1 //==- BlockFrequencyInfoImpl.h - Block Frequency Implementation --*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Shared implementation of BlockFrequency for IR and Machine Instructions.
10 // See the documentation below for BlockFrequencyInfoImpl for details.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
15 #define LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
16 
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/GraphTraits.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/PostOrderIterator.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/SparseBitVector.h"
24 #include "llvm/ADT/Twine.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/Support/BlockFrequency.h"
28 #include "llvm/Support/BranchProbability.h"
29 #include "llvm/Support/DOTGraphTraits.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/Format.h"
33 #include "llvm/Support/ScaledNumber.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include <algorithm>
36 #include <cassert>
37 #include <cstddef>
38 #include <cstdint>
39 #include <deque>
40 #include <iterator>
41 #include <limits>
42 #include <list>
43 #include <string>
44 #include <utility>
45 #include <vector>
46 
47 #define DEBUG_TYPE "block-freq"
48 
49 namespace llvm {
50 
51 class BranchProbabilityInfo;
52 class Function;
53 class Loop;
54 class LoopInfo;
55 class MachineBasicBlock;
56 class MachineBranchProbabilityInfo;
57 class MachineFunction;
58 class MachineLoop;
59 class MachineLoopInfo;
60 
61 namespace bfi_detail {
62 
63 struct IrreducibleGraph;
64 
65 // This is part of a workaround for a GCC 4.7 crash on lambdas.
66 template <class BT> struct BlockEdgesAdder;
67 
68 /// Mass of a block.
69 ///
70 /// This class implements a sort of fixed-point fraction always between 0.0 and
71 /// 1.0.  getMass() == std::numeric_limits<uint64_t>::max() indicates a value of
72 /// 1.0.
73 ///
74 /// Masses can be added and subtracted.  Simple saturation arithmetic is used,
75 /// so arithmetic operations never overflow or underflow.
76 ///
77 /// Masses can be multiplied.  Multiplication treats full mass as 1.0 and uses
78 /// an inexpensive floating-point algorithm that's off-by-one (almost, but not
79 /// quite, maximum precision).
80 ///
81 /// Masses can be scaled by \a BranchProbability at maximum precision.
82 class BlockMass {
83   uint64_t Mass = 0;
84 
85 public:
86   BlockMass() = default;
87   explicit BlockMass(uint64_t Mass) : Mass(Mass) {}
88 
89   static BlockMass getEmpty() { return BlockMass(); }
90 
91   static BlockMass getFull() {
92     return BlockMass(std::numeric_limits<uint64_t>::max());
93   }
94 
95   uint64_t getMass() const { return Mass; }
96 
97   bool isFull() const { return Mass == std::numeric_limits<uint64_t>::max(); }
98   bool isEmpty() const { return !Mass; }
99 
100   bool operator!() const { return isEmpty(); }
101 
102   /// Add another mass.
103   ///
104   /// Adds another mass, saturating at \a isFull() rather than overflowing.
105   BlockMass &operator+=(BlockMass X) {
106     uint64_t Sum = Mass + X.Mass;
107     Mass = Sum < Mass ? std::numeric_limits<uint64_t>::max() : Sum;
108     return *this;
109   }
110 
111   /// Subtract another mass.
112   ///
113   /// Subtracts another mass, saturating at \a isEmpty() rather than
114   /// undeflowing.
115   BlockMass &operator-=(BlockMass X) {
116     uint64_t Diff = Mass - X.Mass;
117     Mass = Diff > Mass ? 0 : Diff;
118     return *this;
119   }
120 
121   BlockMass &operator*=(BranchProbability P) {
122     Mass = P.scale(Mass);
123     return *this;
124   }
125 
126   bool operator==(BlockMass X) const { return Mass == X.Mass; }
127   bool operator!=(BlockMass X) const { return Mass != X.Mass; }
128   bool operator<=(BlockMass X) const { return Mass <= X.Mass; }
129   bool operator>=(BlockMass X) const { return Mass >= X.Mass; }
130   bool operator<(BlockMass X) const { return Mass < X.Mass; }
131   bool operator>(BlockMass X) const { return Mass > X.Mass; }
132 
133   /// Convert to scaled number.
134   ///
135   /// Convert to \a ScaledNumber.  \a isFull() gives 1.0, while \a isEmpty()
136   /// gives slightly above 0.0.
137   ScaledNumber<uint64_t> toScaled() const;
138 
139   void dump() const;
140   raw_ostream &print(raw_ostream &OS) const;
141 };
142 
143 inline BlockMass operator+(BlockMass L, BlockMass R) {
144   return BlockMass(L) += R;
145 }
146 inline BlockMass operator-(BlockMass L, BlockMass R) {
147   return BlockMass(L) -= R;
148 }
149 inline BlockMass operator*(BlockMass L, BranchProbability R) {
150   return BlockMass(L) *= R;
151 }
152 inline BlockMass operator*(BranchProbability L, BlockMass R) {
153   return BlockMass(R) *= L;
154 }
155 
156 inline raw_ostream &operator<<(raw_ostream &OS, BlockMass X) {
157   return X.print(OS);
158 }
159 
160 } // end namespace bfi_detail
161 
162 /// Base class for BlockFrequencyInfoImpl
163 ///
164 /// BlockFrequencyInfoImplBase has supporting data structures and some
165 /// algorithms for BlockFrequencyInfoImplBase.  Only algorithms that depend on
166 /// the block type (or that call such algorithms) are skipped here.
167 ///
168 /// Nevertheless, the majority of the overall algorithm documention lives with
169 /// BlockFrequencyInfoImpl.  See there for details.
170 class BlockFrequencyInfoImplBase {
171 public:
172   using Scaled64 = ScaledNumber<uint64_t>;
173   using BlockMass = bfi_detail::BlockMass;
174 
175   /// Representative of a block.
176   ///
177   /// This is a simple wrapper around an index into the reverse-post-order
178   /// traversal of the blocks.
179   ///
180   /// Unlike a block pointer, its order has meaning (location in the
181   /// topological sort) and it's class is the same regardless of block type.
182   struct BlockNode {
183     using IndexType = uint32_t;
184 
185     IndexType Index;
186 
187     BlockNode() : Index(std::numeric_limits<uint32_t>::max()) {}
188     BlockNode(IndexType Index) : Index(Index) {}
189 
190     bool operator==(const BlockNode &X) const { return Index == X.Index; }
191     bool operator!=(const BlockNode &X) const { return Index != X.Index; }
192     bool operator<=(const BlockNode &X) const { return Index <= X.Index; }
193     bool operator>=(const BlockNode &X) const { return Index >= X.Index; }
194     bool operator<(const BlockNode &X) const { return Index < X.Index; }
195     bool operator>(const BlockNode &X) const { return Index > X.Index; }
196 
197     bool isValid() const { return Index <= getMaxIndex(); }
198 
199     static size_t getMaxIndex() {
200        return std::numeric_limits<uint32_t>::max() - 1;
201     }
202   };
203 
204   /// Stats about a block itself.
205   struct FrequencyData {
206     Scaled64 Scaled;
207     uint64_t Integer;
208   };
209 
210   /// Data about a loop.
211   ///
212   /// Contains the data necessary to represent a loop as a pseudo-node once it's
213   /// packaged.
214   struct LoopData {
215     using ExitMap = SmallVector<std::pair<BlockNode, BlockMass>, 4>;
216     using NodeList = SmallVector<BlockNode, 4>;
217     using HeaderMassList = SmallVector<BlockMass, 1>;
218 
219     LoopData *Parent;            ///< The parent loop.
220     bool IsPackaged = false;     ///< Whether this has been packaged.
221     uint32_t NumHeaders = 1;     ///< Number of headers.
222     ExitMap Exits;               ///< Successor edges (and weights).
223     NodeList Nodes;              ///< Header and the members of the loop.
224     HeaderMassList BackedgeMass; ///< Mass returned to each loop header.
225     BlockMass Mass;
226     Scaled64 Scale;
227 
228     LoopData(LoopData *Parent, const BlockNode &Header)
229       : Parent(Parent), Nodes(1, Header), BackedgeMass(1) {}
230 
231     template <class It1, class It2>
232     LoopData(LoopData *Parent, It1 FirstHeader, It1 LastHeader, It2 FirstOther,
233              It2 LastOther)
234         : Parent(Parent), Nodes(FirstHeader, LastHeader) {
235       NumHeaders = Nodes.size();
236       Nodes.insert(Nodes.end(), FirstOther, LastOther);
237       BackedgeMass.resize(NumHeaders);
238     }
239 
240     bool isHeader(const BlockNode &Node) const {
241       if (isIrreducible())
242         return std::binary_search(Nodes.begin(), Nodes.begin() + NumHeaders,
243                                   Node);
244       return Node == Nodes[0];
245     }
246 
247     BlockNode getHeader() const { return Nodes[0]; }
248     bool isIrreducible() const { return NumHeaders > 1; }
249 
250     HeaderMassList::difference_type getHeaderIndex(const BlockNode &B) {
251       assert(isHeader(B) && "this is only valid on loop header blocks");
252       if (isIrreducible())
253         return std::lower_bound(Nodes.begin(), Nodes.begin() + NumHeaders, B) -
254                Nodes.begin();
255       return 0;
256     }
257 
258     NodeList::const_iterator members_begin() const {
259       return Nodes.begin() + NumHeaders;
260     }
261 
262     NodeList::const_iterator members_end() const { return Nodes.end(); }
263     iterator_range<NodeList::const_iterator> members() const {
264       return make_range(members_begin(), members_end());
265     }
266   };
267 
268   /// Index of loop information.
269   struct WorkingData {
270     BlockNode Node;           ///< This node.
271     LoopData *Loop = nullptr; ///< The loop this block is inside.
272     BlockMass Mass;           ///< Mass distribution from the entry block.
273 
274     WorkingData(const BlockNode &Node) : Node(Node) {}
275 
276     bool isLoopHeader() const { return Loop && Loop->isHeader(Node); }
277 
278     bool isDoubleLoopHeader() const {
279       return isLoopHeader() && Loop->Parent && Loop->Parent->isIrreducible() &&
280              Loop->Parent->isHeader(Node);
281     }
282 
283     LoopData *getContainingLoop() const {
284       if (!isLoopHeader())
285         return Loop;
286       if (!isDoubleLoopHeader())
287         return Loop->Parent;
288       return Loop->Parent->Parent;
289     }
290 
291     /// Resolve a node to its representative.
292     ///
293     /// Get the node currently representing Node, which could be a containing
294     /// loop.
295     ///
296     /// This function should only be called when distributing mass.  As long as
297     /// there are no irreducible edges to Node, then it will have complexity
298     /// O(1) in this context.
299     ///
300     /// In general, the complexity is O(L), where L is the number of loop
301     /// headers Node has been packaged into.  Since this method is called in
302     /// the context of distributing mass, L will be the number of loop headers
303     /// an early exit edge jumps out of.
304     BlockNode getResolvedNode() const {
305       auto L = getPackagedLoop();
306       return L ? L->getHeader() : Node;
307     }
308 
309     LoopData *getPackagedLoop() const {
310       if (!Loop || !Loop->IsPackaged)
311         return nullptr;
312       auto L = Loop;
313       while (L->Parent && L->Parent->IsPackaged)
314         L = L->Parent;
315       return L;
316     }
317 
318     /// Get the appropriate mass for a node.
319     ///
320     /// Get appropriate mass for Node.  If Node is a loop-header (whose loop
321     /// has been packaged), returns the mass of its pseudo-node.  If it's a
322     /// node inside a packaged loop, it returns the loop's mass.
323     BlockMass &getMass() {
324       if (!isAPackage())
325         return Mass;
326       if (!isADoublePackage())
327         return Loop->Mass;
328       return Loop->Parent->Mass;
329     }
330 
331     /// Has ContainingLoop been packaged up?
332     bool isPackaged() const { return getResolvedNode() != Node; }
333 
334     /// Has Loop been packaged up?
335     bool isAPackage() const { return isLoopHeader() && Loop->IsPackaged; }
336 
337     /// Has Loop been packaged up twice?
338     bool isADoublePackage() const {
339       return isDoubleLoopHeader() && Loop->Parent->IsPackaged;
340     }
341   };
342 
343   /// Unscaled probability weight.
344   ///
345   /// Probability weight for an edge in the graph (including the
346   /// successor/target node).
347   ///
348   /// All edges in the original function are 32-bit.  However, exit edges from
349   /// loop packages are taken from 64-bit exit masses, so we need 64-bits of
350   /// space in general.
351   ///
352   /// In addition to the raw weight amount, Weight stores the type of the edge
353   /// in the current context (i.e., the context of the loop being processed).
354   /// Is this a local edge within the loop, an exit from the loop, or a
355   /// backedge to the loop header?
356   struct Weight {
357     enum DistType { Local, Exit, Backedge };
358     DistType Type = Local;
359     BlockNode TargetNode;
360     uint64_t Amount = 0;
361 
362     Weight() = default;
363     Weight(DistType Type, BlockNode TargetNode, uint64_t Amount)
364         : Type(Type), TargetNode(TargetNode), Amount(Amount) {}
365   };
366 
367   /// Distribution of unscaled probability weight.
368   ///
369   /// Distribution of unscaled probability weight to a set of successors.
370   ///
371   /// This class collates the successor edge weights for later processing.
372   ///
373   /// \a DidOverflow indicates whether \a Total did overflow while adding to
374   /// the distribution.  It should never overflow twice.
375   struct Distribution {
376     using WeightList = SmallVector<Weight, 4>;
377 
378     WeightList Weights;       ///< Individual successor weights.
379     uint64_t Total = 0;       ///< Sum of all weights.
380     bool DidOverflow = false; ///< Whether \a Total did overflow.
381 
382     Distribution() = default;
383 
384     void addLocal(const BlockNode &Node, uint64_t Amount) {
385       add(Node, Amount, Weight::Local);
386     }
387 
388     void addExit(const BlockNode &Node, uint64_t Amount) {
389       add(Node, Amount, Weight::Exit);
390     }
391 
392     void addBackedge(const BlockNode &Node, uint64_t Amount) {
393       add(Node, Amount, Weight::Backedge);
394     }
395 
396     /// Normalize the distribution.
397     ///
398     /// Combines multiple edges to the same \a Weight::TargetNode and scales
399     /// down so that \a Total fits into 32-bits.
400     ///
401     /// This is linear in the size of \a Weights.  For the vast majority of
402     /// cases, adjacent edge weights are combined by sorting WeightList and
403     /// combining adjacent weights.  However, for very large edge lists an
404     /// auxiliary hash table is used.
405     void normalize();
406 
407   private:
408     void add(const BlockNode &Node, uint64_t Amount, Weight::DistType Type);
409   };
410 
411   /// Data about each block.  This is used downstream.
412   std::vector<FrequencyData> Freqs;
413 
414   /// Whether each block is an irreducible loop header.
415   /// This is used downstream.
416   SparseBitVector<> IsIrrLoopHeader;
417 
418   /// Loop data: see initializeLoops().
419   std::vector<WorkingData> Working;
420 
421   /// Indexed information about loops.
422   std::list<LoopData> Loops;
423 
424   /// Virtual destructor.
425   ///
426   /// Need a virtual destructor to mask the compiler warning about
427   /// getBlockName().
428   virtual ~BlockFrequencyInfoImplBase() = default;
429 
430   /// Add all edges out of a packaged loop to the distribution.
431   ///
432   /// Adds all edges from LocalLoopHead to Dist.  Calls addToDist() to add each
433   /// successor edge.
434   ///
435   /// \return \c true unless there's an irreducible backedge.
436   bool addLoopSuccessorsToDist(const LoopData *OuterLoop, LoopData &Loop,
437                                Distribution &Dist);
438 
439   /// Add an edge to the distribution.
440   ///
441   /// Adds an edge to Succ to Dist.  If \c LoopHead.isValid(), then whether the
442   /// edge is local/exit/backedge is in the context of LoopHead.  Otherwise,
443   /// every edge should be a local edge (since all the loops are packaged up).
444   ///
445   /// \return \c true unless aborted due to an irreducible backedge.
446   bool addToDist(Distribution &Dist, const LoopData *OuterLoop,
447                  const BlockNode &Pred, const BlockNode &Succ, uint64_t Weight);
448 
449   LoopData &getLoopPackage(const BlockNode &Head) {
450     assert(Head.Index < Working.size());
451     assert(Working[Head.Index].isLoopHeader());
452     return *Working[Head.Index].Loop;
453   }
454 
455   /// Analyze irreducible SCCs.
456   ///
457   /// Separate irreducible SCCs from \c G, which is an explict graph of \c
458   /// OuterLoop (or the top-level function, if \c OuterLoop is \c nullptr).
459   /// Insert them into \a Loops before \c Insert.
460   ///
461   /// \return the \c LoopData nodes representing the irreducible SCCs.
462   iterator_range<std::list<LoopData>::iterator>
463   analyzeIrreducible(const bfi_detail::IrreducibleGraph &G, LoopData *OuterLoop,
464                      std::list<LoopData>::iterator Insert);
465 
466   /// Update a loop after packaging irreducible SCCs inside of it.
467   ///
468   /// Update \c OuterLoop.  Before finding irreducible control flow, it was
469   /// partway through \a computeMassInLoop(), so \a LoopData::Exits and \a
470   /// LoopData::BackedgeMass need to be reset.  Also, nodes that were packaged
471   /// up need to be removed from \a OuterLoop::Nodes.
472   void updateLoopWithIrreducible(LoopData &OuterLoop);
473 
474   /// Distribute mass according to a distribution.
475   ///
476   /// Distributes the mass in Source according to Dist.  If LoopHead.isValid(),
477   /// backedges and exits are stored in its entry in Loops.
478   ///
479   /// Mass is distributed in parallel from two copies of the source mass.
480   void distributeMass(const BlockNode &Source, LoopData *OuterLoop,
481                       Distribution &Dist);
482 
483   /// Compute the loop scale for a loop.
484   void computeLoopScale(LoopData &Loop);
485 
486   /// Adjust the mass of all headers in an irreducible loop.
487   ///
488   /// Initially, irreducible loops are assumed to distribute their mass
489   /// equally among its headers. This can lead to wrong frequency estimates
490   /// since some headers may be executed more frequently than others.
491   ///
492   /// This adjusts header mass distribution so it matches the weights of
493   /// the backedges going into each of the loop headers.
494   void adjustLoopHeaderMass(LoopData &Loop);
495 
496   void distributeIrrLoopHeaderMass(Distribution &Dist);
497 
498   /// Package up a loop.
499   void packageLoop(LoopData &Loop);
500 
501   /// Unwrap loops.
502   void unwrapLoops();
503 
504   /// Finalize frequency metrics.
505   ///
506   /// Calculates final frequencies and cleans up no-longer-needed data
507   /// structures.
508   void finalizeMetrics();
509 
510   /// Clear all memory.
511   void clear();
512 
513   virtual std::string getBlockName(const BlockNode &Node) const;
514   std::string getLoopName(const LoopData &Loop) const;
515 
516   virtual raw_ostream &print(raw_ostream &OS) const { return OS; }
517   void dump() const { print(dbgs()); }
518 
519   Scaled64 getFloatingBlockFreq(const BlockNode &Node) const;
520 
521   BlockFrequency getBlockFreq(const BlockNode &Node) const;
522   Optional<uint64_t> getBlockProfileCount(const Function &F,
523                                           const BlockNode &Node,
524                                           bool AllowSynthetic = false) const;
525   Optional<uint64_t> getProfileCountFromFreq(const Function &F,
526                                              uint64_t Freq,
527                                              bool AllowSynthetic = false) const;
528   bool isIrrLoopHeader(const BlockNode &Node);
529 
530   void setBlockFreq(const BlockNode &Node, uint64_t Freq);
531 
532   raw_ostream &printBlockFreq(raw_ostream &OS, const BlockNode &Node) const;
533   raw_ostream &printBlockFreq(raw_ostream &OS,
534                               const BlockFrequency &Freq) const;
535 
536   uint64_t getEntryFreq() const {
537     assert(!Freqs.empty());
538     return Freqs[0].Integer;
539   }
540 };
541 
542 namespace bfi_detail {
543 
544 template <class BlockT> struct TypeMap {};
545 template <> struct TypeMap<BasicBlock> {
546   using BlockT = BasicBlock;
547   using FunctionT = Function;
548   using BranchProbabilityInfoT = BranchProbabilityInfo;
549   using LoopT = Loop;
550   using LoopInfoT = LoopInfo;
551 };
552 template <> struct TypeMap<MachineBasicBlock> {
553   using BlockT = MachineBasicBlock;
554   using FunctionT = MachineFunction;
555   using BranchProbabilityInfoT = MachineBranchProbabilityInfo;
556   using LoopT = MachineLoop;
557   using LoopInfoT = MachineLoopInfo;
558 };
559 
560 /// Get the name of a MachineBasicBlock.
561 ///
562 /// Get the name of a MachineBasicBlock.  It's templated so that including from
563 /// CodeGen is unnecessary (that would be a layering issue).
564 ///
565 /// This is used mainly for debug output.  The name is similar to
566 /// MachineBasicBlock::getFullName(), but skips the name of the function.
567 template <class BlockT> std::string getBlockName(const BlockT *BB) {
568   assert(BB && "Unexpected nullptr");
569   auto MachineName = "BB" + Twine(BB->getNumber());
570   if (BB->getBasicBlock())
571     return (MachineName + "[" + BB->getName() + "]").str();
572   return MachineName.str();
573 }
574 /// Get the name of a BasicBlock.
575 template <> inline std::string getBlockName(const BasicBlock *BB) {
576   assert(BB && "Unexpected nullptr");
577   return BB->getName().str();
578 }
579 
580 /// Graph of irreducible control flow.
581 ///
582 /// This graph is used for determining the SCCs in a loop (or top-level
583 /// function) that has irreducible control flow.
584 ///
585 /// During the block frequency algorithm, the local graphs are defined in a
586 /// light-weight way, deferring to the \a BasicBlock or \a MachineBasicBlock
587 /// graphs for most edges, but getting others from \a LoopData::ExitMap.  The
588 /// latter only has successor information.
589 ///
590 /// \a IrreducibleGraph makes this graph explicit.  It's in a form that can use
591 /// \a GraphTraits (so that \a analyzeIrreducible() can use \a scc_iterator),
592 /// and it explicitly lists predecessors and successors.  The initialization
593 /// that relies on \c MachineBasicBlock is defined in the header.
594 struct IrreducibleGraph {
595   using BFIBase = BlockFrequencyInfoImplBase;
596 
597   BFIBase &BFI;
598 
599   using BlockNode = BFIBase::BlockNode;
600   struct IrrNode {
601     BlockNode Node;
602     unsigned NumIn = 0;
603     std::deque<const IrrNode *> Edges;
604 
605     IrrNode(const BlockNode &Node) : Node(Node) {}
606 
607     using iterator = std::deque<const IrrNode *>::const_iterator;
608 
609     iterator pred_begin() const { return Edges.begin(); }
610     iterator succ_begin() const { return Edges.begin() + NumIn; }
611     iterator pred_end() const { return succ_begin(); }
612     iterator succ_end() const { return Edges.end(); }
613   };
614   BlockNode Start;
615   const IrrNode *StartIrr = nullptr;
616   std::vector<IrrNode> Nodes;
617   SmallDenseMap<uint32_t, IrrNode *, 4> Lookup;
618 
619   /// Construct an explicit graph containing irreducible control flow.
620   ///
621   /// Construct an explicit graph of the control flow in \c OuterLoop (or the
622   /// top-level function, if \c OuterLoop is \c nullptr).  Uses \c
623   /// addBlockEdges to add block successors that have not been packaged into
624   /// loops.
625   ///
626   /// \a BlockFrequencyInfoImpl::computeIrreducibleMass() is the only expected
627   /// user of this.
628   template <class BlockEdgesAdder>
629   IrreducibleGraph(BFIBase &BFI, const BFIBase::LoopData *OuterLoop,
630                    BlockEdgesAdder addBlockEdges) : BFI(BFI) {
631     initialize(OuterLoop, addBlockEdges);
632   }
633 
634   template <class BlockEdgesAdder>
635   void initialize(const BFIBase::LoopData *OuterLoop,
636                   BlockEdgesAdder addBlockEdges);
637   void addNodesInLoop(const BFIBase::LoopData &OuterLoop);
638   void addNodesInFunction();
639 
640   void addNode(const BlockNode &Node) {
641     Nodes.emplace_back(Node);
642     BFI.Working[Node.Index].getMass() = BlockMass::getEmpty();
643   }
644 
645   void indexNodes();
646   template <class BlockEdgesAdder>
647   void addEdges(const BlockNode &Node, const BFIBase::LoopData *OuterLoop,
648                 BlockEdgesAdder addBlockEdges);
649   void addEdge(IrrNode &Irr, const BlockNode &Succ,
650                const BFIBase::LoopData *OuterLoop);
651 };
652 
653 template <class BlockEdgesAdder>
654 void IrreducibleGraph::initialize(const BFIBase::LoopData *OuterLoop,
655                                   BlockEdgesAdder addBlockEdges) {
656   if (OuterLoop) {
657     addNodesInLoop(*OuterLoop);
658     for (auto N : OuterLoop->Nodes)
659       addEdges(N, OuterLoop, addBlockEdges);
660   } else {
661     addNodesInFunction();
662     for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index)
663       addEdges(Index, OuterLoop, addBlockEdges);
664   }
665   StartIrr = Lookup[Start.Index];
666 }
667 
668 template <class BlockEdgesAdder>
669 void IrreducibleGraph::addEdges(const BlockNode &Node,
670                                 const BFIBase::LoopData *OuterLoop,
671                                 BlockEdgesAdder addBlockEdges) {
672   auto L = Lookup.find(Node.Index);
673   if (L == Lookup.end())
674     return;
675   IrrNode &Irr = *L->second;
676   const auto &Working = BFI.Working[Node.Index];
677 
678   if (Working.isAPackage())
679     for (const auto &I : Working.Loop->Exits)
680       addEdge(Irr, I.first, OuterLoop);
681   else
682     addBlockEdges(*this, Irr, OuterLoop);
683 }
684 
685 } // end namespace bfi_detail
686 
687 /// Shared implementation for block frequency analysis.
688 ///
689 /// This is a shared implementation of BlockFrequencyInfo and
690 /// MachineBlockFrequencyInfo, and calculates the relative frequencies of
691 /// blocks.
692 ///
693 /// LoopInfo defines a loop as a "non-trivial" SCC dominated by a single block,
694 /// which is called the header.  A given loop, L, can have sub-loops, which are
695 /// loops within the subgraph of L that exclude its header.  (A "trivial" SCC
696 /// consists of a single block that does not have a self-edge.)
697 ///
698 /// In addition to loops, this algorithm has limited support for irreducible
699 /// SCCs, which are SCCs with multiple entry blocks.  Irreducible SCCs are
700 /// discovered on they fly, and modelled as loops with multiple headers.
701 ///
702 /// The headers of irreducible sub-SCCs consist of its entry blocks and all
703 /// nodes that are targets of a backedge within it (excluding backedges within
704 /// true sub-loops).  Block frequency calculations act as if a block is
705 /// inserted that intercepts all the edges to the headers.  All backedges and
706 /// entries point to this block.  Its successors are the headers, which split
707 /// the frequency evenly.
708 ///
709 /// This algorithm leverages BlockMass and ScaledNumber to maintain precision,
710 /// separates mass distribution from loop scaling, and dithers to eliminate
711 /// probability mass loss.
712 ///
713 /// The implementation is split between BlockFrequencyInfoImpl, which knows the
714 /// type of graph being modelled (BasicBlock vs. MachineBasicBlock), and
715 /// BlockFrequencyInfoImplBase, which doesn't.  The base class uses \a
716 /// BlockNode, a wrapper around a uint32_t.  BlockNode is numbered from 0 in
717 /// reverse-post order.  This gives two advantages:  it's easy to compare the
718 /// relative ordering of two nodes, and maps keyed on BlockT can be represented
719 /// by vectors.
720 ///
721 /// This algorithm is O(V+E), unless there is irreducible control flow, in
722 /// which case it's O(V*E) in the worst case.
723 ///
724 /// These are the main stages:
725 ///
726 ///  0. Reverse post-order traversal (\a initializeRPOT()).
727 ///
728 ///     Run a single post-order traversal and save it (in reverse) in RPOT.
729 ///     All other stages make use of this ordering.  Save a lookup from BlockT
730 ///     to BlockNode (the index into RPOT) in Nodes.
731 ///
732 ///  1. Loop initialization (\a initializeLoops()).
733 ///
734 ///     Translate LoopInfo/MachineLoopInfo into a form suitable for the rest of
735 ///     the algorithm.  In particular, store the immediate members of each loop
736 ///     in reverse post-order.
737 ///
738 ///  2. Calculate mass and scale in loops (\a computeMassInLoops()).
739 ///
740 ///     For each loop (bottom-up), distribute mass through the DAG resulting
741 ///     from ignoring backedges and treating sub-loops as a single pseudo-node.
742 ///     Track the backedge mass distributed to the loop header, and use it to
743 ///     calculate the loop scale (number of loop iterations).  Immediate
744 ///     members that represent sub-loops will already have been visited and
745 ///     packaged into a pseudo-node.
746 ///
747 ///     Distributing mass in a loop is a reverse-post-order traversal through
748 ///     the loop.  Start by assigning full mass to the Loop header.  For each
749 ///     node in the loop:
750 ///
751 ///         - Fetch and categorize the weight distribution for its successors.
752 ///           If this is a packaged-subloop, the weight distribution is stored
753 ///           in \a LoopData::Exits.  Otherwise, fetch it from
754 ///           BranchProbabilityInfo.
755 ///
756 ///         - Each successor is categorized as \a Weight::Local, a local edge
757 ///           within the current loop, \a Weight::Backedge, a backedge to the
758 ///           loop header, or \a Weight::Exit, any successor outside the loop.
759 ///           The weight, the successor, and its category are stored in \a
760 ///           Distribution.  There can be multiple edges to each successor.
761 ///
762 ///         - If there's a backedge to a non-header, there's an irreducible SCC.
763 ///           The usual flow is temporarily aborted.  \a
764 ///           computeIrreducibleMass() finds the irreducible SCCs within the
765 ///           loop, packages them up, and restarts the flow.
766 ///
767 ///         - Normalize the distribution:  scale weights down so that their sum
768 ///           is 32-bits, and coalesce multiple edges to the same node.
769 ///
770 ///         - Distribute the mass accordingly, dithering to minimize mass loss,
771 ///           as described in \a distributeMass().
772 ///
773 ///     In the case of irreducible loops, instead of a single loop header,
774 ///     there will be several. The computation of backedge masses is similar
775 ///     but instead of having a single backedge mass, there will be one
776 ///     backedge per loop header. In these cases, each backedge will carry
777 ///     a mass proportional to the edge weights along the corresponding
778 ///     path.
779 ///
780 ///     At the end of propagation, the full mass assigned to the loop will be
781 ///     distributed among the loop headers proportionally according to the
782 ///     mass flowing through their backedges.
783 ///
784 ///     Finally, calculate the loop scale from the accumulated backedge mass.
785 ///
786 ///  3. Distribute mass in the function (\a computeMassInFunction()).
787 ///
788 ///     Finally, distribute mass through the DAG resulting from packaging all
789 ///     loops in the function.  This uses the same algorithm as distributing
790 ///     mass in a loop, except that there are no exit or backedge edges.
791 ///
792 ///  4. Unpackage loops (\a unwrapLoops()).
793 ///
794 ///     Initialize each block's frequency to a floating point representation of
795 ///     its mass.
796 ///
797 ///     Visit loops top-down, scaling the frequencies of its immediate members
798 ///     by the loop's pseudo-node's frequency.
799 ///
800 ///  5. Convert frequencies to a 64-bit range (\a finalizeMetrics()).
801 ///
802 ///     Using the min and max frequencies as a guide, translate floating point
803 ///     frequencies to an appropriate range in uint64_t.
804 ///
805 /// It has some known flaws.
806 ///
807 ///   - The model of irreducible control flow is a rough approximation.
808 ///
809 ///     Modelling irreducible control flow exactly involves setting up and
810 ///     solving a group of infinite geometric series.  Such precision is
811 ///     unlikely to be worthwhile, since most of our algorithms give up on
812 ///     irreducible control flow anyway.
813 ///
814 ///     Nevertheless, we might find that we need to get closer.  Here's a sort
815 ///     of TODO list for the model with diminishing returns, to be completed as
816 ///     necessary.
817 ///
818 ///       - The headers for the \a LoopData representing an irreducible SCC
819 ///         include non-entry blocks.  When these extra blocks exist, they
820 ///         indicate a self-contained irreducible sub-SCC.  We could treat them
821 ///         as sub-loops, rather than arbitrarily shoving the problematic
822 ///         blocks into the headers of the main irreducible SCC.
823 ///
824 ///       - Entry frequencies are assumed to be evenly split between the
825 ///         headers of a given irreducible SCC, which is the only option if we
826 ///         need to compute mass in the SCC before its parent loop.  Instead,
827 ///         we could partially compute mass in the parent loop, and stop when
828 ///         we get to the SCC.  Here, we have the correct ratio of entry
829 ///         masses, which we can use to adjust their relative frequencies.
830 ///         Compute mass in the SCC, and then continue propagation in the
831 ///         parent.
832 ///
833 ///       - We can propagate mass iteratively through the SCC, for some fixed
834 ///         number of iterations.  Each iteration starts by assigning the entry
835 ///         blocks their backedge mass from the prior iteration.  The final
836 ///         mass for each block (and each exit, and the total backedge mass
837 ///         used for computing loop scale) is the sum of all iterations.
838 ///         (Running this until fixed point would "solve" the geometric
839 ///         series by simulation.)
840 template <class BT> class BlockFrequencyInfoImpl : BlockFrequencyInfoImplBase {
841   // This is part of a workaround for a GCC 4.7 crash on lambdas.
842   friend struct bfi_detail::BlockEdgesAdder<BT>;
843 
844   using BlockT = typename bfi_detail::TypeMap<BT>::BlockT;
845   using FunctionT = typename bfi_detail::TypeMap<BT>::FunctionT;
846   using BranchProbabilityInfoT =
847       typename bfi_detail::TypeMap<BT>::BranchProbabilityInfoT;
848   using LoopT = typename bfi_detail::TypeMap<BT>::LoopT;
849   using LoopInfoT = typename bfi_detail::TypeMap<BT>::LoopInfoT;
850   using Successor = GraphTraits<const BlockT *>;
851   using Predecessor = GraphTraits<Inverse<const BlockT *>>;
852 
853   const BranchProbabilityInfoT *BPI = nullptr;
854   const LoopInfoT *LI = nullptr;
855   const FunctionT *F = nullptr;
856 
857   // All blocks in reverse postorder.
858   std::vector<const BlockT *> RPOT;
859   DenseMap<const BlockT *, BlockNode> Nodes;
860 
861   using rpot_iterator = typename std::vector<const BlockT *>::const_iterator;
862 
863   rpot_iterator rpot_begin() const { return RPOT.begin(); }
864   rpot_iterator rpot_end() const { return RPOT.end(); }
865 
866   size_t getIndex(const rpot_iterator &I) const { return I - rpot_begin(); }
867 
868   BlockNode getNode(const rpot_iterator &I) const {
869     return BlockNode(getIndex(I));
870   }
871   BlockNode getNode(const BlockT *BB) const { return Nodes.lookup(BB); }
872 
873   const BlockT *getBlock(const BlockNode &Node) const {
874     assert(Node.Index < RPOT.size());
875     return RPOT[Node.Index];
876   }
877 
878   /// Run (and save) a post-order traversal.
879   ///
880   /// Saves a reverse post-order traversal of all the nodes in \a F.
881   void initializeRPOT();
882 
883   /// Initialize loop data.
884   ///
885   /// Build up \a Loops using \a LoopInfo.  \a LoopInfo gives us a mapping from
886   /// each block to the deepest loop it's in, but we need the inverse.  For each
887   /// loop, we store in reverse post-order its "immediate" members, defined as
888   /// the header, the headers of immediate sub-loops, and all other blocks in
889   /// the loop that are not in sub-loops.
890   void initializeLoops();
891 
892   /// Propagate to a block's successors.
893   ///
894   /// In the context of distributing mass through \c OuterLoop, divide the mass
895   /// currently assigned to \c Node between its successors.
896   ///
897   /// \return \c true unless there's an irreducible backedge.
898   bool propagateMassToSuccessors(LoopData *OuterLoop, const BlockNode &Node);
899 
900   /// Compute mass in a particular loop.
901   ///
902   /// Assign mass to \c Loop's header, and then for each block in \c Loop in
903   /// reverse post-order, distribute mass to its successors.  Only visits nodes
904   /// that have not been packaged into sub-loops.
905   ///
906   /// \pre \a computeMassInLoop() has been called for each subloop of \c Loop.
907   /// \return \c true unless there's an irreducible backedge.
908   bool computeMassInLoop(LoopData &Loop);
909 
910   /// Try to compute mass in the top-level function.
911   ///
912   /// Assign mass to the entry block, and then for each block in reverse
913   /// post-order, distribute mass to its successors.  Skips nodes that have
914   /// been packaged into loops.
915   ///
916   /// \pre \a computeMassInLoops() has been called.
917   /// \return \c true unless there's an irreducible backedge.
918   bool tryToComputeMassInFunction();
919 
920   /// Compute mass in (and package up) irreducible SCCs.
921   ///
922   /// Find the irreducible SCCs in \c OuterLoop, add them to \a Loops (in front
923   /// of \c Insert), and call \a computeMassInLoop() on each of them.
924   ///
925   /// If \c OuterLoop is \c nullptr, it refers to the top-level function.
926   ///
927   /// \pre \a computeMassInLoop() has been called for each subloop of \c
928   /// OuterLoop.
929   /// \pre \c Insert points at the last loop successfully processed by \a
930   /// computeMassInLoop().
931   /// \pre \c OuterLoop has irreducible SCCs.
932   void computeIrreducibleMass(LoopData *OuterLoop,
933                               std::list<LoopData>::iterator Insert);
934 
935   /// Compute mass in all loops.
936   ///
937   /// For each loop bottom-up, call \a computeMassInLoop().
938   ///
939   /// \a computeMassInLoop() aborts (and returns \c false) on loops that
940   /// contain a irreducible sub-SCCs.  Use \a computeIrreducibleMass() and then
941   /// re-enter \a computeMassInLoop().
942   ///
943   /// \post \a computeMassInLoop() has returned \c true for every loop.
944   void computeMassInLoops();
945 
946   /// Compute mass in the top-level function.
947   ///
948   /// Uses \a tryToComputeMassInFunction() and \a computeIrreducibleMass() to
949   /// compute mass in the top-level function.
950   ///
951   /// \post \a tryToComputeMassInFunction() has returned \c true.
952   void computeMassInFunction();
953 
954   std::string getBlockName(const BlockNode &Node) const override {
955     return bfi_detail::getBlockName(getBlock(Node));
956   }
957 
958 public:
959   BlockFrequencyInfoImpl() = default;
960 
961   const FunctionT *getFunction() const { return F; }
962 
963   void calculate(const FunctionT &F, const BranchProbabilityInfoT &BPI,
964                  const LoopInfoT &LI);
965 
966   using BlockFrequencyInfoImplBase::getEntryFreq;
967 
968   BlockFrequency getBlockFreq(const BlockT *BB) const {
969     return BlockFrequencyInfoImplBase::getBlockFreq(getNode(BB));
970   }
971 
972   Optional<uint64_t> getBlockProfileCount(const Function &F,
973                                           const BlockT *BB,
974                                           bool AllowSynthetic = false) const {
975     return BlockFrequencyInfoImplBase::getBlockProfileCount(F, getNode(BB),
976                                                             AllowSynthetic);
977   }
978 
979   Optional<uint64_t> getProfileCountFromFreq(const Function &F,
980                                              uint64_t Freq,
981                                              bool AllowSynthetic = false) const {
982     return BlockFrequencyInfoImplBase::getProfileCountFromFreq(F, Freq,
983                                                                AllowSynthetic);
984   }
985 
986   bool isIrrLoopHeader(const BlockT *BB) {
987     return BlockFrequencyInfoImplBase::isIrrLoopHeader(getNode(BB));
988   }
989 
990   void setBlockFreq(const BlockT *BB, uint64_t Freq);
991 
992   Scaled64 getFloatingBlockFreq(const BlockT *BB) const {
993     return BlockFrequencyInfoImplBase::getFloatingBlockFreq(getNode(BB));
994   }
995 
996   const BranchProbabilityInfoT &getBPI() const { return *BPI; }
997 
998   /// Print the frequencies for the current function.
999   ///
1000   /// Prints the frequencies for the blocks in the current function.
1001   ///
1002   /// Blocks are printed in the natural iteration order of the function, rather
1003   /// than reverse post-order.  This provides two advantages:  writing -analyze
1004   /// tests is easier (since blocks come out in source order), and even
1005   /// unreachable blocks are printed.
1006   ///
1007   /// \a BlockFrequencyInfoImplBase::print() only knows reverse post-order, so
1008   /// we need to override it here.
1009   raw_ostream &print(raw_ostream &OS) const override;
1010 
1011   using BlockFrequencyInfoImplBase::dump;
1012   using BlockFrequencyInfoImplBase::printBlockFreq;
1013 
1014   raw_ostream &printBlockFreq(raw_ostream &OS, const BlockT *BB) const {
1015     return BlockFrequencyInfoImplBase::printBlockFreq(OS, getNode(BB));
1016   }
1017 };
1018 
1019 template <class BT>
1020 void BlockFrequencyInfoImpl<BT>::calculate(const FunctionT &F,
1021                                            const BranchProbabilityInfoT &BPI,
1022                                            const LoopInfoT &LI) {
1023   // Save the parameters.
1024   this->BPI = &BPI;
1025   this->LI = &LI;
1026   this->F = &F;
1027 
1028   // Clean up left-over data structures.
1029   BlockFrequencyInfoImplBase::clear();
1030   RPOT.clear();
1031   Nodes.clear();
1032 
1033   // Initialize.
1034   LLVM_DEBUG(dbgs() << "\nblock-frequency: " << F.getName()
1035                     << "\n================="
1036                     << std::string(F.getName().size(), '=') << "\n");
1037   initializeRPOT();
1038   initializeLoops();
1039 
1040   // Visit loops in post-order to find the local mass distribution, and then do
1041   // the full function.
1042   computeMassInLoops();
1043   computeMassInFunction();
1044   unwrapLoops();
1045   finalizeMetrics();
1046 }
1047 
1048 template <class BT>
1049 void BlockFrequencyInfoImpl<BT>::setBlockFreq(const BlockT *BB, uint64_t Freq) {
1050   if (Nodes.count(BB))
1051     BlockFrequencyInfoImplBase::setBlockFreq(getNode(BB), Freq);
1052   else {
1053     // If BB is a newly added block after BFI is done, we need to create a new
1054     // BlockNode for it assigned with a new index. The index can be determined
1055     // by the size of Freqs.
1056     BlockNode NewNode(Freqs.size());
1057     Nodes[BB] = NewNode;
1058     Freqs.emplace_back();
1059     BlockFrequencyInfoImplBase::setBlockFreq(NewNode, Freq);
1060   }
1061 }
1062 
1063 template <class BT> void BlockFrequencyInfoImpl<BT>::initializeRPOT() {
1064   const BlockT *Entry = &F->front();
1065   RPOT.reserve(F->size());
1066   std::copy(po_begin(Entry), po_end(Entry), std::back_inserter(RPOT));
1067   std::reverse(RPOT.begin(), RPOT.end());
1068 
1069   assert(RPOT.size() - 1 <= BlockNode::getMaxIndex() &&
1070          "More nodes in function than Block Frequency Info supports");
1071 
1072   LLVM_DEBUG(dbgs() << "reverse-post-order-traversal\n");
1073   for (rpot_iterator I = rpot_begin(), E = rpot_end(); I != E; ++I) {
1074     BlockNode Node = getNode(I);
1075     LLVM_DEBUG(dbgs() << " - " << getIndex(I) << ": " << getBlockName(Node)
1076                       << "\n");
1077     Nodes[*I] = Node;
1078   }
1079 
1080   Working.reserve(RPOT.size());
1081   for (size_t Index = 0; Index < RPOT.size(); ++Index)
1082     Working.emplace_back(Index);
1083   Freqs.resize(RPOT.size());
1084 }
1085 
1086 template <class BT> void BlockFrequencyInfoImpl<BT>::initializeLoops() {
1087   LLVM_DEBUG(dbgs() << "loop-detection\n");
1088   if (LI->empty())
1089     return;
1090 
1091   // Visit loops top down and assign them an index.
1092   std::deque<std::pair<const LoopT *, LoopData *>> Q;
1093   for (const LoopT *L : *LI)
1094     Q.emplace_back(L, nullptr);
1095   while (!Q.empty()) {
1096     const LoopT *Loop = Q.front().first;
1097     LoopData *Parent = Q.front().second;
1098     Q.pop_front();
1099 
1100     BlockNode Header = getNode(Loop->getHeader());
1101     assert(Header.isValid());
1102 
1103     Loops.emplace_back(Parent, Header);
1104     Working[Header.Index].Loop = &Loops.back();
1105     LLVM_DEBUG(dbgs() << " - loop = " << getBlockName(Header) << "\n");
1106 
1107     for (const LoopT *L : *Loop)
1108       Q.emplace_back(L, &Loops.back());
1109   }
1110 
1111   // Visit nodes in reverse post-order and add them to their deepest containing
1112   // loop.
1113   for (size_t Index = 0; Index < RPOT.size(); ++Index) {
1114     // Loop headers have already been mostly mapped.
1115     if (Working[Index].isLoopHeader()) {
1116       LoopData *ContainingLoop = Working[Index].getContainingLoop();
1117       if (ContainingLoop)
1118         ContainingLoop->Nodes.push_back(Index);
1119       continue;
1120     }
1121 
1122     const LoopT *Loop = LI->getLoopFor(RPOT[Index]);
1123     if (!Loop)
1124       continue;
1125 
1126     // Add this node to its containing loop's member list.
1127     BlockNode Header = getNode(Loop->getHeader());
1128     assert(Header.isValid());
1129     const auto &HeaderData = Working[Header.Index];
1130     assert(HeaderData.isLoopHeader());
1131 
1132     Working[Index].Loop = HeaderData.Loop;
1133     HeaderData.Loop->Nodes.push_back(Index);
1134     LLVM_DEBUG(dbgs() << " - loop = " << getBlockName(Header)
1135                       << ": member = " << getBlockName(Index) << "\n");
1136   }
1137 }
1138 
1139 template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInLoops() {
1140   // Visit loops with the deepest first, and the top-level loops last.
1141   for (auto L = Loops.rbegin(), E = Loops.rend(); L != E; ++L) {
1142     if (computeMassInLoop(*L))
1143       continue;
1144     auto Next = std::next(L);
1145     computeIrreducibleMass(&*L, L.base());
1146     L = std::prev(Next);
1147     if (computeMassInLoop(*L))
1148       continue;
1149     llvm_unreachable("unhandled irreducible control flow");
1150   }
1151 }
1152 
1153 template <class BT>
1154 bool BlockFrequencyInfoImpl<BT>::computeMassInLoop(LoopData &Loop) {
1155   // Compute mass in loop.
1156   LLVM_DEBUG(dbgs() << "compute-mass-in-loop: " << getLoopName(Loop) << "\n");
1157 
1158   if (Loop.isIrreducible()) {
1159     LLVM_DEBUG(dbgs() << "isIrreducible = true\n");
1160     Distribution Dist;
1161     unsigned NumHeadersWithWeight = 0;
1162     Optional<uint64_t> MinHeaderWeight;
1163     DenseSet<uint32_t> HeadersWithoutWeight;
1164     HeadersWithoutWeight.reserve(Loop.NumHeaders);
1165     for (uint32_t H = 0; H < Loop.NumHeaders; ++H) {
1166       auto &HeaderNode = Loop.Nodes[H];
1167       const BlockT *Block = getBlock(HeaderNode);
1168       IsIrrLoopHeader.set(Loop.Nodes[H].Index);
1169       Optional<uint64_t> HeaderWeight = Block->getIrrLoopHeaderWeight();
1170       if (!HeaderWeight) {
1171         LLVM_DEBUG(dbgs() << "Missing irr loop header metadata on "
1172                           << getBlockName(HeaderNode) << "\n");
1173         HeadersWithoutWeight.insert(H);
1174         continue;
1175       }
1176       LLVM_DEBUG(dbgs() << getBlockName(HeaderNode)
1177                         << " has irr loop header weight "
1178                         << HeaderWeight.getValue() << "\n");
1179       NumHeadersWithWeight++;
1180       uint64_t HeaderWeightValue = HeaderWeight.getValue();
1181       if (!MinHeaderWeight || HeaderWeightValue < MinHeaderWeight)
1182         MinHeaderWeight = HeaderWeightValue;
1183       if (HeaderWeightValue) {
1184         Dist.addLocal(HeaderNode, HeaderWeightValue);
1185       }
1186     }
1187     // As a heuristic, if some headers don't have a weight, give them the
1188     // minimium weight seen (not to disrupt the existing trends too much by
1189     // using a weight that's in the general range of the other headers' weights,
1190     // and the minimum seems to perform better than the average.)
1191     // FIXME: better update in the passes that drop the header weight.
1192     // If no headers have a weight, give them even weight (use weight 1).
1193     if (!MinHeaderWeight)
1194       MinHeaderWeight = 1;
1195     for (uint32_t H : HeadersWithoutWeight) {
1196       auto &HeaderNode = Loop.Nodes[H];
1197       assert(!getBlock(HeaderNode)->getIrrLoopHeaderWeight() &&
1198              "Shouldn't have a weight metadata");
1199       uint64_t MinWeight = MinHeaderWeight.getValue();
1200       LLVM_DEBUG(dbgs() << "Giving weight " << MinWeight << " to "
1201                         << getBlockName(HeaderNode) << "\n");
1202       if (MinWeight)
1203         Dist.addLocal(HeaderNode, MinWeight);
1204     }
1205     distributeIrrLoopHeaderMass(Dist);
1206     for (const BlockNode &M : Loop.Nodes)
1207       if (!propagateMassToSuccessors(&Loop, M))
1208         llvm_unreachable("unhandled irreducible control flow");
1209     if (NumHeadersWithWeight == 0)
1210       // No headers have a metadata. Adjust header mass.
1211       adjustLoopHeaderMass(Loop);
1212   } else {
1213     Working[Loop.getHeader().Index].getMass() = BlockMass::getFull();
1214     if (!propagateMassToSuccessors(&Loop, Loop.getHeader()))
1215       llvm_unreachable("irreducible control flow to loop header!?");
1216     for (const BlockNode &M : Loop.members())
1217       if (!propagateMassToSuccessors(&Loop, M))
1218         // Irreducible backedge.
1219         return false;
1220   }
1221 
1222   computeLoopScale(Loop);
1223   packageLoop(Loop);
1224   return true;
1225 }
1226 
1227 template <class BT>
1228 bool BlockFrequencyInfoImpl<BT>::tryToComputeMassInFunction() {
1229   // Compute mass in function.
1230   LLVM_DEBUG(dbgs() << "compute-mass-in-function\n");
1231   assert(!Working.empty() && "no blocks in function");
1232   assert(!Working[0].isLoopHeader() && "entry block is a loop header");
1233 
1234   Working[0].getMass() = BlockMass::getFull();
1235   for (rpot_iterator I = rpot_begin(), IE = rpot_end(); I != IE; ++I) {
1236     // Check for nodes that have been packaged.
1237     BlockNode Node = getNode(I);
1238     if (Working[Node.Index].isPackaged())
1239       continue;
1240 
1241     if (!propagateMassToSuccessors(nullptr, Node))
1242       return false;
1243   }
1244   return true;
1245 }
1246 
1247 template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInFunction() {
1248   if (tryToComputeMassInFunction())
1249     return;
1250   computeIrreducibleMass(nullptr, Loops.begin());
1251   if (tryToComputeMassInFunction())
1252     return;
1253   llvm_unreachable("unhandled irreducible control flow");
1254 }
1255 
1256 /// \note This should be a lambda, but that crashes GCC 4.7.
1257 namespace bfi_detail {
1258 
1259 template <class BT> struct BlockEdgesAdder {
1260   using BlockT = BT;
1261   using LoopData = BlockFrequencyInfoImplBase::LoopData;
1262   using Successor = GraphTraits<const BlockT *>;
1263 
1264   const BlockFrequencyInfoImpl<BT> &BFI;
1265 
1266   explicit BlockEdgesAdder(const BlockFrequencyInfoImpl<BT> &BFI)
1267       : BFI(BFI) {}
1268 
1269   void operator()(IrreducibleGraph &G, IrreducibleGraph::IrrNode &Irr,
1270                   const LoopData *OuterLoop) {
1271     const BlockT *BB = BFI.RPOT[Irr.Node.Index];
1272     for (const auto Succ : children<const BlockT *>(BB))
1273       G.addEdge(Irr, BFI.getNode(Succ), OuterLoop);
1274   }
1275 };
1276 
1277 } // end namespace bfi_detail
1278 
1279 template <class BT>
1280 void BlockFrequencyInfoImpl<BT>::computeIrreducibleMass(
1281     LoopData *OuterLoop, std::list<LoopData>::iterator Insert) {
1282   LLVM_DEBUG(dbgs() << "analyze-irreducible-in-";
1283              if (OuterLoop) dbgs()
1284              << "loop: " << getLoopName(*OuterLoop) << "\n";
1285              else dbgs() << "function\n");
1286 
1287   using namespace bfi_detail;
1288 
1289   // Ideally, addBlockEdges() would be declared here as a lambda, but that
1290   // crashes GCC 4.7.
1291   BlockEdgesAdder<BT> addBlockEdges(*this);
1292   IrreducibleGraph G(*this, OuterLoop, addBlockEdges);
1293 
1294   for (auto &L : analyzeIrreducible(G, OuterLoop, Insert))
1295     computeMassInLoop(L);
1296 
1297   if (!OuterLoop)
1298     return;
1299   updateLoopWithIrreducible(*OuterLoop);
1300 }
1301 
1302 // A helper function that converts a branch probability into weight.
1303 inline uint32_t getWeightFromBranchProb(const BranchProbability Prob) {
1304   return Prob.getNumerator();
1305 }
1306 
1307 template <class BT>
1308 bool
1309 BlockFrequencyInfoImpl<BT>::propagateMassToSuccessors(LoopData *OuterLoop,
1310                                                       const BlockNode &Node) {
1311   LLVM_DEBUG(dbgs() << " - node: " << getBlockName(Node) << "\n");
1312   // Calculate probability for successors.
1313   Distribution Dist;
1314   if (auto *Loop = Working[Node.Index].getPackagedLoop()) {
1315     assert(Loop != OuterLoop && "Cannot propagate mass in a packaged loop");
1316     if (!addLoopSuccessorsToDist(OuterLoop, *Loop, Dist))
1317       // Irreducible backedge.
1318       return false;
1319   } else {
1320     const BlockT *BB = getBlock(Node);
1321     for (auto SI = GraphTraits<const BlockT *>::child_begin(BB),
1322               SE = GraphTraits<const BlockT *>::child_end(BB);
1323          SI != SE; ++SI)
1324       if (!addToDist(
1325               Dist, OuterLoop, Node, getNode(*SI),
1326               getWeightFromBranchProb(BPI->getEdgeProbability(BB, SI))))
1327         // Irreducible backedge.
1328         return false;
1329   }
1330 
1331   // Distribute mass to successors, saving exit and backedge data in the
1332   // loop header.
1333   distributeMass(Node, OuterLoop, Dist);
1334   return true;
1335 }
1336 
1337 template <class BT>
1338 raw_ostream &BlockFrequencyInfoImpl<BT>::print(raw_ostream &OS) const {
1339   if (!F)
1340     return OS;
1341   OS << "block-frequency-info: " << F->getName() << "\n";
1342   for (const BlockT &BB : *F) {
1343     OS << " - " << bfi_detail::getBlockName(&BB) << ": float = ";
1344     getFloatingBlockFreq(&BB).print(OS, 5)
1345         << ", int = " << getBlockFreq(&BB).getFrequency();
1346     if (Optional<uint64_t> ProfileCount =
1347         BlockFrequencyInfoImplBase::getBlockProfileCount(
1348             F->getFunction(), getNode(&BB)))
1349       OS << ", count = " << ProfileCount.getValue();
1350     if (Optional<uint64_t> IrrLoopHeaderWeight =
1351         BB.getIrrLoopHeaderWeight())
1352       OS << ", irr_loop_header_weight = " << IrrLoopHeaderWeight.getValue();
1353     OS << "\n";
1354   }
1355 
1356   // Add an extra newline for readability.
1357   OS << "\n";
1358   return OS;
1359 }
1360 
1361 // Graph trait base class for block frequency information graph
1362 // viewer.
1363 
1364 enum GVDAGType { GVDT_None, GVDT_Fraction, GVDT_Integer, GVDT_Count };
1365 
1366 template <class BlockFrequencyInfoT, class BranchProbabilityInfoT>
1367 struct BFIDOTGraphTraitsBase : public DefaultDOTGraphTraits {
1368   using GTraits = GraphTraits<BlockFrequencyInfoT *>;
1369   using NodeRef = typename GTraits::NodeRef;
1370   using EdgeIter = typename GTraits::ChildIteratorType;
1371   using NodeIter = typename GTraits::nodes_iterator;
1372 
1373   uint64_t MaxFrequency = 0;
1374 
1375   explicit BFIDOTGraphTraitsBase(bool isSimple = false)
1376       : DefaultDOTGraphTraits(isSimple) {}
1377 
1378   static std::string getGraphName(const BlockFrequencyInfoT *G) {
1379     return G->getFunction()->getName();
1380   }
1381 
1382   std::string getNodeAttributes(NodeRef Node, const BlockFrequencyInfoT *Graph,
1383                                 unsigned HotPercentThreshold = 0) {
1384     std::string Result;
1385     if (!HotPercentThreshold)
1386       return Result;
1387 
1388     // Compute MaxFrequency on the fly:
1389     if (!MaxFrequency) {
1390       for (NodeIter I = GTraits::nodes_begin(Graph),
1391                     E = GTraits::nodes_end(Graph);
1392            I != E; ++I) {
1393         NodeRef N = *I;
1394         MaxFrequency =
1395             std::max(MaxFrequency, Graph->getBlockFreq(N).getFrequency());
1396       }
1397     }
1398     BlockFrequency Freq = Graph->getBlockFreq(Node);
1399     BlockFrequency HotFreq =
1400         (BlockFrequency(MaxFrequency) *
1401          BranchProbability::getBranchProbability(HotPercentThreshold, 100));
1402 
1403     if (Freq < HotFreq)
1404       return Result;
1405 
1406     raw_string_ostream OS(Result);
1407     OS << "color=\"red\"";
1408     OS.flush();
1409     return Result;
1410   }
1411 
1412   std::string getNodeLabel(NodeRef Node, const BlockFrequencyInfoT *Graph,
1413                            GVDAGType GType, int layout_order = -1) {
1414     std::string Result;
1415     raw_string_ostream OS(Result);
1416 
1417     if (layout_order != -1)
1418       OS << Node->getName() << "[" << layout_order << "] : ";
1419     else
1420       OS << Node->getName() << " : ";
1421     switch (GType) {
1422     case GVDT_Fraction:
1423       Graph->printBlockFreq(OS, Node);
1424       break;
1425     case GVDT_Integer:
1426       OS << Graph->getBlockFreq(Node).getFrequency();
1427       break;
1428     case GVDT_Count: {
1429       auto Count = Graph->getBlockProfileCount(Node);
1430       if (Count)
1431         OS << Count.getValue();
1432       else
1433         OS << "Unknown";
1434       break;
1435     }
1436     case GVDT_None:
1437       llvm_unreachable("If we are not supposed to render a graph we should "
1438                        "never reach this point.");
1439     }
1440     return Result;
1441   }
1442 
1443   std::string getEdgeAttributes(NodeRef Node, EdgeIter EI,
1444                                 const BlockFrequencyInfoT *BFI,
1445                                 const BranchProbabilityInfoT *BPI,
1446                                 unsigned HotPercentThreshold = 0) {
1447     std::string Str;
1448     if (!BPI)
1449       return Str;
1450 
1451     BranchProbability BP = BPI->getEdgeProbability(Node, EI);
1452     uint32_t N = BP.getNumerator();
1453     uint32_t D = BP.getDenominator();
1454     double Percent = 100.0 * N / D;
1455     raw_string_ostream OS(Str);
1456     OS << format("label=\"%.1f%%\"", Percent);
1457 
1458     if (HotPercentThreshold) {
1459       BlockFrequency EFreq = BFI->getBlockFreq(Node) * BP;
1460       BlockFrequency HotFreq = BlockFrequency(MaxFrequency) *
1461                                BranchProbability(HotPercentThreshold, 100);
1462 
1463       if (EFreq >= HotFreq) {
1464         OS << ",color=\"red\"";
1465       }
1466     }
1467 
1468     OS.flush();
1469     return Str;
1470   }
1471 };
1472 
1473 } // end namespace llvm
1474 
1475 #undef DEBUG_TYPE
1476 
1477 #endif // LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
1478