefInfo clearRef(const ModRefInfo MRI) {
226   return ModRefInfo(static_cast<int>(MRI) & static_cast<int>(ModRefInfo::Mod));
227 }
228 LLVM_NODISCARD inline ModRefInfo clearMust(const ModRefInfo MRI) {
229   return ModRefInfo(static_cast<int>(MRI) |
230                     static_cast<int>(ModRefInfo::NoModRef));
231 }
232 LLVM_NODISCARD inline ModRefInfo unionModRef(const ModRefInfo MRI1,
233                                              const ModRefInfo MRI2) {
234   return ModRefInfo(static_cast<int>(MRI1) | static_cast<int>(MRI2));
235 }
236 LLVM_NODISCARD inline ModRefInfo intersectModRef(const ModRefInfo MRI1,
237                                                  const ModRefInfo MRI2) {
238   return ModRefInfo(static_cast<int>(MRI1) & static_cast<int>(MRI2));
239 }
240 
241 /// The locations at which a function might access memory.
242 ///
243 /// These are primarily used in conjunction with the \c AccessKind bits to
244 /// describe both the nature of access and the locations of access for a
245 /// function call.
246 enum FunctionModRefLocation {
247   /// Base case is no access to memory.
248   FMRL_Nowhere = 0,
249   /// Access to memory via argument pointers.
250   FMRL_ArgumentPointees = 8,
251   /// Memory that is inaccessible via LLVM IR.
252   FMRL_InaccessibleMem = 16,
253   /// Access to any memory.
254   FMRL_Anywhere = 32 | FMRL_InaccessibleMem | FMRL_ArgumentPointees
255 };
256 
257 /// Summary of how a function affects memory in the program.
258 ///
259 /// Loads from constant globals are not considered memory accesses for this
260 /// interface. Also, functions may freely modify stack space local to their
261 /// invocation without having to report it through these interfaces.
262 enum FunctionModRefBehavior {
263   /// This function does not perform any non-local loads or stores to memory.
264   ///
265   /// This property corresponds to the GCC 'const' attribute.
266   /// This property corresponds to the LLVM IR 'readnone' attribute.
267   /// This property corresponds to the IntrNoMem LLVM intrinsic flag.
268   FMRB_DoesNotAccessMemory =
269       FMRL_Nowhere | static_cast<int>(ModRefInfo::NoModRef),
270 
271   /// The only memory references in this function (if it has any) are
272   /// non-volatile loads from objects pointed to by its pointer-typed
273   /// arguments, with arbitrary offsets.
274   ///
275   /// This property corresponds to the combination of the IntrReadMem
276   /// and IntrArgMemOnly LLVM intrinsic flags.
277   FMRB_OnlyReadsArgumentPointees =
278       FMRL_ArgumentPointees | static_cast<int>(ModRefInfo::Ref),
279 
280   /// The only memory references in this function (if it has any) are
281   /// non-volatile stores from objects pointed to by its pointer-typed
282   /// arguments, with arbitrary offsets.
283   ///
284   /// This property corresponds to the combination of the IntrWriteMem
285   /// and IntrArgMemOnly LLVM intrinsic flags.
286   FMRB_OnlyWritesArgumentPointees =
287       FMRL_ArgumentPointees | static_cast<int>(ModRefInfo::Mod),
288 
289   /// The only memory references in this function (if it has any) are
290   /// non-volatile loads and stores from objects pointed to by its
291   /// pointer-typed arguments, with arbitrary offsets.
292   ///
293   /// This property corresponds to the IntrArgMemOnly LLVM intrinsic flag.
294   FMRB_OnlyAccessesArgumentPointees =
295       FMRL_ArgumentPointees | static_cast<int>(ModRefInfo::ModRef),
296 
297   /// The only memory references in this function (if it has any) are
298   /// reads of memory that is otherwise inaccessible via LLVM IR.
299   ///
300   /// This property corresponds to the LLVM IR inaccessiblememonly attribute.
301   FMRB_OnlyReadsInaccessibleMem =
302       FMRL_InaccessibleMem | static_cast<int>(ModRefInfo::Ref),
303 
304   /// The only memory references in this function (if it has any) are
305   /// writes to memory that is otherwise inaccessible via LLVM IR.
306   ///
307   /// This property corresponds to the LLVM IR inaccessiblememonly attribute.
308   FMRB_OnlyWritesInaccessibleMem =
309       FMRL_InaccessibleMem | static_cast<int>(ModRefInfo::Mod),
310 
311   /// The only memory references in this function (if it has any) are
312   /// references of memory that is otherwise inaccessible via LLVM IR.
313   ///
314   /// This property corresponds to the LLVM IR inaccessiblememonly attribute.
315   FMRB_OnlyAccessesInaccessibleMem =
316       FMRL_InaccessibleMem | static_cast<int>(ModRefInfo::ModRef),
317 
318   /// The function may perform non-volatile loads from objects pointed
319   /// to by its pointer-typed arguments, with arbitrary offsets, and
320   /// it may also perform loads of memory that is otherwise
321   /// inaccessible via LLVM IR.
322   ///
323   /// This property corresponds to the LLVM IR
324   /// inaccessiblemem_or_argmemonly attribute.
325   FMRB_OnlyReadsInaccessibleOrArgMem = FMRL_InaccessibleMem |
326                                        FMRL_ArgumentPointees |
327                                        static_cast<int>(ModRefInfo::Ref),
328 
329   /// The function may perform non-volatile stores to objects pointed
330   /// to by its pointer-typed arguments, with arbitrary offsets, and
331   /// it may also perform stores of memory that is otherwise
332   /// inaccessible via LLVM IR.
333   ///
334   /// This property corresponds to the LLVM IR
335   /// inaccessiblemem_or_argmemonly attribute.
336   FMRB_OnlyWritesInaccessibleOrArgMem = FMRL_InaccessibleMem |
337                                         FMRL_ArgumentPointees |
338                                         static_cast<int>(ModRefInfo::Mod),
339 
340   /// The function may perform non-volatile loads and stores of objects
341   /// pointed to by its pointer-typed arguments, with arbitrary offsets, and
342   /// it may also perform loads and stores of memory that is otherwise
343   /// inaccessible via LLVM IR.
344   ///
345   /// This property corresponds to the LLVM IR
346   /// inaccessiblemem_or_argmemonly attribute.
347   FMRB_OnlyAccessesInaccessibleOrArgMem = FMRL_InaccessibleMem |
348                                           FMRL_ArgumentPointees |
349                                           static_cast<int>(ModRefInfo::ModRef),
350 
351   /// This function does not perform any non-local stores or volatile loads,
352   /// but may read from any memory location.
353   ///
354   /// This property corresponds to the GCC 'pure' attribute.
355   /// This property corresponds to the LLVM IR 'readonly' attribute.
356   /// This property corresponds to the IntrReadMem LLVM intrinsic flag.
357   FMRB_OnlyReadsMemory = FMRL_Anywhere | static_cast<int>(ModRefInfo::Ref),
358 
359   // This function does not read from memory anywhere, but may write to any
360   // memory location.
361   //
362   // This property corresponds to the LLVM IR 'writeonly' attribute.
363   // This property corresponds to the IntrWriteMem LLVM intrinsic flag.
364   FMRB_OnlyWritesMemory = FMRL_Anywhere | static_cast<int>(ModRefInfo::Mod),
365 
366   /// This indicates that the function could not be classified into one of the
367   /// behaviors above.
368   FMRB_UnknownModRefBehavior =
369       FMRL_Anywhere | static_cast<int>(ModRefInfo::ModRef)
370 };
371 
372 // Wrapper method strips bits significant only in FunctionModRefBehavior,
373 // to obtain a valid ModRefInfo. The benefit of using the wrapper is that if
374 // ModRefInfo enum changes, the wrapper can be updated to & with the new enum
375 // entry with all bits set to 1.
376 LLVM_NODISCARD inline ModRefInfo
377 createModRefInfo(const FunctionModRefBehavior FMRB) {
378   return ModRefInfo(FMRB & static_cast<int>(ModRefInfo::ModRef));
379 }
380 
381 /// Virtual base class for providers of capture information.
382 struct CaptureInfo {
383   virtual ~CaptureInfo() = 0;
384   virtual bool isNotCapturedBeforeOrAt(const Value *Object,
385                                        const Instruction *I) = 0;
386 };
387 
388 /// Context-free CaptureInfo provider, which computes and caches whether an
389 /// object is captured in the function at all, but does not distinguish whether
390 /// it was captured before or after the context instruction.
391 class SimpleCaptureInfo final : public CaptureInfo {
392   SmallDenseMap<const Value *, bool, 8> IsCapturedCache;
393 
394 public:
395   bool isNotCapturedBeforeOrAt(const Value *Object,
396                                const Instruction *I) override;
397 };
398 
399 /// Context-sensitive CaptureInfo provider, which computes and caches the
400 /// earliest common dominator closure of all captures. It provides a good
401 /// approximation to a precise "captures before" analysis.
402 class EarliestEscapeInfo final : public CaptureInfo {
403   DominatorTree &DT;
404   const LoopInfo &LI;
405 
406   /// Map from identified local object to an instruction before which it does
407   /// not escape, or nullptr if it never escapes. The "earliest" instruction
408   /// may be a conservative approximation, e.g. the first instruction in the
409   /// function is always a legal choice.
410   DenseMap<const Value *, Instruction *> EarliestEscapes;
411 
412   /// Reverse map from instruction to the objects it is the earliest escape for.
413   /// This is used for cache invalidation purposes.
414   DenseMap<Instruction *, TinyPtrVector<const Value *>> Inst2Obj;
415 
416   const SmallPtrSetImpl<const Value *> &EphValues;
417 
418 public:
419   EarliestEscapeInfo(DominatorTree &DT, const LoopInfo &LI,
420                      const SmallPtrSetImpl<const Value *> &EphValues)
421       : DT(DT), LI(LI), EphValues(EphValues) {}
422 
423   bool isNotCapturedBeforeOrAt(const Value *Object,
424                                const Instruction *I) override;
425 
426   void removeInstruction(Instruction *I);
427 };
428 
429 /// Reduced version of MemoryLocation that only stores a pointer and size.
430 /// Used for caching AATags independent BasicAA results.
431 struct AACacheLoc {
432   const Value *Ptr;
433   LocationSize Size;
434 };
435 
436 template <> struct DenseMapInfo<AACacheLoc> {
437   static inline AACacheLoc getEmptyKey() {
438     return {DenseMapInfo<const Value *>::getEmptyKey(),
439             DenseMapInfo<LocationSize>::getEmptyKey()};
440   }
441   static inline AACacheLoc getTombstoneKey() {
442     return {DenseMapInfo<const Value *>::getTombstoneKey(),
443             DenseMapInfo<LocationSize>::getTombstoneKey()};
444   }
445   static unsigned getHashValue(const AACacheLoc &Val) {
446     return DenseMapInfo<const Value *>::getHashValue(Val.Ptr) ^
447            DenseMapInfo<LocationSize>::getHashValue(Val.Size);
448   }
449   static bool isEqual(const AACacheLoc &LHS, const AACacheLoc &RHS) {
450     return LHS.Ptr == RHS.Ptr && LHS.Size == RHS.Size;
451   }
452 };
453 
454 /// This class stores info we want to provide to or retain within an alias
455 /// query. By default, the root query is stateless and starts with a freshly
456 /// constructed info object. Specific alias analyses can use this query info to
457 /// store per-query state that is important for recursive or nested queries to
458 /// avoid recomputing. To enable preserving this state across multiple queries
459 /// where safe (due to the IR not changing), use a `BatchAAResults` wrapper.
460 /// The information stored in an `AAQueryInfo` is currently limitted to the
461 /// caches used by BasicAA, but can further be extended to fit other AA needs.
462 class AAQueryInfo {
463 public:
464   using LocPair = std::pair<AACacheLoc, AACacheLoc>;
465   struct CacheEntry {
466     AliasResult Result;
467     /// Number of times a NoAlias assumption has been used.
468     /// 0 for assumptions that have not been used, -1 for definitive results.
469     int NumAssumptionUses;
470     /// Whether this is a definitive (non-assumption) result.
471     bool isDefinitive() const { return NumAssumptionUses < 0; }
472   };
473   using AliasCacheT = SmallDenseMap<LocPair, CacheEntry, 8>;
474   AliasCacheT AliasCache;
475 
476   CaptureInfo *CI;
477 
478   /// Query depth used to distinguish recursive queries.
479   unsigned Depth = 0;
480 
481   /// How many active NoAlias assumption uses there are.
482   int NumAssumptionUses = 0;
483 
484   /// Location pairs for which an assumption based result is currently stored.
485   /// Used to remove all potentially incorrect results from the cache if an
486   /// assumption is disproven.
487   SmallVector<AAQueryInfo::LocPair, 4> AssumptionBasedResults;
488 
489   AAQueryInfo(CaptureInfo *CI) : CI(CI) {}
490 
491   /// Create a new AAQueryInfo based on this one, but with the cache cleared.
492   /// This is used for recursive queries across phis, where cache results may
493   /// not be valid.
494   AAQueryInfo withEmptyCache() {
495     AAQueryInfo NewAAQI(CI);
496     NewAAQI.Depth = Depth;
497     return NewAAQI;
498   }
499 };
500 
501 /// AAQueryInfo that uses SimpleCaptureInfo.
502 class SimpleAAQueryInfo : public AAQueryInfo {
503   SimpleCaptureInfo CI;
504 
505 public:
506   SimpleAAQueryInfo() : AAQueryInfo(&CI) {}
507 };
508 
509 class BatchAAResults;
510 
511 class AAResults {
512 public:
513   // Make these results default constructable and movable. We have to spell
514   // these out because MSVC won't synthesize them.
515   AAResults(const TargetLibraryInfo &TLI) : TLI(TLI) {}
516   AAResults(AAResults &&Arg);
517   ~AAResults();
518 
519   /// Register a specific AA result.
520   template <typename AAResultT> void addAAResult(AAResultT &AAResult) {
521     // FIXME: We should use a much lighter weight system than the usual
522     // polymorphic pattern because we don't own AAResult. It should
523     // ideally involve two pointers and no separate allocation.
524     AAs.emplace_back(new Model<AAResultT>(AAResult, *this));
525   }
526 
527   /// Register a function analysis ID that the results aggregation depends on.
528   ///
529   /// This is used in the new pass manager to implement the invalidation logic
530   /// where we must invalidate the results aggregation if any of our component
531   /// analyses become invalid.
532   void addAADependencyID(AnalysisKey *ID) { AADeps.push_back(ID); }
533 
534   /// Handle invalidation events in the new pass manager.
535   ///
536   /// The aggregation is invalidated if any of the underlying analyses is
537   /// invalidated.
538   bool invalidate(Function &F, const PreservedAnalyses &PA,
539                   FunctionAnalysisManager::Invalidator &Inv);
540 
541   //===--------------------------------------------------------------------===//
542   /// \name Alias Queries
543   /// @{
544 
545   /// The main low level interface to the alias analysis implementation.
546   /// Returns an AliasResult indicating whether the two pointers are aliased to
547   /// each other. This is the interface that must be implemented by specific
548   /// alias analysis implementations.
549   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB);
550 
551   /// A convenience wrapper around the primary \c alias interface.
552   AliasResult alias(const Value *V1, LocationSize V1Size, const Value *V2,
553                     LocationSize V2Size) {
554     return alias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
555   }
556 
557   /// A convenience wrapper around the primary \c alias interface.
558   AliasResult alias(const Value *V1, const Value *V2) {
559     return alias(MemoryLocation::getBeforeOrAfter(V1),
560                  MemoryLocation::getBeforeOrAfter(V2));
561   }
562 
563   /// A trivial helper function to check to see if the specified pointers are
564   /// no-alias.
565   bool isNoAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
566     return alias(LocA, LocB) == AliasResult::NoAlias;
567   }
568 
569   /// A convenience wrapper around the \c isNoAlias helper interface.
570   bool isNoAlias(const Value *V1, LocationSize V1Size, const Value *V2,
571                  LocationSize V2Size) {
572     return isNoAlias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
573   }
574 
575   /// A convenience wrapper around the \c isNoAlias helper interface.
576   bool isNoAlias(const Value *V1, const Value *V2) {
577     return isNoAlias(MemoryLocation::getBeforeOrAfter(V1),
578                      MemoryLocation::getBeforeOrAfter(V2));
579   }
580 
581   /// A trivial helper function to check to see if the specified pointers are
582   /// must-alias.
583   bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
584     return alias(LocA, LocB) == AliasResult::MustAlias;
585   }
586 
587   /// A convenience wrapper around the \c isMustAlias helper interface.
588   bool isMustAlias(const Value *V1, const Value *V2) {
589     return alias(V1, LocationSize::precise(1), V2, LocationSize::precise(1)) ==
590            AliasResult::MustAlias;
591   }
592 
593   /// Checks whether the given location points to constant memory, or if
594   /// \p OrLocal is true whether it points to a local alloca.
595   bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal = false);
596 
597   /// A convenience wrapper around the primary \c pointsToConstantMemory
598   /// interface.
599   bool pointsToConstantMemory(const Value *P, bool OrLocal = false) {
600     return pointsToConstantMemory(MemoryLocation::getBeforeOrAfter(P), OrLocal);
601   }
602 
603   /// @}
604   //===--------------------------------------------------------------------===//
605   /// \name Simple mod/ref information
606   /// @{
607 
608   /// Get the ModRef info associated with a pointer argument of a call. The
609   /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
610   /// that these bits do not necessarily account for the overall behavior of
611   /// the function, but rather only provide additional per-argument
612   /// information. This never sets ModRefInfo::Must.
613   ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx);
614 
615   /// Return the behavior of the given call site.
616   FunctionModRefBehavior getModRefBehavior(const CallBase *Call);
617 
618   /// Return the behavior when calling the given function.
619   FunctionModRefBehavior getModRefBehavior(const Function *F);
620 
621   /// Checks if the specified call is known to never read or write memory.
622   ///
623   /// Note that if the call only reads from known-constant memory, it is also
624   /// legal to return true. Also, calls that unwind the stack are legal for
625   /// this predicate.
626   ///
627   /// Many optimizations (such as CSE and LICM) can be performed on such calls
628   /// without worrying about aliasing properties, and many calls have this
629   /// property (e.g. calls to 'sin' and 'cos').
630   ///
631   /// This property corresponds to the GCC 'const' attribute.
632   bool doesNotAccessMemory(const CallBase *Call) {
633     return getModRefBehavior(Call) == FMRB_DoesNotAccessMemory;
634   }
635 
636   /// Checks if the specified function is known to never read or write memory.
637   ///
638   /// Note that if the function only reads from known-constant memory, it is
639   /// also legal to return true. Also, function that unwind the stack are legal
640   /// for this predicate.
641   ///
642   /// Many optimizations (such as CSE and LICM) can be performed on such calls
643   /// to such functions without worrying about aliasing properties, and many
644   /// functions have this property (e.g. 'sin' and 'cos').
645   ///
646   /// This property corresponds to the GCC 'const' attribute.
647   bool doesNotAccessMemory(const Function *F) {
648     return getModRefBehavior(F) == FMRB_DoesNotAccessMemory;
649   }
650 
651   /// Checks if the specified call is known to only read from non-volatile
652   /// memory (or not access memory at all).
653   ///
654   /// Calls that unwind the stack are legal for this predicate.
655   ///
656   /// This property allows many common optimizations to be performed in the
657   /// absence of interfering store instructions, such as CSE of strlen calls.
658   ///
659   /// This property corresponds to the GCC 'pure' attribute.
660   bool onlyReadsMemory(const CallBase *Call) {
661     return onlyReadsMemory(getModRefBehavior(Call));
662   }
663 
664   /// Checks if the specified function is known to only read from non-volatile
665   /// memory (or not access memory at all).
666   ///
667   /// Functions that unwind the stack are legal for this predicate.
668   ///
669   /// This property allows many common optimizations to be performed in the
670   /// absence of interfering store instructions, such as CSE of strlen calls.
671   ///
672   /// This property corresponds to the GCC 'pure' attribute.
673   bool onlyReadsMemory(const Function *F) {
674     return onlyReadsMemory(getModRefBehavior(F));
675   }
676 
677   /// Checks if functions with the specified behavior are known to only read
678   /// from non-volatile memory (or not access memory at all).
679   static bool onlyReadsMemory(FunctionModRefBehavior MRB) {
680     return !isModSet(createModRefInfo(MRB));
681   }
682 
683   /// Checks if functions with the specified behavior are known to only write
684   /// memory (or not access memory at all).
685   static bool onlyWritesMemory(FunctionModRefBehavior MRB) {
686     return !isRefSet(createModRefInfo(MRB));
687   }
688 
689   /// Checks if functions with the specified behavior are known to read and
690   /// write at most from objects pointed to by their pointer-typed arguments
691   /// (with arbitrary offsets).
692   static bool onlyAccessesArgPointees(FunctionModRefBehavior MRB) {
693     return !((unsigned)MRB & FMRL_Anywhere & ~FMRL_ArgumentPointees);
694   }
695 
696   /// Checks if functions with the specified behavior are known to potentially
697   /// read or write from objects pointed to be their pointer-typed arguments
698   /// (with arbitrary offsets).
699   static bool doesAccessArgPointees(FunctionModRefBehavior MRB) {
700     return isModOrRefSet(createModRefInfo(MRB)) &&
701            ((unsigned)MRB & FMRL_ArgumentPointees);
702   }
703 
704   /// Checks if functions with the specified behavior are known to read and
705   /// write at most from memory that is inaccessible from LLVM IR.
706   static bool onlyAccessesInaccessibleMem(FunctionModRefBehavior MRB) {
707     return !((unsigned)MRB & FMRL_Anywhere & ~FMRL_InaccessibleMem);
708   }
709 
710   /// Checks if functions with the specified behavior are known to potentially
711   /// read or write from memory that is inaccessible from LLVM IR.
712   static bool doesAccessInaccessibleMem(FunctionModRefBehavior MRB) {
713     return isModOrRefSet(createModRefInfo(MRB)) &&
714              ((unsigned)MRB & FMRL_InaccessibleMem);
715   }
716 
717   /// Checks if functions with the specified behavior are known to read and
718   /// write at most from memory that is inaccessible from LLVM IR or objects
719   /// pointed to by their pointer-typed arguments (with arbitrary offsets).
720   static bool onlyAccessesInaccessibleOrArgMem(FunctionModRefBehavior MRB) {
721     return !((unsigned)MRB & FMRL_Anywhere &
722              ~(FMRL_InaccessibleMem | FMRL_ArgumentPointees));
723   }
724 
725   /// getModRefInfo (for call sites) - Return information about whether
726   /// a particular call site modifies or reads the specified memory location.
727   ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc);
728 
729   /// getModRefInfo (for call sites) - A convenience wrapper.
730   ModRefInfo getModRefInfo(const CallBase *Call, const Value *P,
731                            LocationSize Size) {
732     return getModRefInfo(Call, MemoryLocation(P, Size));
733   }
734 
735   /// getModRefInfo (for loads) - Return information about whether
736   /// a particular load modifies or reads the specified memory location.
737   ModRefInfo getModRefInfo(const LoadInst *L, const MemoryLocation &Loc);
738 
739   /// getModRefInfo (for loads) - A convenience wrapper.
740   ModRefInfo getModRefInfo(const LoadInst *L, const Value *P,
741                            LocationSize Size) {
742     return getModRefInfo(L, MemoryLocation(P, Size));
743   }
744 
745   /// getModRefInfo (for stores) - Return information about whether
746   /// a particular store modifies or reads the specified memory location.
747   ModRefInfo getModRefInfo(const StoreInst *S, const MemoryLocation &Loc);
748 
749   /// getModRefInfo (for stores) - A convenience wrapper.
750   ModRefInfo getModRefInfo(const StoreInst *S, const Value *P,
751                            LocationSize Size) {
752     return getModRefInfo(S, MemoryLocation(P, Size));
753   }
754 
755   /// getModRefInfo (for fences) - Return information about whether
756   /// a particular store modifies or reads the specified memory location.
757   ModRefInfo getModRefInfo(const FenceInst *S, const MemoryLocation &Loc);
758 
759   /// getModRefInfo (for fences) - A convenience wrapper.
760   ModRefInfo getModRefInfo(const FenceInst *S, const Value *P,
761                            LocationSize Size) {
762     return getModRefInfo(S, MemoryLocation(P, Size));
763   }
764 
765   /// getModRefInfo (for cmpxchges) - Return information about whether
766   /// a particular cmpxchg modifies or reads the specified memory location.
767   ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX,
768                            const MemoryLocation &Loc);
769 
770   /// getModRefInfo (for cmpxchges) - A convenience wrapper.
771   ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX, const Value *P,
772                            LocationSize Size) {
773     return getModRefInfo(CX, MemoryLocation(P, Size));
774   }
775 
776   /// getModRefInfo (for atomicrmws) - Return information about whether
777   /// a particular atomicrmw modifies or reads the specified memory location.
778   ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const MemoryLocation &Loc);
779 
780   /// getModRefInfo (for atomicrmws) - A convenience wrapper.
781   ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const Value *P,
782                            LocationSize Size) {
783     return getModRefInfo(RMW, MemoryLocation(P, Size));
784   }
785 
786   /// getModRefInfo (for va_args) - Return information about whether
787   /// a particular va_arg modifies or reads the specified memory location.
788   ModRefInfo getModRefInfo(const VAArgInst *I, const MemoryLocation &Loc);
789 
790   /// getModRefInfo (for va_args) - A convenience wrapper.
791   ModRefInfo getModRefInfo(const VAArgInst *I, const Value *P,
792                            LocationSize Size) {
793     return getModRefInfo(I, MemoryLocation(P, Size));
794   }
795 
796   /// getModRefInfo (for catchpads) - Return information about whether
797   /// a particular catchpad modifies or reads the specified memory location.
798   ModRefInfo getModRefInfo(const CatchPadInst *I, const MemoryLocation &Loc);
799 
800   /// getModRefInfo (for catchpads) - A convenience wrapper.
801   ModRefInfo getModRefInfo(const CatchPadInst *I, const Value *P,
802                            LocationSize Size) {
803     return getModRefInfo(I, MemoryLocation(P, Size));
804   }
805 
806   /// getModRefInfo (for catchrets) - Return information about whether
807   /// a particular catchret modifies or reads the specified memory location.
808   ModRefInfo getModRefInfo(const CatchReturnInst *I, const MemoryLocation &Loc);
809 
810   /// getModRefInfo (for catchrets) - A convenience wrapper.
811   ModRefInfo getModRefInfo(const CatchReturnInst *I, const Value *P,
812                            LocationSize Size) {
813     return getModRefInfo(I, MemoryLocation(P, Size));
814   }
815 
816   /// Check whether or not an instruction may read or write the optionally
817   /// specified memory location.
818   ///
819   ///
820   /// An instruction that doesn't read or write memory may be trivially LICM'd
821   /// for example.
822   ///
823   /// For function calls, this delegates to the alias-analysis specific
824   /// call-site mod-ref behavior queries. Otherwise it delegates to the specific
825   /// helpers above.
826   ModRefInfo getModRefInfo(const Instruction *I,
827                            const Optional<MemoryLocation> &OptLoc) {
828     SimpleAAQueryInfo AAQIP;
829     return getModRefInfo(I, OptLoc, AAQIP);
830   }
831 
832   /// A convenience wrapper for constructing the memory location.
833   ModRefInfo getModRefInfo(const Instruction *I, const Value *P,
834                            LocationSize Size) {
835     return getModRefInfo(I, MemoryLocation(P, Size));
836   }
837 
838   /// Return information about whether a call and an instruction may refer to
839   /// the same memory locations.
840   ModRefInfo getModRefInfo(Instruction *I, const CallBase *Call);
841 
842   /// Return information about whether two call sites may refer to the same set
843   /// of memory locations. See the AA documentation for details:
844   ///   http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
845   ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2);
846 
847   /// Return information about whether a particular call site modifies
848   /// or reads the specified memory location \p MemLoc before instruction \p I
849   /// in a BasicBlock.
850   /// Early exits in callCapturesBefore may lead to ModRefInfo::Must not being
851   /// set.
852   ModRefInfo callCapturesBefore(const Instruction *I,
853                                 const MemoryLocation &MemLoc,
854                                 DominatorTree *DT) {
855     SimpleAAQueryInfo AAQIP;
856     return callCapturesBefore(I, MemLoc, DT, AAQIP);
857   }
858 
859   /// A convenience wrapper to synthesize a memory location.
860   ModRefInfo callCapturesBefore(const Instruction *I, const Value *P,
861                                 LocationSize Size, DominatorTree *DT) {
862     return callCapturesBefore(I, MemoryLocation(P, Size), DT);
863   }
864 
865   /// @}
866   //===--------------------------------------------------------------------===//
867   /// \name Higher level methods for querying mod/ref information.
868   /// @{
869 
870   /// Check if it is possible for execution of the specified basic block to
871   /// modify the location Loc.
872   bool canBasicBlockModify(const BasicBlock &BB, const MemoryLocation &Loc);
873 
874   /// A convenience wrapper synthesizing a memory location.
875   bool canBasicBlockModify(const BasicBlock &BB, const Value *P,
876                            LocationSize Size) {
877     return canBasicBlockModify(BB, MemoryLocation(P, Size));
878   }
879 
880   /// Check if it is possible for the execution of the specified instructions
881   /// to mod\ref (according to the mode) the location Loc.
882   ///
883   /// The instructions to consider are all of the instructions in the range of
884   /// [I1,I2] INCLUSIVE. I1 and I2 must be in the same basic block.
885   bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
886                                  const MemoryLocation &Loc,
887                                  const ModRefInfo Mode);
888 
889   /// A convenience wrapper synthesizing a memory location.
890   bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
891                                  const Value *Ptr, LocationSize Size,
892                                  const ModRefInfo Mode) {
893     return canInstructionRangeModRef(I1, I2, MemoryLocation(Ptr, Size), Mode);
894   }
895 
896 private:
897   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
898                     AAQueryInfo &AAQI);
899   bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
900                               bool OrLocal = false);
901   ModRefInfo getModRefInfo(Instruction *I, const CallBase *Call2,
902                            AAQueryInfo &AAQIP);
903   ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
904                            AAQueryInfo &AAQI);
905   ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
906                            AAQueryInfo &AAQI);
907   ModRefInfo getModRefInfo(const VAArgInst *V, const MemoryLocation &Loc,
908                            AAQueryInfo &AAQI);
909   ModRefInfo getModRefInfo(const LoadInst *L, const MemoryLocation &Loc,
910                            AAQueryInfo &AAQI);
911   ModRefInfo getModRefInfo(const StoreInst *S, const MemoryLocation &Loc,
912                            AAQueryInfo &AAQI);
913   ModRefInfo getModRefInfo(const FenceInst *S, const MemoryLocation &Loc,
914                            AAQueryInfo &AAQI);
915   ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX,
916                            const MemoryLocation &Loc, AAQueryInfo &AAQI);
917   ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const MemoryLocation &Loc,
918                            AAQueryInfo &AAQI);
919   ModRefInfo getModRefInfo(const CatchPadInst *I, const MemoryLocation &Loc,
920                            AAQueryInfo &AAQI);
921   ModRefInfo getModRefInfo(const CatchReturnInst *I, const MemoryLocation &Loc,
922                            AAQueryInfo &AAQI);
923   ModRefInfo getModRefInfo(const Instruction *I,
924                            const Optional<MemoryLocation> &OptLoc,
925                            AAQueryInfo &AAQIP);
926   ModRefInfo callCapturesBefore(const Instruction *I,
927                                 const MemoryLocation &MemLoc, DominatorTree *DT,
928                                 AAQueryInfo &AAQIP);
929 
930   class Concept;
931 
932   template <typename T> class Model;
933 
934   template <typename T> friend class AAResultBase;
935 
936   const TargetLibraryInfo &TLI;
937 
938   std::vector<std::unique_ptr<Concept>> AAs;
939 
940   std::vector<AnalysisKey *> AADeps;
941 
942   friend class BatchAAResults;
943 };
944 
945 /// This class is a wrapper over an AAResults, and it is intended to be used
946 /// only when there are no IR changes inbetween queries. BatchAAResults is
947 /// reusing the same `AAQueryInfo` to preserve the state across queries,
948 /// esentially making AA work in "batch mode". The internal state cannot be
949 /// cleared, so to go "out-of-batch-mode", the user must either use AAResults,
950 /// or create a new BatchAAResults.
951 class BatchAAResults {
952   AAResults &AA;
953   AAQueryInfo AAQI;
954   SimpleCaptureInfo SimpleCI;
955 
956 public:
957   BatchAAResults(AAResults &AAR) : AA(AAR), AAQI(&SimpleCI) {}
958   BatchAAResults(AAResults &AAR, CaptureInfo *CI) : AA(AAR), AAQI(CI) {}
959 
960   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
961     return AA.alias(LocA, LocB, AAQI);
962   }
963   bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal = false) {
964     return AA.pointsToConstantMemory(Loc, AAQI, OrLocal);
965   }
966   ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc) {
967     return AA.getModRefInfo(Call, Loc, AAQI);
968   }
969   ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2) {
970     return AA.getModRefInfo(Call1, Call2, AAQI);
971   }
972   ModRefInfo getModRefInfo(const Instruction *I,
973                            const Optional<MemoryLocation> &OptLoc) {
974     return AA.getModRefInfo(I, OptLoc, AAQI);
975   }
976   ModRefInfo getModRefInfo(Instruction *I, const CallBase *Call2) {
977     return AA.getModRefInfo(I, Call2, AAQI);
978   }
979   ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
980     return AA.getArgModRefInfo(Call, ArgIdx);
981   }
982   FunctionModRefBehavior getModRefBehavior(const CallBase *Call) {
983     return AA.getModRefBehavior(Call);
984   }
985   bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
986     return alias(LocA, LocB) == AliasResult::MustAlias;
987   }
988   bool isMustAlias(const Value *V1, const Value *V2) {
989     return alias(MemoryLocation(V1, LocationSize::precise(1)),
990                  MemoryLocation(V2, LocationSize::precise(1))) ==
991            AliasResult::MustAlias;
992   }
993   ModRefInfo callCapturesBefore(const Instruction *I,
994                                 const MemoryLocation &MemLoc,
995                                 DominatorTree *DT) {
996     return AA.callCapturesBefore(I, MemLoc, DT, AAQI);
997   }
998 };
999 
1000 /// Temporary typedef for legacy code that uses a generic \c AliasAnalysis
1001 /// pointer or reference.
1002 using AliasAnalysis = AAResults;
1003 
1004 /// A private abstract base class describing the concept of an individual alias
1005 /// analysis implementation.
1006 ///
1007 /// This interface is implemented by any \c Model instantiation. It is also the
1008 /// interface which a type used to instantiate the model must provide.
1009 ///
1010 /// All of these methods model methods by the same name in the \c
1011 /// AAResults class. Only differences and specifics to how the
1012 /// implementations are called are documented here.
1013 class AAResults::Concept {
1014 public:
1015   virtual ~Concept() = 0;
1016 
1017   /// An update API used internally by the AAResults to provide
1018   /// a handle back to the top level aggregation.
1019   virtual void setAAResults(AAResults *NewAAR) = 0;
1020 
1021   //===--------------------------------------------------------------------===//
1022   /// \name Alias Queries
1023   /// @{
1024 
1025   /// The main low level interface to the alias analysis implementation.
1026   /// Returns an AliasResult indicating whether the two pointers are aliased to
1027   /// each other. This is the interface that must be implemented by specific
1028   /// alias analysis implementations.
1029   virtual AliasResult alias(const MemoryLocation &LocA,
1030                             const MemoryLocation &LocB, AAQueryInfo &AAQI) = 0;
1031 
1032   /// Checks whether the given location points to constant memory, or if
1033   /// \p OrLocal is true whether it points to a local alloca.
1034   virtual bool pointsToConstantMemory(const MemoryLocation &Loc,
1035                                       AAQueryInfo &AAQI, bool OrLocal) = 0;
1036 
1037   /// @}
1038   //===--------------------------------------------------------------------===//
1039   /// \name Simple mod/ref information
1040   /// @{
1041 
1042   /// Get the ModRef info associated with a pointer argument of a callsite. The
1043   /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
1044   /// that these bits do not necessarily account for the overall behavior of
1045   /// the function, but rather only provide additional per-argument
1046   /// information.
1047   virtual ModRefInfo getArgModRefInfo(const CallBase *Call,
1048                                       unsigned ArgIdx) = 0;
1049 
1050   /// Return the behavior of the given call site.
1051   virtual FunctionModRefBehavior getModRefBehavior(const CallBase *Call) = 0;
1052 
1053   /// Return the behavior when calling the given function.
1054   virtual FunctionModRefBehavior getModRefBehavior(const Function *F) = 0;
1055 
1056   /// getModRefInfo (for call sites) - Return information about whether
1057   /// a particular call site modifies or reads the specified memory location.
1058   virtual ModRefInfo getModRefInfo(const CallBase *Call,
1059                                    const MemoryLocation &Loc,
1060                                    AAQueryInfo &AAQI) = 0;
1061 
1062   /// Return information about whether two call sites may refer to the same set
1063   /// of memory locations. See the AA documentation for details:
1064   ///   http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
1065   virtual ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
1066                                    AAQueryInfo &AAQI) = 0;
1067 
1068   /// @}
1069 };
1070 
1071 /// A private class template which derives from \c Concept and wraps some other
1072 /// type.
1073 ///
1074 /// This models the concept by directly forwarding each interface point to the
1075 /// wrapped type which must implement a compatible interface. This provides
1076 /// a type erased binding.
1077 template <typename AAResultT> class AAResults::Model final : public Concept {
1078   AAResultT &Result;
1079 
1080 public:
1081   explicit Model(AAResultT &Result, AAResults &AAR) : Result(Result) {
1082     Result.setAAResults(&AAR);
1083   }
1084   ~Model() override = default;
1085 
1086   void setAAResults(AAResults *NewAAR) override { Result.setAAResults(NewAAR); }
1087 
1088   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
1089                     AAQueryInfo &AAQI) override {
1090     return Result.alias(LocA, LocB, AAQI);
1091   }
1092 
1093   bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
1094                               bool OrLocal) override {
1095     return Result.pointsToConstantMemory(Loc, AAQI, OrLocal);
1096   }
1097 
1098   ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) override {
1099     return Result.getArgModRefInfo(Call, ArgIdx);
1100   }
1101 
1102   FunctionModRefBehavior getModRefBehavior(const CallBase *Call) override {
1103     return Result.getModRefBehavior(Call);
1104   }
1105 
1106   FunctionModRefBehavior getModRefBehavior(const Function *F) override {
1107     return Result.getModRefBehavior(F);
1108   }
1109 
1110   ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
1111                            AAQueryInfo &AAQI) override {
1112     return Result.getModRefInfo(Call, Loc, AAQI);
1113   }
1114 
1115   ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
1116                            AAQueryInfo &AAQI) override {
1117     return Result.getModRefInfo(Call1, Call2, AAQI);
1118   }
1119 };
1120 
1121 /// A CRTP-driven "mixin" base class to help implement the function alias
1122 /// analysis results concept.
1123 ///
1124 /// Because of the nature of many alias analysis implementations, they often
1125 /// only implement a subset of the interface. This base class will attempt to
1126 /// implement the remaining portions of the interface in terms of simpler forms
1127 /// of the interface where possible, and otherwise provide conservatively
1128 /// correct fallback implementations.
1129 ///
1130 /// Implementors of an alias analysis should derive from this CRTP, and then
1131 /// override specific methods that they wish to customize. There is no need to
1132 /// use virtual anywhere, the CRTP base class does static dispatch to the
1133 /// derived type passed into it.
1134 template <typename DerivedT> class AAResultBase {
1135   // Expose some parts of the interface only to the AAResults::Model
1136   // for wrapping. Specifically, this allows the model to call our
1137   // setAAResults method without exposing it as a fully public API.
1138   friend class AAResults::Model<DerivedT>;
1139 
1140   /// A pointer to the AAResults object that this AAResult is
1141   /// aggregated within. May be null if not aggregated.
1142   AAResults *AAR = nullptr;
1143 
1144   /// Helper to dispatch calls back through the derived type.
1145   DerivedT &derived() { return static_cast<DerivedT &>(*this); }
1146 
1147   /// A setter for the AAResults pointer, which is used to satisfy the
1148   /// AAResults::Model contract.
1149   void setAAResults(AAResults *NewAAR) { AAR = NewAAR; }
1150 
1151 protected:
1152   /// This proxy class models a common pattern where we delegate to either the
1153   /// top-level \c AAResults aggregation if one is registered, or to the
1154   /// current result if none are registered.
1155   class AAResultsProxy {
1156     AAResults *AAR;
1157     DerivedT &CurrentResult;
1158 
1159   public:
1160     AAResultsProxy(AAResults *AAR, DerivedT &CurrentResult)
1161         : AAR(AAR), CurrentResult(CurrentResult) {}
1162 
1163     AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
1164                       AAQueryInfo &AAQI) {
1165       return AAR ? AAR->alias(LocA, LocB, AAQI)
1166                  : CurrentResult.alias(LocA, LocB, AAQI);
1167     }
1168 
1169     bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
1170                                 bool OrLocal) {
1171       return AAR ? AAR->pointsToConstantMemory(Loc, AAQI, OrLocal)
1172                  : CurrentResult.pointsToConstantMemory(Loc, AAQI, OrLocal);
1173     }
1174 
1175     ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
1176       return AAR ? AAR->getArgModRefInfo(Call, ArgIdx)
1177                  : CurrentResult.getArgModRefInfo(Call, ArgIdx);
1178     }
1179 
1180     FunctionModRefBehavior getModRefBehavior(const CallBase *Call) {
1181       return AAR ? AAR->getModRefBehavior(Call)
1182                  : CurrentResult.getModRefBehavior(Call);
1183     }
1184 
1185     FunctionModRefBehavior getModRefBehavior(const Function *F) {
1186       return AAR ? AAR->getModRefBehavior(F) : CurrentResult.getModRefBehavior(F);
1187     }
1188 
1189     ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
1190                              AAQueryInfo &AAQI) {
1191       return AAR ? AAR->getModRefInfo(Call, Loc, AAQI)
1192                  : CurrentResult.getModRefInfo(Call, Loc, AAQI);
1193     }
1194 
1195     ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
1196                              AAQueryInfo &AAQI) {
1197       return AAR ? AAR->getModRefInfo(Call1, Call2, AAQI)
1198                  : CurrentResult.getModRefInfo(Call1, Call2, AAQI);
1199     }
1200   };
1201 
1202   explicit AAResultBase() = default;
1203 
1204   // Provide all the copy and move constructors so that derived types aren't
1205   // constrained.
1206   AAResultBase(const AAResultBase &Arg) {}
1207   AAResultBase(AAResultBase &&Arg) {}
1208 
1209   /// Get a proxy for the best AA result set to query at this time.
1210   ///
1211   /// When this result is part of a larger aggregation, this will proxy to that
1212   /// aggregation. When this result is used in isolation, it will just delegate
1213   /// back to the derived class's implementation.
1214   ///
1215   /// Note that callers of this need to take considerable care to not cause
1216   /// performance problems when they use this routine, in the case of a large
1217   /// number of alias analyses being aggregated, it can be expensive to walk
1218   /// back across the chain.
1219   AAResultsProxy getBestAAResults() { return AAResultsProxy(AAR, derived()); }
1220 
1221 public:
1222   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
1223                     AAQueryInfo &AAQI) {
1224     return AliasResult::MayAlias;
1225   }
1226 
1227   bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
1228                               bool OrLocal) {
1229     return false;
1230   }
1231 
1232   ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
1233     return ModRefInfo::ModRef;
1234   }
1235 
1236   FunctionModRefBehavior getModRefBehavior(const CallBase *Call) {
1237     return FMRB_UnknownModRefBehavior;
1238   }
1239 
1240   FunctionModRefBehavior getModRefBehavior(const Function *F) {
1241     return FMRB_UnknownModRefBehavior;
1242   }
1243 
1244   ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
1245                            AAQueryInfo &AAQI) {
1246     return ModRefInfo::ModRef;
1247   }
1248 
1249   ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
1250                            AAQueryInfo &AAQI) {
1251     return ModRefInfo::ModRef;
1252   }
1253 };
1254 
1255 /// Return true if this pointer is returned by a noalias function.
1256 bool isNoAliasCall(const Value *V);
1257 
1258 /// Return true if this pointer refers to a distinct and identifiable object.
1259 /// This returns true for:
1260 ///    Global Variables and Functions (but not Global Aliases)
1261 ///    Allocas
1262 ///    ByVal and NoAlias Arguments
1263 ///    NoAlias returns (e.g. calls to malloc)
1264 ///
1265 bool isIdentifiedObject(const Value *V);
1266 
1267 /// Return true if V is umabigously identified at the function-level.
1268 /// Different IdentifiedFunctionLocals can't alias.
1269 /// Further, an IdentifiedFunctionLocal can not alias with any function
1270 /// arguments other than itself, which is not necessarily true for
1271 /// IdentifiedObjects.
1272 bool isIdentifiedFunctionLocal(const Value *V);
1273 
1274 /// Returns true if the pointer is one which would have been considered an
1275 /// escape by isNonEscapingLocalObject.
1276 bool isEscapeSource(const Value *V);
1277 
1278 /// Return true if Object memory is not visible after an unwind, in the sense
1279 /// that program semantics cannot depend on Object containing any particular
1280 /// value on unwind. If the RequiresNoCaptureBeforeUnwind out parameter is set
1281 /// to true, then the memory is only not visible if the object has not been
1282 /// captured prior to the unwind. Otherwise it is not visible even if captured.
1283 bool isNotVisibleOnUnwind(const Value *Object,
1284                           bool &RequiresNoCaptureBeforeUnwind);
1285 
1286 /// A manager for alias analyses.
1287 ///
1288 /// This class can have analyses registered with it and when run, it will run
1289 /// all of them and aggregate their results into single AA results interface
1290 /// that dispatches across all of the alias analysis results available.
1291 ///
1292 /// Note that the order in which analyses are registered is very significant.
1293 /// That is the order in which the results will be aggregated and queried.
1294 ///
1295 /// This manager effectively wraps the AnalysisManager for registering alias
1296 /// analyses. When you register your alias analysis with this manager, it will
1297 /// ensure the analysis itself is registered with its AnalysisManager.
1298 ///
1299 /// The result of this analysis is only invalidated if one of the particular
1300 /// aggregated AA results end up being invalidated. This removes the need to
1301 /// explicitly preserve the results of `AAManager`. Note that analyses should no
1302 /// longer be registered once the `AAManager` is run.
1303 class AAManager : public AnalysisInfoMixin<AAManager> {
1304 public:
1305   using Result = AAResults;
1306 
1307   /// Register a specific AA result.
1308   template <typename AnalysisT> void registerFunctionAnalysis() {
1309     ResultGetters.push_back(&getFunctionAAResultImpl<AnalysisT>);
1310   }
1311 
1312   /// Register a specific AA result.
1313   template <typename AnalysisT> void registerModuleAnalysis() {
1314     ResultGetters.push_back(&getModuleAAResultImpl<AnalysisT>);
1315   }
1316 
1317   Result run(Function &F, FunctionAnalysisManager &AM);
1318 
1319 private:
1320   friend AnalysisInfoMixin<AAManager>;
1321 
1322   static AnalysisKey Key;
1323 
1324   SmallVector<void (*)(Function &F, FunctionAnalysisManager &AM,
1325                        AAResults &AAResults),
1326               4> ResultGetters;
1327 
1328   template <typename AnalysisT>
1329   static void getFunctionAAResultImpl(Function &F,
1330                                       FunctionAnalysisManager &AM,
1331                                       AAResults &AAResults) {
1332     AAResults.addAAResult(AM.template getResult<AnalysisT>(F));
1333     AAResults.addAADependencyID(AnalysisT::ID());
1334   }
1335 
1336   template <typename AnalysisT>
1337   static void getModuleAAResultImpl(Function &F, FunctionAnalysisManager &AM,
1338                                     AAResults &AAResults) {
1339     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
1340     if (auto *R =
1341             MAMProxy.template getCachedResult<AnalysisT>(*F.getParent())) {
1342       AAResults.addAAResult(*R);
1343       MAMProxy
1344           .template registerOuterAnalysisInvalidation<AnalysisT, AAManager>();
1345     }
1346   }
1347 };
1348 
1349 /// A wrapper pass to provide the legacy pass manager access to a suitably
1350 /// prepared AAResults object.
1351 class AAResultsWrapperPass : public FunctionPass {
1352   std::unique_ptr<AAResults> AAR;
1353 
1354 public:
1355   static char ID;
1356 
1357   AAResultsWrapperPass();
1358 
1359   AAResults &getAAResults() { return *AAR; }
1360   const AAResults &getAAResults() const { return *AAR; }
1361 
1362   bool runOnFunction(Function &F) override;
1363 
1364   void getAnalysisUsage(AnalysisUsage &AU) const override;
1365 };
1366 
1367 /// A wrapper pass for external alias analyses. This just squirrels away the
1368 /// callback used to run any analyses and register their results.
1369 struct ExternalAAWrapperPass : ImmutablePass {
1370   using CallbackT = std::function<void(Pass &, Function &, AAResults &)>;
1371 
1372   CallbackT CB;
1373 
1374   static char ID;
1375 
1376   ExternalAAWrapperPass();
1377 
1378   explicit ExternalAAWrapperPass(CallbackT CB);
1379 
1380   void getAnalysisUsage(AnalysisUsage &AU) const override {
1381     AU.setPreservesAll();
1382   }
1383 };
1384 
1385 FunctionPass *createAAResultsWrapperPass();
1386 
1387 /// A wrapper pass around a callback which can be used to populate the
1388 /// AAResults in the AAResultsWrapperPass from an external AA.
1389 ///
1390 /// The callback provided here will be used each time we prepare an AAResults
1391 /// object, and will receive a reference to the function wrapper pass, the
1392 /// function, and the AAResults object to populate. This should be used when
1393 /// setting up a custom pass pipeline to inject a hook into the AA results.
1394 ImmutablePass *createExternalAAWrapperPass(
1395     std::function<void(Pass &, Function &, AAResults &)> Callback);
1396 
1397 /// A helper for the legacy pass manager to create a \c AAResults
1398 /// object populated to the best of our ability for a particular function when
1399 /// inside of a \c ModulePass or a \c CallGraphSCCPass.
1400 ///
1401 /// If a \c ModulePass or a \c CallGraphSCCPass calls \p
1402 /// createLegacyPMAAResults, it also needs to call \p addUsedAAAnalyses in \p
1403 /// getAnalysisUsage.
1404 AAResults createLegacyPMAAResults(Pass &P, Function &F, BasicAAResult &BAR);
1405 
1406 /// A helper for the legacy pass manager to populate \p AU to add uses to make
1407 /// sure the analyses required by \p createLegacyPMAAResults are available.
1408 void getAAResultsAnalysisUsage(AnalysisUsage &AU);
1409 
1410 } // end namespace llvm
1411 
1412 #endif // LLVM_ANALYSIS_ALIASANALYSIS_H
1413