1 //===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the generic AliasAnalysis interface, which is used as the
10 // common interface used by all clients of alias analysis information, and
11 // implemented by all alias analysis implementations.  Mod/Ref information is
12 // also captured by this interface.
13 //
14 // Implementations of this interface must implement the various virtual methods,
15 // which automatically provides functionality for the entire suite of client
16 // APIs.
17 //
18 // This API identifies memory regions with the MemoryLocation class. The pointer
19 // component specifies the base memory address of the region. The Size specifies
20 // the maximum size (in address units) of the memory region, or
21 // MemoryLocation::UnknownSize if the size is not known. The TBAA tag
22 // identifies the "type" of the memory reference; see the
23 // TypeBasedAliasAnalysis class for details.
24 //
25 // Some non-obvious details include:
26 //  - Pointers that point to two completely different objects in memory never
27 //    alias, regardless of the value of the Size component.
28 //  - NoAlias doesn't imply inequal pointers. The most obvious example of this
29 //    is two pointers to constant memory. Even if they are equal, constant
30 //    memory is never stored to, so there will never be any dependencies.
31 //    In this and other situations, the pointers may be both NoAlias and
32 //    MustAlias at the same time. The current API can only return one result,
33 //    though this is rarely a problem in practice.
34 //
35 //===----------------------------------------------------------------------===//
36 
37 #ifndef LLVM_ANALYSIS_ALIASANALYSIS_H
38 #define LLVM_ANALYSIS_ALIASANALYSIS_H
39 
40 #include "llvm/ADT/DenseMap.h"
41 #include "llvm/ADT/Sequence.h"
42 #include "llvm/ADT/SmallVector.h"
43 #include "llvm/Analysis/MemoryLocation.h"
44 #include "llvm/IR/PassManager.h"
45 #include "llvm/Pass.h"
46 #include "llvm/Support/ModRef.h"
47 #include <cstdint>
48 #include <functional>
49 #include <memory>
50 #include <optional>
51 #include <vector>
52 
53 namespace llvm {
54 
55 class AnalysisUsage;
56 class AtomicCmpXchgInst;
57 class BasicBlock;
58 class CatchPadInst;
59 class CatchReturnInst;
60 class DominatorTree;
61 class FenceInst;
62 class Function;
63 class LoopInfo;
64 class PreservedAnalyses;
65 class TargetLibraryInfo;
66 class Value;
67 
68 /// The possible results of an alias query.
69 ///
70 /// These results are always computed between two MemoryLocation objects as
71 /// a query to some alias analysis.
72 ///
73 /// Note that these are unscoped enumerations because we would like to support
74 /// implicitly testing a result for the existence of any possible aliasing with
75 /// a conversion to bool, but an "enum class" doesn't support this. The
76 /// canonical names from the literature are suffixed and unique anyways, and so
77 /// they serve as global constants in LLVM for these results.
78 ///
79 /// See docs/AliasAnalysis.html for more information on the specific meanings
80 /// of these values.
81 class AliasResult {
82 private:
83   static const int OffsetBits = 23;
84   static const int AliasBits = 8;
85   static_assert(AliasBits + 1 + OffsetBits <= 32,
86                 "AliasResult size is intended to be 4 bytes!");
87 
88   unsigned int Alias : AliasBits;
89   unsigned int HasOffset : 1;
90   signed int Offset : OffsetBits;
91 
92 public:
93   enum Kind : uint8_t {
94     /// The two locations do not alias at all.
95     ///
96     /// This value is arranged to convert to false, while all other values
97     /// convert to true. This allows a boolean context to convert the result to
98     /// a binary flag indicating whether there is the possibility of aliasing.
99     NoAlias = 0,
100     /// The two locations may or may not alias. This is the least precise
101     /// result.
102     MayAlias,
103     /// The two locations alias, but only due to a partial overlap.
104     PartialAlias,
105     /// The two locations precisely alias each other.
106     MustAlias,
107   };
108   static_assert(MustAlias < (1 << AliasBits),
109                 "Not enough bit field size for the enum!");
110 
111   explicit AliasResult() = delete;
112   constexpr AliasResult(const Kind &Alias)
113       : Alias(Alias), HasOffset(false), Offset(0) {}
114 
115   operator Kind() const { return static_cast<Kind>(Alias); }
116 
117   bool operator==(const AliasResult &Other) const {
118     return Alias == Other.Alias && HasOffset == Other.HasOffset &&
119            Offset == Other.Offset;
120   }
121   bool operator!=(const AliasResult &Other) const { return !(*this == Other); }
122 
123   bool operator==(Kind K) const { return Alias == K; }
124   bool operator!=(Kind K) const { return !(*this == K); }
125 
126   constexpr bool hasOffset() const { return HasOffset; }
127   constexpr int32_t getOffset() const {
128     assert(HasOffset && "No offset!");
129     return Offset;
130   }
131   void setOffset(int32_t NewOffset) {
132     if (isInt<OffsetBits>(NewOffset)) {
133       HasOffset = true;
134       Offset = NewOffset;
135     }
136   }
137 
138   /// Helper for processing AliasResult for swapped memory location pairs.
139   void swap(bool DoSwap = true) {
140     if (DoSwap && hasOffset())
141       setOffset(-getOffset());
142   }
143 };
144 
145 static_assert(sizeof(AliasResult) == 4,
146               "AliasResult size is intended to be 4 bytes!");
147 
148 /// << operator for AliasResult.
149 raw_ostream &operator<<(raw_ostream &OS, AliasResult AR);
150 
151 /// Virtual base class for providers of capture information.
152 struct CaptureInfo {
153   virtual ~CaptureInfo() = 0;
154 
155   /// Check whether Object is not captured before instruction I. If OrAt is
156   /// true, captures by instruction I itself are also considered.
157   ///
158   /// If I is nullptr, then captures at any point will be considered.
159   virtual bool isNotCapturedBefore(const Value *Object, const Instruction *I,
160                                    bool OrAt) = 0;
161 };
162 
163 /// Context-free CaptureInfo provider, which computes and caches whether an
164 /// object is captured in the function at all, but does not distinguish whether
165 /// it was captured before or after the context instruction.
166 class SimpleCaptureInfo final : public CaptureInfo {
167   SmallDenseMap<const Value *, bool, 8> IsCapturedCache;
168 
169 public:
170   bool isNotCapturedBefore(const Value *Object, const Instruction *I,
171                            bool OrAt) override;
172 };
173 
174 /// Context-sensitive CaptureInfo provider, which computes and caches the
175 /// earliest common dominator closure of all captures. It provides a good
176 /// approximation to a precise "captures before" analysis.
177 class EarliestEscapeInfo final : public CaptureInfo {
178   DominatorTree &DT;
179   const LoopInfo *LI;
180 
181   /// Map from identified local object to an instruction before which it does
182   /// not escape, or nullptr if it never escapes. The "earliest" instruction
183   /// may be a conservative approximation, e.g. the first instruction in the
184   /// function is always a legal choice.
185   DenseMap<const Value *, Instruction *> EarliestEscapes;
186 
187   /// Reverse map from instruction to the objects it is the earliest escape for.
188   /// This is used for cache invalidation purposes.
189   DenseMap<Instruction *, TinyPtrVector<const Value *>> Inst2Obj;
190 
191 public:
192   EarliestEscapeInfo(DominatorTree &DT, const LoopInfo *LI = nullptr)
193       : DT(DT), LI(LI) {}
194 
195   bool isNotCapturedBefore(const Value *Object, const Instruction *I,
196                            bool OrAt) override;
197 
198   void removeInstruction(Instruction *I);
199 };
200 
201 /// Cache key for BasicAA results. It only includes the pointer and size from
202 /// MemoryLocation, as BasicAA is AATags independent. Additionally, it includes
203 /// the value of MayBeCrossIteration, which may affect BasicAA results.
204 struct AACacheLoc {
205   using PtrTy = PointerIntPair<const Value *, 1, bool>;
206   PtrTy Ptr;
207   LocationSize Size;
208 
209   AACacheLoc(PtrTy Ptr, LocationSize Size) : Ptr(Ptr), Size(Size) {}
210   AACacheLoc(const Value *Ptr, LocationSize Size, bool MayBeCrossIteration)
211       : Ptr(Ptr, MayBeCrossIteration), Size(Size) {}
212 };
213 
214 template <> struct DenseMapInfo<AACacheLoc> {
215   static inline AACacheLoc getEmptyKey() {
216     return {DenseMapInfo<AACacheLoc::PtrTy>::getEmptyKey(),
217             DenseMapInfo<LocationSize>::getEmptyKey()};
218   }
219   static inline AACacheLoc getTombstoneKey() {
220     return {DenseMapInfo<AACacheLoc::PtrTy>::getTombstoneKey(),
221             DenseMapInfo<LocationSize>::getTombstoneKey()};
222   }
223   static unsigned getHashValue(const AACacheLoc &Val) {
224     return DenseMapInfo<AACacheLoc::PtrTy>::getHashValue(Val.Ptr) ^
225            DenseMapInfo<LocationSize>::getHashValue(Val.Size);
226   }
227   static bool isEqual(const AACacheLoc &LHS, const AACacheLoc &RHS) {
228     return LHS.Ptr == RHS.Ptr && LHS.Size == RHS.Size;
229   }
230 };
231 
232 class AAResults;
233 
234 /// This class stores info we want to provide to or retain within an alias
235 /// query. By default, the root query is stateless and starts with a freshly
236 /// constructed info object. Specific alias analyses can use this query info to
237 /// store per-query state that is important for recursive or nested queries to
238 /// avoid recomputing. To enable preserving this state across multiple queries
239 /// where safe (due to the IR not changing), use a `BatchAAResults` wrapper.
240 /// The information stored in an `AAQueryInfo` is currently limitted to the
241 /// caches used by BasicAA, but can further be extended to fit other AA needs.
242 class AAQueryInfo {
243 public:
244   using LocPair = std::pair<AACacheLoc, AACacheLoc>;
245   struct CacheEntry {
246     AliasResult Result;
247     /// Number of times a NoAlias assumption has been used.
248     /// 0 for assumptions that have not been used, -1 for definitive results.
249     int NumAssumptionUses;
250     /// Whether this is a definitive (non-assumption) result.
251     bool isDefinitive() const { return NumAssumptionUses < 0; }
252   };
253 
254   // Alias analysis result aggregration using which this query is performed.
255   // Can be used to perform recursive queries.
256   AAResults &AAR;
257 
258   using AliasCacheT = SmallDenseMap<LocPair, CacheEntry, 8>;
259   AliasCacheT AliasCache;
260 
261   CaptureInfo *CI;
262 
263   /// Query depth used to distinguish recursive queries.
264   unsigned Depth = 0;
265 
266   /// How many active NoAlias assumption uses there are.
267   int NumAssumptionUses = 0;
268 
269   /// Location pairs for which an assumption based result is currently stored.
270   /// Used to remove all potentially incorrect results from the cache if an
271   /// assumption is disproven.
272   SmallVector<AAQueryInfo::LocPair, 4> AssumptionBasedResults;
273 
274   /// Tracks whether the accesses may be on different cycle iterations.
275   ///
276   /// When interpret "Value" pointer equality as value equality we need to make
277   /// sure that the "Value" is not part of a cycle. Otherwise, two uses could
278   /// come from different "iterations" of a cycle and see different values for
279   /// the same "Value" pointer.
280   ///
281   /// The following example shows the problem:
282   ///   %p = phi(%alloca1, %addr2)
283   ///   %l = load %ptr
284   ///   %addr1 = gep, %alloca2, 0, %l
285   ///   %addr2 = gep  %alloca2, 0, (%l + 1)
286   ///      alias(%p, %addr1) -> MayAlias !
287   ///   store %l, ...
288   bool MayBeCrossIteration = false;
289 
290   /// Whether alias analysis is allowed to use the dominator tree, for use by
291   /// passes that lazily update the DT while performing AA queries.
292   bool UseDominatorTree = true;
293 
294   AAQueryInfo(AAResults &AAR, CaptureInfo *CI) : AAR(AAR), CI(CI) {}
295 };
296 
297 /// AAQueryInfo that uses SimpleCaptureInfo.
298 class SimpleAAQueryInfo : public AAQueryInfo {
299   SimpleCaptureInfo CI;
300 
301 public:
302   SimpleAAQueryInfo(AAResults &AAR) : AAQueryInfo(AAR, &CI) {}
303 };
304 
305 class BatchAAResults;
306 
307 class AAResults {
308 public:
309   // Make these results default constructable and movable. We have to spell
310   // these out because MSVC won't synthesize them.
311   AAResults(const TargetLibraryInfo &TLI) : TLI(TLI) {}
312   AAResults(AAResults &&Arg);
313   ~AAResults();
314 
315   /// Register a specific AA result.
316   template <typename AAResultT> void addAAResult(AAResultT &AAResult) {
317     // FIXME: We should use a much lighter weight system than the usual
318     // polymorphic pattern because we don't own AAResult. It should
319     // ideally involve two pointers and no separate allocation.
320     AAs.emplace_back(new Model<AAResultT>(AAResult, *this));
321   }
322 
323   /// Register a function analysis ID that the results aggregation depends on.
324   ///
325   /// This is used in the new pass manager to implement the invalidation logic
326   /// where we must invalidate the results aggregation if any of our component
327   /// analyses become invalid.
328   void addAADependencyID(AnalysisKey *ID) { AADeps.push_back(ID); }
329 
330   /// Handle invalidation events in the new pass manager.
331   ///
332   /// The aggregation is invalidated if any of the underlying analyses is
333   /// invalidated.
334   bool invalidate(Function &F, const PreservedAnalyses &PA,
335                   FunctionAnalysisManager::Invalidator &Inv);
336 
337   //===--------------------------------------------------------------------===//
338   /// \name Alias Queries
339   /// @{
340 
341   /// The main low level interface to the alias analysis implementation.
342   /// Returns an AliasResult indicating whether the two pointers are aliased to
343   /// each other. This is the interface that must be implemented by specific
344   /// alias analysis implementations.
345   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB);
346 
347   /// A convenience wrapper around the primary \c alias interface.
348   AliasResult alias(const Value *V1, LocationSize V1Size, const Value *V2,
349                     LocationSize V2Size) {
350     return alias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
351   }
352 
353   /// A convenience wrapper around the primary \c alias interface.
354   AliasResult alias(const Value *V1, const Value *V2) {
355     return alias(MemoryLocation::getBeforeOrAfter(V1),
356                  MemoryLocation::getBeforeOrAfter(V2));
357   }
358 
359   /// A trivial helper function to check to see if the specified pointers are
360   /// no-alias.
361   bool isNoAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
362     return alias(LocA, LocB) == AliasResult::NoAlias;
363   }
364 
365   /// A convenience wrapper around the \c isNoAlias helper interface.
366   bool isNoAlias(const Value *V1, LocationSize V1Size, const Value *V2,
367                  LocationSize V2Size) {
368     return isNoAlias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
369   }
370 
371   /// A convenience wrapper around the \c isNoAlias helper interface.
372   bool isNoAlias(const Value *V1, const Value *V2) {
373     return isNoAlias(MemoryLocation::getBeforeOrAfter(V1),
374                      MemoryLocation::getBeforeOrAfter(V2));
375   }
376 
377   /// A trivial helper function to check to see if the specified pointers are
378   /// must-alias.
379   bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
380     return alias(LocA, LocB) == AliasResult::MustAlias;
381   }
382 
383   /// A convenience wrapper around the \c isMustAlias helper interface.
384   bool isMustAlias(const Value *V1, const Value *V2) {
385     return alias(V1, LocationSize::precise(1), V2, LocationSize::precise(1)) ==
386            AliasResult::MustAlias;
387   }
388 
389   /// Checks whether the given location points to constant memory, or if
390   /// \p OrLocal is true whether it points to a local alloca.
391   bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal = false) {
392     return isNoModRef(getModRefInfoMask(Loc, OrLocal));
393   }
394 
395   /// A convenience wrapper around the primary \c pointsToConstantMemory
396   /// interface.
397   bool pointsToConstantMemory(const Value *P, bool OrLocal = false) {
398     return pointsToConstantMemory(MemoryLocation::getBeforeOrAfter(P), OrLocal);
399   }
400 
401   /// @}
402   //===--------------------------------------------------------------------===//
403   /// \name Simple mod/ref information
404   /// @{
405 
406   /// Returns a bitmask that should be unconditionally applied to the ModRef
407   /// info of a memory location. This allows us to eliminate Mod and/or Ref
408   /// from the ModRef info based on the knowledge that the memory location
409   /// points to constant and/or locally-invariant memory.
410   ///
411   /// If IgnoreLocals is true, then this method returns NoModRef for memory
412   /// that points to a local alloca.
413   ModRefInfo getModRefInfoMask(const MemoryLocation &Loc,
414                                bool IgnoreLocals = false);
415 
416   /// A convenience wrapper around the primary \c getModRefInfoMask
417   /// interface.
418   ModRefInfo getModRefInfoMask(const Value *P, bool IgnoreLocals = false) {
419     return getModRefInfoMask(MemoryLocation::getBeforeOrAfter(P), IgnoreLocals);
420   }
421 
422   /// Get the ModRef info associated with a pointer argument of a call. The
423   /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
424   /// that these bits do not necessarily account for the overall behavior of
425   /// the function, but rather only provide additional per-argument
426   /// information.
427   ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx);
428 
429   /// Return the behavior of the given call site.
430   MemoryEffects getMemoryEffects(const CallBase *Call);
431 
432   /// Return the behavior when calling the given function.
433   MemoryEffects getMemoryEffects(const Function *F);
434 
435   /// Checks if the specified call is known to never read or write memory.
436   ///
437   /// Note that if the call only reads from known-constant memory, it is also
438   /// legal to return true. Also, calls that unwind the stack are legal for
439   /// this predicate.
440   ///
441   /// Many optimizations (such as CSE and LICM) can be performed on such calls
442   /// without worrying about aliasing properties, and many calls have this
443   /// property (e.g. calls to 'sin' and 'cos').
444   ///
445   /// This property corresponds to the GCC 'const' attribute.
446   bool doesNotAccessMemory(const CallBase *Call) {
447     return getMemoryEffects(Call).doesNotAccessMemory();
448   }
449 
450   /// Checks if the specified function is known to never read or write memory.
451   ///
452   /// Note that if the function only reads from known-constant memory, it is
453   /// also legal to return true. Also, function that unwind the stack are legal
454   /// for this predicate.
455   ///
456   /// Many optimizations (such as CSE and LICM) can be performed on such calls
457   /// to such functions without worrying about aliasing properties, and many
458   /// functions have this property (e.g. 'sin' and 'cos').
459   ///
460   /// This property corresponds to the GCC 'const' attribute.
461   bool doesNotAccessMemory(const Function *F) {
462     return getMemoryEffects(F).doesNotAccessMemory();
463   }
464 
465   /// Checks if the specified call is known to only read from non-volatile
466   /// memory (or not access memory at all).
467   ///
468   /// Calls that unwind the stack are legal for this predicate.
469   ///
470   /// This property allows many common optimizations to be performed in the
471   /// absence of interfering store instructions, such as CSE of strlen calls.
472   ///
473   /// This property corresponds to the GCC 'pure' attribute.
474   bool onlyReadsMemory(const CallBase *Call) {
475     return getMemoryEffects(Call).onlyReadsMemory();
476   }
477 
478   /// Checks if the specified function is known to only read from non-volatile
479   /// memory (or not access memory at all).
480   ///
481   /// Functions that unwind the stack are legal for this predicate.
482   ///
483   /// This property allows many common optimizations to be performed in the
484   /// absence of interfering store instructions, such as CSE of strlen calls.
485   ///
486   /// This property corresponds to the GCC 'pure' attribute.
487   bool onlyReadsMemory(const Function *F) {
488     return getMemoryEffects(F).onlyReadsMemory();
489   }
490 
491   /// Check whether or not an instruction may read or write the optionally
492   /// specified memory location.
493   ///
494   ///
495   /// An instruction that doesn't read or write memory may be trivially LICM'd
496   /// for example.
497   ///
498   /// For function calls, this delegates to the alias-analysis specific
499   /// call-site mod-ref behavior queries. Otherwise it delegates to the specific
500   /// helpers above.
501   ModRefInfo getModRefInfo(const Instruction *I,
502                            const std::optional<MemoryLocation> &OptLoc) {
503     SimpleAAQueryInfo AAQIP(*this);
504     return getModRefInfo(I, OptLoc, AAQIP);
505   }
506 
507   /// A convenience wrapper for constructing the memory location.
508   ModRefInfo getModRefInfo(const Instruction *I, const Value *P,
509                            LocationSize Size) {
510     return getModRefInfo(I, MemoryLocation(P, Size));
511   }
512 
513   /// Return information about whether a call and an instruction may refer to
514   /// the same memory locations.
515   ModRefInfo getModRefInfo(const Instruction *I, const CallBase *Call);
516 
517   /// Return information about whether a particular call site modifies
518   /// or reads the specified memory location \p MemLoc before instruction \p I
519   /// in a BasicBlock.
520   ModRefInfo callCapturesBefore(const Instruction *I,
521                                 const MemoryLocation &MemLoc,
522                                 DominatorTree *DT) {
523     SimpleAAQueryInfo AAQIP(*this);
524     return callCapturesBefore(I, MemLoc, DT, AAQIP);
525   }
526 
527   /// A convenience wrapper to synthesize a memory location.
528   ModRefInfo callCapturesBefore(const Instruction *I, const Value *P,
529                                 LocationSize Size, DominatorTree *DT) {
530     return callCapturesBefore(I, MemoryLocation(P, Size), DT);
531   }
532 
533   /// @}
534   //===--------------------------------------------------------------------===//
535   /// \name Higher level methods for querying mod/ref information.
536   /// @{
537 
538   /// Check if it is possible for execution of the specified basic block to
539   /// modify the location Loc.
540   bool canBasicBlockModify(const BasicBlock &BB, const MemoryLocation &Loc);
541 
542   /// A convenience wrapper synthesizing a memory location.
543   bool canBasicBlockModify(const BasicBlock &BB, const Value *P,
544                            LocationSize Size) {
545     return canBasicBlockModify(BB, MemoryLocation(P, Size));
546   }
547 
548   /// Check if it is possible for the execution of the specified instructions
549   /// to mod\ref (according to the mode) the location Loc.
550   ///
551   /// The instructions to consider are all of the instructions in the range of
552   /// [I1,I2] INCLUSIVE. I1 and I2 must be in the same basic block.
553   bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
554                                  const MemoryLocation &Loc,
555                                  const ModRefInfo Mode);
556 
557   /// A convenience wrapper synthesizing a memory location.
558   bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
559                                  const Value *Ptr, LocationSize Size,
560                                  const ModRefInfo Mode) {
561     return canInstructionRangeModRef(I1, I2, MemoryLocation(Ptr, Size), Mode);
562   }
563 
564   // CtxI can be nullptr, in which case the query is whether or not the aliasing
565   // relationship holds through the entire function.
566   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
567                     AAQueryInfo &AAQI, const Instruction *CtxI = nullptr);
568 
569   bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
570                               bool OrLocal = false);
571   ModRefInfo getModRefInfoMask(const MemoryLocation &Loc, AAQueryInfo &AAQI,
572                                bool IgnoreLocals = false);
573   ModRefInfo getModRefInfo(const Instruction *I, const CallBase *Call2,
574                            AAQueryInfo &AAQIP);
575   ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
576                            AAQueryInfo &AAQI);
577   ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
578                            AAQueryInfo &AAQI);
579   ModRefInfo getModRefInfo(const VAArgInst *V, const MemoryLocation &Loc,
580                            AAQueryInfo &AAQI);
581   ModRefInfo getModRefInfo(const LoadInst *L, const MemoryLocation &Loc,
582                            AAQueryInfo &AAQI);
583   ModRefInfo getModRefInfo(const StoreInst *S, const MemoryLocation &Loc,
584                            AAQueryInfo &AAQI);
585   ModRefInfo getModRefInfo(const FenceInst *S, const MemoryLocation &Loc,
586                            AAQueryInfo &AAQI);
587   ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX,
588                            const MemoryLocation &Loc, AAQueryInfo &AAQI);
589   ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const MemoryLocation &Loc,
590                            AAQueryInfo &AAQI);
591   ModRefInfo getModRefInfo(const CatchPadInst *I, const MemoryLocation &Loc,
592                            AAQueryInfo &AAQI);
593   ModRefInfo getModRefInfo(const CatchReturnInst *I, const MemoryLocation &Loc,
594                            AAQueryInfo &AAQI);
595   ModRefInfo getModRefInfo(const Instruction *I,
596                            const std::optional<MemoryLocation> &OptLoc,
597                            AAQueryInfo &AAQIP);
598   ModRefInfo callCapturesBefore(const Instruction *I,
599                                 const MemoryLocation &MemLoc, DominatorTree *DT,
600                                 AAQueryInfo &AAQIP);
601   MemoryEffects getMemoryEffects(const CallBase *Call, AAQueryInfo &AAQI);
602 
603 private:
604   class Concept;
605 
606   template <typename T> class Model;
607 
608   friend class AAResultBase;
609 
610   const TargetLibraryInfo &TLI;
611 
612   std::vector<std::unique_ptr<Concept>> AAs;
613 
614   std::vector<AnalysisKey *> AADeps;
615 
616   friend class BatchAAResults;
617 };
618 
619 /// This class is a wrapper over an AAResults, and it is intended to be used
620 /// only when there are no IR changes inbetween queries. BatchAAResults is
621 /// reusing the same `AAQueryInfo` to preserve the state across queries,
622 /// esentially making AA work in "batch mode". The internal state cannot be
623 /// cleared, so to go "out-of-batch-mode", the user must either use AAResults,
624 /// or create a new BatchAAResults.
625 class BatchAAResults {
626   AAResults &AA;
627   AAQueryInfo AAQI;
628   SimpleCaptureInfo SimpleCI;
629 
630 public:
631   BatchAAResults(AAResults &AAR) : AA(AAR), AAQI(AAR, &SimpleCI) {}
632   BatchAAResults(AAResults &AAR, CaptureInfo *CI) : AA(AAR), AAQI(AAR, CI) {}
633 
634   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
635     return AA.alias(LocA, LocB, AAQI);
636   }
637   bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal = false) {
638     return AA.pointsToConstantMemory(Loc, AAQI, OrLocal);
639   }
640   ModRefInfo getModRefInfoMask(const MemoryLocation &Loc,
641                                bool IgnoreLocals = false) {
642     return AA.getModRefInfoMask(Loc, AAQI, IgnoreLocals);
643   }
644   ModRefInfo getModRefInfo(const Instruction *I,
645                            const std::optional<MemoryLocation> &OptLoc) {
646     return AA.getModRefInfo(I, OptLoc, AAQI);
647   }
648   ModRefInfo getModRefInfo(const Instruction *I, const CallBase *Call2) {
649     return AA.getModRefInfo(I, Call2, AAQI);
650   }
651   ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
652     return AA.getArgModRefInfo(Call, ArgIdx);
653   }
654   MemoryEffects getMemoryEffects(const CallBase *Call) {
655     return AA.getMemoryEffects(Call, AAQI);
656   }
657   bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
658     return alias(LocA, LocB) == AliasResult::MustAlias;
659   }
660   bool isMustAlias(const Value *V1, const Value *V2) {
661     return alias(MemoryLocation(V1, LocationSize::precise(1)),
662                  MemoryLocation(V2, LocationSize::precise(1))) ==
663            AliasResult::MustAlias;
664   }
665   ModRefInfo callCapturesBefore(const Instruction *I,
666                                 const MemoryLocation &MemLoc,
667                                 DominatorTree *DT) {
668     return AA.callCapturesBefore(I, MemLoc, DT, AAQI);
669   }
670 
671   /// Assume that values may come from different cycle iterations.
672   void enableCrossIterationMode() {
673     AAQI.MayBeCrossIteration = true;
674   }
675 
676   /// Disable the use of the dominator tree during alias analysis queries.
677   void disableDominatorTree() { AAQI.UseDominatorTree = false; }
678 };
679 
680 /// Temporary typedef for legacy code that uses a generic \c AliasAnalysis
681 /// pointer or reference.
682 using AliasAnalysis = AAResults;
683 
684 /// A private abstract base class describing the concept of an individual alias
685 /// analysis implementation.
686 ///
687 /// This interface is implemented by any \c Model instantiation. It is also the
688 /// interface which a type used to instantiate the model must provide.
689 ///
690 /// All of these methods model methods by the same name in the \c
691 /// AAResults class. Only differences and specifics to how the
692 /// implementations are called are documented here.
693 class AAResults::Concept {
694 public:
695   virtual ~Concept() = 0;
696 
697   //===--------------------------------------------------------------------===//
698   /// \name Alias Queries
699   /// @{
700 
701   /// The main low level interface to the alias analysis implementation.
702   /// Returns an AliasResult indicating whether the two pointers are aliased to
703   /// each other. This is the interface that must be implemented by specific
704   /// alias analysis implementations.
705   virtual AliasResult alias(const MemoryLocation &LocA,
706                             const MemoryLocation &LocB, AAQueryInfo &AAQI,
707                             const Instruction *CtxI) = 0;
708 
709   /// @}
710   //===--------------------------------------------------------------------===//
711   /// \name Simple mod/ref information
712   /// @{
713 
714   /// Returns a bitmask that should be unconditionally applied to the ModRef
715   /// info of a memory location. This allows us to eliminate Mod and/or Ref from
716   /// the ModRef info based on the knowledge that the memory location points to
717   /// constant and/or locally-invariant memory.
718   virtual ModRefInfo getModRefInfoMask(const MemoryLocation &Loc,
719                                        AAQueryInfo &AAQI,
720                                        bool IgnoreLocals) = 0;
721 
722   /// Get the ModRef info associated with a pointer argument of a callsite. The
723   /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
724   /// that these bits do not necessarily account for the overall behavior of
725   /// the function, but rather only provide additional per-argument
726   /// information.
727   virtual ModRefInfo getArgModRefInfo(const CallBase *Call,
728                                       unsigned ArgIdx) = 0;
729 
730   /// Return the behavior of the given call site.
731   virtual MemoryEffects getMemoryEffects(const CallBase *Call,
732                                          AAQueryInfo &AAQI) = 0;
733 
734   /// Return the behavior when calling the given function.
735   virtual MemoryEffects getMemoryEffects(const Function *F) = 0;
736 
737   /// getModRefInfo (for call sites) - Return information about whether
738   /// a particular call site modifies or reads the specified memory location.
739   virtual ModRefInfo getModRefInfo(const CallBase *Call,
740                                    const MemoryLocation &Loc,
741                                    AAQueryInfo &AAQI) = 0;
742 
743   /// Return information about whether two call sites may refer to the same set
744   /// of memory locations. See the AA documentation for details:
745   ///   http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
746   virtual ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
747                                    AAQueryInfo &AAQI) = 0;
748 
749   /// @}
750 };
751 
752 /// A private class template which derives from \c Concept and wraps some other
753 /// type.
754 ///
755 /// This models the concept by directly forwarding each interface point to the
756 /// wrapped type which must implement a compatible interface. This provides
757 /// a type erased binding.
758 template <typename AAResultT> class AAResults::Model final : public Concept {
759   AAResultT &Result;
760 
761 public:
762   explicit Model(AAResultT &Result, AAResults &AAR) : Result(Result) {}
763   ~Model() override = default;
764 
765   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
766                     AAQueryInfo &AAQI, const Instruction *CtxI) override {
767     return Result.alias(LocA, LocB, AAQI, CtxI);
768   }
769 
770   ModRefInfo getModRefInfoMask(const MemoryLocation &Loc, AAQueryInfo &AAQI,
771                                bool IgnoreLocals) override {
772     return Result.getModRefInfoMask(Loc, AAQI, IgnoreLocals);
773   }
774 
775   ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) override {
776     return Result.getArgModRefInfo(Call, ArgIdx);
777   }
778 
779   MemoryEffects getMemoryEffects(const CallBase *Call,
780                                  AAQueryInfo &AAQI) override {
781     return Result.getMemoryEffects(Call, AAQI);
782   }
783 
784   MemoryEffects getMemoryEffects(const Function *F) override {
785     return Result.getMemoryEffects(F);
786   }
787 
788   ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
789                            AAQueryInfo &AAQI) override {
790     return Result.getModRefInfo(Call, Loc, AAQI);
791   }
792 
793   ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
794                            AAQueryInfo &AAQI) override {
795     return Result.getModRefInfo(Call1, Call2, AAQI);
796   }
797 };
798 
799 /// A base class to help implement the function alias analysis results concept.
800 ///
801 /// Because of the nature of many alias analysis implementations, they often
802 /// only implement a subset of the interface. This base class will attempt to
803 /// implement the remaining portions of the interface in terms of simpler forms
804 /// of the interface where possible, and otherwise provide conservatively
805 /// correct fallback implementations.
806 ///
807 /// Implementors of an alias analysis should derive from this class, and then
808 /// override specific methods that they wish to customize. There is no need to
809 /// use virtual anywhere.
810 class AAResultBase {
811 protected:
812   explicit AAResultBase() = default;
813 
814   // Provide all the copy and move constructors so that derived types aren't
815   // constrained.
816   AAResultBase(const AAResultBase &Arg) {}
817   AAResultBase(AAResultBase &&Arg) {}
818 
819 public:
820   AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
821                     AAQueryInfo &AAQI, const Instruction *I) {
822     return AliasResult::MayAlias;
823   }
824 
825   ModRefInfo getModRefInfoMask(const MemoryLocation &Loc, AAQueryInfo &AAQI,
826                                bool IgnoreLocals) {
827     return ModRefInfo::ModRef;
828   }
829 
830   ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
831     return ModRefInfo::ModRef;
832   }
833 
834   MemoryEffects getMemoryEffects(const CallBase *Call, AAQueryInfo &AAQI) {
835     return MemoryEffects::unknown();
836   }
837 
838   MemoryEffects getMemoryEffects(const Function *F) {
839     return MemoryEffects::unknown();
840   }
841 
842   ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
843                            AAQueryInfo &AAQI) {
844     return ModRefInfo::ModRef;
845   }
846 
847   ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
848                            AAQueryInfo &AAQI) {
849     return ModRefInfo::ModRef;
850   }
851 };
852 
853 /// Return true if this pointer is returned by a noalias function.
854 bool isNoAliasCall(const Value *V);
855 
856 /// Return true if this pointer refers to a distinct and identifiable object.
857 /// This returns true for:
858 ///    Global Variables and Functions (but not Global Aliases)
859 ///    Allocas
860 ///    ByVal and NoAlias Arguments
861 ///    NoAlias returns (e.g. calls to malloc)
862 ///
863 bool isIdentifiedObject(const Value *V);
864 
865 /// Return true if V is umabigously identified at the function-level.
866 /// Different IdentifiedFunctionLocals can't alias.
867 /// Further, an IdentifiedFunctionLocal can not alias with any function
868 /// arguments other than itself, which is not necessarily true for
869 /// IdentifiedObjects.
870 bool isIdentifiedFunctionLocal(const Value *V);
871 
872 /// Returns true if the pointer is one which would have been considered an
873 /// escape by isNonEscapingLocalObject.
874 bool isEscapeSource(const Value *V);
875 
876 /// Return true if Object memory is not visible after an unwind, in the sense
877 /// that program semantics cannot depend on Object containing any particular
878 /// value on unwind. If the RequiresNoCaptureBeforeUnwind out parameter is set
879 /// to true, then the memory is only not visible if the object has not been
880 /// captured prior to the unwind. Otherwise it is not visible even if captured.
881 bool isNotVisibleOnUnwind(const Value *Object,
882                           bool &RequiresNoCaptureBeforeUnwind);
883 
884 /// Return true if the Object is writable, in the sense that any location based
885 /// on this pointer that can be loaded can also be stored to without trapping.
886 /// Additionally, at the point Object is declared, stores can be introduced
887 /// without data races. At later points, this is only the case if the pointer
888 /// can not escape to a different thread.
889 ///
890 /// If ExplicitlyDereferenceableOnly is set to true, this property only holds
891 /// for the part of Object that is explicitly marked as dereferenceable, e.g.
892 /// using the dereferenceable(N) attribute. It does not necessarily hold for
893 /// parts that are only known to be dereferenceable due to the presence of
894 /// loads.
895 bool isWritableObject(const Value *Object, bool &ExplicitlyDereferenceableOnly);
896 
897 /// A manager for alias analyses.
898 ///
899 /// This class can have analyses registered with it and when run, it will run
900 /// all of them and aggregate their results into single AA results interface
901 /// that dispatches across all of the alias analysis results available.
902 ///
903 /// Note that the order in which analyses are registered is very significant.
904 /// That is the order in which the results will be aggregated and queried.
905 ///
906 /// This manager effectively wraps the AnalysisManager for registering alias
907 /// analyses. When you register your alias analysis with this manager, it will
908 /// ensure the analysis itself is registered with its AnalysisManager.
909 ///
910 /// The result of this analysis is only invalidated if one of the particular
911 /// aggregated AA results end up being invalidated. This removes the need to
912 /// explicitly preserve the results of `AAManager`. Note that analyses should no
913 /// longer be registered once the `AAManager` is run.
914 class AAManager : public AnalysisInfoMixin<AAManager> {
915 public:
916   using Result = AAResults;
917 
918   /// Register a specific AA result.
919   template <typename AnalysisT> void registerFunctionAnalysis() {
920     ResultGetters.push_back(&getFunctionAAResultImpl<AnalysisT>);
921   }
922 
923   /// Register a specific AA result.
924   template <typename AnalysisT> void registerModuleAnalysis() {
925     ResultGetters.push_back(&getModuleAAResultImpl<AnalysisT>);
926   }
927 
928   Result run(Function &F, FunctionAnalysisManager &AM);
929 
930 private:
931   friend AnalysisInfoMixin<AAManager>;
932 
933   static AnalysisKey Key;
934 
935   SmallVector<void (*)(Function &F, FunctionAnalysisManager &AM,
936                        AAResults &AAResults),
937               4> ResultGetters;
938 
939   template <typename AnalysisT>
940   static void getFunctionAAResultImpl(Function &F,
941                                       FunctionAnalysisManager &AM,
942                                       AAResults &AAResults) {
943     AAResults.addAAResult(AM.template getResult<AnalysisT>(F));
944     AAResults.addAADependencyID(AnalysisT::ID());
945   }
946 
947   template <typename AnalysisT>
948   static void getModuleAAResultImpl(Function &F, FunctionAnalysisManager &AM,
949                                     AAResults &AAResults) {
950     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
951     if (auto *R =
952             MAMProxy.template getCachedResult<AnalysisT>(*F.getParent())) {
953       AAResults.addAAResult(*R);
954       MAMProxy
955           .template registerOuterAnalysisInvalidation<AnalysisT, AAManager>();
956     }
957   }
958 };
959 
960 /// A wrapper pass to provide the legacy pass manager access to a suitably
961 /// prepared AAResults object.
962 class AAResultsWrapperPass : public FunctionPass {
963   std::unique_ptr<AAResults> AAR;
964 
965 public:
966   static char ID;
967 
968   AAResultsWrapperPass();
969 
970   AAResults &getAAResults() { return *AAR; }
971   const AAResults &getAAResults() const { return *AAR; }
972 
973   bool runOnFunction(Function &F) override;
974 
975   void getAnalysisUsage(AnalysisUsage &AU) const override;
976 };
977 
978 /// A wrapper pass for external alias analyses. This just squirrels away the
979 /// callback used to run any analyses and register their results.
980 struct ExternalAAWrapperPass : ImmutablePass {
981   using CallbackT = std::function<void(Pass &, Function &, AAResults &)>;
982 
983   CallbackT CB;
984 
985   static char ID;
986 
987   ExternalAAWrapperPass();
988 
989   explicit ExternalAAWrapperPass(CallbackT CB);
990 
991   void getAnalysisUsage(AnalysisUsage &AU) const override {
992     AU.setPreservesAll();
993   }
994 };
995 
996 /// A wrapper pass around a callback which can be used to populate the
997 /// AAResults in the AAResultsWrapperPass from an external AA.
998 ///
999 /// The callback provided here will be used each time we prepare an AAResults
1000 /// object, and will receive a reference to the function wrapper pass, the
1001 /// function, and the AAResults object to populate. This should be used when
1002 /// setting up a custom pass pipeline to inject a hook into the AA results.
1003 ImmutablePass *createExternalAAWrapperPass(
1004     std::function<void(Pass &, Function &, AAResults &)> Callback);
1005 
1006 } // end namespace llvm
1007 
1008 #endif // LLVM_ANALYSIS_ALIASANALYSIS_H
1009