1 //===- CGSCCPassManager.h - Call graph pass management ----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// This header provides classes for managing passes over SCCs of the call
11 /// graph. These passes form an important component of LLVM's interprocedural
12 /// optimizations. Because they operate on the SCCs of the call graph, and they
13 /// traverse the graph in post-order, they can effectively do pair-wise
14 /// interprocedural optimizations for all call edges in the program while
15 /// incrementally refining it and improving the context of these pair-wise
16 /// optimizations. At each call site edge, the callee has already been
17 /// optimized as much as is possible. This in turn allows very accurate
18 /// analysis of it for IPO.
19 ///
20 /// A secondary more general goal is to be able to isolate optimization on
21 /// unrelated parts of the IR module. This is useful to ensure our
22 /// optimizations are principled and don't miss oportunities where refinement
23 /// of one part of the module influence transformations in another part of the
24 /// module. But this is also useful if we want to parallelize the optimizations
25 /// across common large module graph shapes which tend to be very wide and have
26 /// large regions of unrelated cliques.
27 ///
28 /// To satisfy these goals, we use the LazyCallGraph which provides two graphs
29 /// nested inside each other (and built lazily from the bottom-up): the call
30 /// graph proper, and a reference graph. The reference graph is super set of
31 /// the call graph and is a conservative approximation of what could through
32 /// scalar or CGSCC transforms *become* the call graph. Using this allows us to
33 /// ensure we optimize functions prior to them being introduced into the call
34 /// graph by devirtualization or other technique, and thus ensures that
35 /// subsequent pair-wise interprocedural optimizations observe the optimized
36 /// form of these functions. The (potentially transitive) reference
37 /// reachability used by the reference graph is a conservative approximation
38 /// that still allows us to have independent regions of the graph.
39 ///
40 /// FIXME: There is one major drawback of the reference graph: in its naive
41 /// form it is quadratic because it contains a distinct edge for each
42 /// (potentially indirect) reference, even if are all through some common
43 /// global table of function pointers. This can be fixed in a number of ways
44 /// that essentially preserve enough of the normalization. While it isn't
45 /// expected to completely preclude the usability of this, it will need to be
46 /// addressed.
47 ///
48 ///
49 /// All of these issues are made substantially more complex in the face of
50 /// mutations to the call graph while optimization passes are being run. When
51 /// mutations to the call graph occur we want to achieve two different things:
52 ///
53 /// - We need to update the call graph in-flight and invalidate analyses
54 ///   cached on entities in the graph. Because of the cache-based analysis
55 ///   design of the pass manager, it is essential to have stable identities for
56 ///   the elements of the IR that passes traverse, and to invalidate any
57 ///   analyses cached on these elements as the mutations take place.
58 ///
59 /// - We want to preserve the incremental and post-order traversal of the
60 ///   graph even as it is refined and mutated. This means we want optimization
61 ///   to observe the most refined form of the call graph and to do so in
62 ///   post-order.
63 ///
64 /// To address this, the CGSCC manager uses both worklists that can be expanded
65 /// by passes which transform the IR, and provides invalidation tests to skip
66 /// entries that become dead. This extra data is provided to every SCC pass so
67 /// that it can carefully update the manager's traversal as the call graph
68 /// mutates.
69 ///
70 /// We also provide support for running function passes within the CGSCC walk,
71 /// and there we provide automatic update of the call graph including of the
72 /// pass manager to reflect call graph changes that fall out naturally as part
73 /// of scalar transformations.
74 ///
75 /// The patterns used to ensure the goals of post-order visitation of the fully
76 /// refined graph:
77 ///
78 /// 1) Sink toward the "bottom" as the graph is refined. This means that any
79 ///    iteration continues in some valid post-order sequence after the mutation
80 ///    has altered the structure.
81 ///
82 /// 2) Enqueue in post-order, including the current entity. If the current
83 ///    entity's shape changes, it and everything after it in post-order needs
84 ///    to be visited to observe that shape.
85 ///
86 //===----------------------------------------------------------------------===//
87 
88 #ifndef LLVM_ANALYSIS_CGSCCPASSMANAGER_H
89 #define LLVM_ANALYSIS_CGSCCPASSMANAGER_H
90 
91 #include "llvm/ADT/DenseMap.h"
92 #include "llvm/ADT/DenseSet.h"
93 #include "llvm/ADT/MapVector.h"
94 #include "llvm/ADT/PriorityWorklist.h"
95 #include "llvm/ADT/STLExtras.h"
96 #include "llvm/ADT/SmallPtrSet.h"
97 #include "llvm/ADT/SmallVector.h"
98 #include "llvm/Analysis/LazyCallGraph.h"
99 #include "llvm/IR/Function.h"
100 #include "llvm/IR/InstIterator.h"
101 #include "llvm/IR/PassManager.h"
102 #include "llvm/IR/ValueHandle.h"
103 #include "llvm/Support/Debug.h"
104 #include "llvm/Support/raw_ostream.h"
105 #include <algorithm>
106 #include <cassert>
107 #include <utility>
108 
109 namespace llvm {
110 
111 struct CGSCCUpdateResult;
112 class Module;
113 
114 // Allow debug logging in this inline function.
115 #define DEBUG_TYPE "cgscc"
116 
117 /// Extern template declaration for the analysis set for this IR unit.
118 extern template class AllAnalysesOn<LazyCallGraph::SCC>;
119 
120 extern template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>;
121 
122 /// The CGSCC analysis manager.
123 ///
124 /// See the documentation for the AnalysisManager template for detail
125 /// documentation. This type serves as a convenient way to refer to this
126 /// construct in the adaptors and proxies used to integrate this into the larger
127 /// pass manager infrastructure.
128 using CGSCCAnalysisManager =
129     AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>;
130 
131 // Explicit specialization and instantiation declarations for the pass manager.
132 // See the comments on the definition of the specialization for details on how
133 // it differs from the primary template.
134 template <>
135 PreservedAnalyses
136 PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &,
137             CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC,
138                                       CGSCCAnalysisManager &AM,
139                                       LazyCallGraph &G, CGSCCUpdateResult &UR);
140 extern template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager,
141                                   LazyCallGraph &, CGSCCUpdateResult &>;
142 
143 /// The CGSCC pass manager.
144 ///
145 /// See the documentation for the PassManager template for details. It runs
146 /// a sequence of SCC passes over each SCC that the manager is run over. This
147 /// type serves as a convenient way to refer to this construct.
148 using CGSCCPassManager =
149     PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &,
150                 CGSCCUpdateResult &>;
151 
152 /// An explicit specialization of the require analysis template pass.
153 template <typename AnalysisT>
154 struct RequireAnalysisPass<AnalysisT, LazyCallGraph::SCC, CGSCCAnalysisManager,
155                            LazyCallGraph &, CGSCCUpdateResult &>
156     : PassInfoMixin<RequireAnalysisPass<AnalysisT, LazyCallGraph::SCC,
157                                         CGSCCAnalysisManager, LazyCallGraph &,
158                                         CGSCCUpdateResult &>> {
159   PreservedAnalyses run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
160                         LazyCallGraph &CG, CGSCCUpdateResult &) {
161     (void)AM.template getResult<AnalysisT>(C, CG);
162     return PreservedAnalyses::all();
163   }
164 };
165 
166 /// A proxy from a \c CGSCCAnalysisManager to a \c Module.
167 using CGSCCAnalysisManagerModuleProxy =
168     InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>;
169 
170 /// We need a specialized result for the \c CGSCCAnalysisManagerModuleProxy so
171 /// it can have access to the call graph in order to walk all the SCCs when
172 /// invalidating things.
173 template <> class CGSCCAnalysisManagerModuleProxy::Result {
174 public:
175   explicit Result(CGSCCAnalysisManager &InnerAM, LazyCallGraph &G)
176       : InnerAM(&InnerAM), G(&G) {}
177 
178   /// Accessor for the analysis manager.
179   CGSCCAnalysisManager &getManager() { return *InnerAM; }
180 
181   /// Handler for invalidation of the Module.
182   ///
183   /// If the proxy analysis itself is preserved, then we assume that the set of
184   /// SCCs in the Module hasn't changed. Thus any pointers to SCCs in the
185   /// CGSCCAnalysisManager are still valid, and we don't need to call \c clear
186   /// on the CGSCCAnalysisManager.
187   ///
188   /// Regardless of whether this analysis is marked as preserved, all of the
189   /// analyses in the \c CGSCCAnalysisManager are potentially invalidated based
190   /// on the set of preserved analyses.
191   bool invalidate(Module &M, const PreservedAnalyses &PA,
192                   ModuleAnalysisManager::Invalidator &Inv);
193 
194 private:
195   CGSCCAnalysisManager *InnerAM;
196   LazyCallGraph *G;
197 };
198 
199 /// Provide a specialized run method for the \c CGSCCAnalysisManagerModuleProxy
200 /// so it can pass the lazy call graph to the result.
201 template <>
202 CGSCCAnalysisManagerModuleProxy::Result
203 CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM);
204 
205 // Ensure the \c CGSCCAnalysisManagerModuleProxy is provided as an extern
206 // template.
207 extern template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>;
208 
209 extern template class OuterAnalysisManagerProxy<
210     ModuleAnalysisManager, LazyCallGraph::SCC, LazyCallGraph &>;
211 
212 /// A proxy from a \c ModuleAnalysisManager to an \c SCC.
213 using ModuleAnalysisManagerCGSCCProxy =
214     OuterAnalysisManagerProxy<ModuleAnalysisManager, LazyCallGraph::SCC,
215                               LazyCallGraph &>;
216 
217 /// Support structure for SCC passes to communicate updates the call graph back
218 /// to the CGSCC pass manager infrsatructure.
219 ///
220 /// The CGSCC pass manager runs SCC passes which are allowed to update the call
221 /// graph and SCC structures. This means the structure the pass manager works
222 /// on is mutating underneath it. In order to support that, there needs to be
223 /// careful communication about the precise nature and ramifications of these
224 /// updates to the pass management infrastructure.
225 ///
226 /// All SCC passes will have to accept a reference to the management layer's
227 /// update result struct and use it to reflect the results of any CG updates
228 /// performed.
229 ///
230 /// Passes which do not change the call graph structure in any way can just
231 /// ignore this argument to their run method.
232 struct CGSCCUpdateResult {
233   /// Worklist of the RefSCCs queued for processing.
234   ///
235   /// When a pass refines the graph and creates new RefSCCs or causes them to
236   /// have a different shape or set of component SCCs it should add the RefSCCs
237   /// to this worklist so that we visit them in the refined form.
238   ///
239   /// This worklist is in reverse post-order, as we pop off the back in order
240   /// to observe RefSCCs in post-order. When adding RefSCCs, clients should add
241   /// them in reverse post-order.
242   SmallPriorityWorklist<LazyCallGraph::RefSCC *, 1> &RCWorklist;
243 
244   /// Worklist of the SCCs queued for processing.
245   ///
246   /// When a pass refines the graph and creates new SCCs or causes them to have
247   /// a different shape or set of component functions it should add the SCCs to
248   /// this worklist so that we visit them in the refined form.
249   ///
250   /// Note that if the SCCs are part of a RefSCC that is added to the \c
251   /// RCWorklist, they don't need to be added here as visiting the RefSCC will
252   /// be sufficient to re-visit the SCCs within it.
253   ///
254   /// This worklist is in reverse post-order, as we pop off the back in order
255   /// to observe SCCs in post-order. When adding SCCs, clients should add them
256   /// in reverse post-order.
257   SmallPriorityWorklist<LazyCallGraph::SCC *, 1> &CWorklist;
258 
259   /// The set of invalidated RefSCCs which should be skipped if they are found
260   /// in \c RCWorklist.
261   ///
262   /// This is used to quickly prune out RefSCCs when they get deleted and
263   /// happen to already be on the worklist. We use this primarily to avoid
264   /// scanning the list and removing entries from it.
265   SmallPtrSetImpl<LazyCallGraph::RefSCC *> &InvalidatedRefSCCs;
266 
267   /// The set of invalidated SCCs which should be skipped if they are found
268   /// in \c CWorklist.
269   ///
270   /// This is used to quickly prune out SCCs when they get deleted and happen
271   /// to already be on the worklist. We use this primarily to avoid scanning
272   /// the list and removing entries from it.
273   SmallPtrSetImpl<LazyCallGraph::SCC *> &InvalidatedSCCs;
274 
275   /// If non-null, the updated current \c RefSCC being processed.
276   ///
277   /// This is set when a graph refinement takes place an the "current" point in
278   /// the graph moves "down" or earlier in the post-order walk. This will often
279   /// cause the "current" RefSCC to be a newly created RefSCC object and the
280   /// old one to be added to the above worklist. When that happens, this
281   /// pointer is non-null and can be used to continue processing the "top" of
282   /// the post-order walk.
283   LazyCallGraph::RefSCC *UpdatedRC;
284 
285   /// If non-null, the updated current \c SCC being processed.
286   ///
287   /// This is set when a graph refinement takes place an the "current" point in
288   /// the graph moves "down" or earlier in the post-order walk. This will often
289   /// cause the "current" SCC to be a newly created SCC object and the old one
290   /// to be added to the above worklist. When that happens, this pointer is
291   /// non-null and can be used to continue processing the "top" of the
292   /// post-order walk.
293   LazyCallGraph::SCC *UpdatedC;
294 
295   /// Preserved analyses across SCCs.
296   ///
297   /// We specifically want to allow CGSCC passes to mutate ancestor IR
298   /// (changing both the CG structure and the function IR itself). However,
299   /// this means we need to take special care to correctly mark what analyses
300   /// are preserved *across* SCCs. We have to track this out-of-band here
301   /// because within the main `PassManeger` infrastructure we need to mark
302   /// everything within an SCC as preserved in order to avoid repeatedly
303   /// invalidating the same analyses as we unnest pass managers and adaptors.
304   /// So we track the cross-SCC version of the preserved analyses here from any
305   /// code that does direct invalidation of SCC analyses, and then use it
306   /// whenever we move forward in the post-order walk of SCCs before running
307   /// passes over the new SCC.
308   PreservedAnalyses CrossSCCPA;
309 
310   /// A hacky area where the inliner can retain history about inlining
311   /// decisions that mutated the call graph's SCC structure in order to avoid
312   /// infinite inlining. See the comments in the inliner's CG update logic.
313   ///
314   /// FIXME: Keeping this here seems like a big layering issue, we should look
315   /// for a better technique.
316   SmallDenseSet<std::pair<LazyCallGraph::Node *, LazyCallGraph::SCC *>, 4>
317       &InlinedInternalEdges;
318 
319   /// Weak VHs to keep track of indirect calls for the purposes of detecting
320   /// devirtualization.
321   ///
322   /// This is a map to avoid having duplicate entries. If a Value is
323   /// deallocated, its corresponding WeakTrackingVH will be nulled out. When
324   /// checking if a Value is in the map or not, also check if the corresponding
325   /// WeakTrackingVH is null to avoid issues with a new Value sharing the same
326   /// address as a deallocated one.
327   SmallMapVector<Value *, WeakTrackingVH, 16> IndirectVHs;
328 };
329 
330 /// The core module pass which does a post-order walk of the SCCs and
331 /// runs a CGSCC pass over each one.
332 ///
333 /// Designed to allow composition of a CGSCCPass(Manager) and
334 /// a ModulePassManager. Note that this pass must be run with a module analysis
335 /// manager as it uses the LazyCallGraph analysis. It will also run the
336 /// \c CGSCCAnalysisManagerModuleProxy analysis prior to running the CGSCC
337 /// pass over the module to enable a \c FunctionAnalysisManager to be used
338 /// within this run safely.
339 class ModuleToPostOrderCGSCCPassAdaptor
340     : public PassInfoMixin<ModuleToPostOrderCGSCCPassAdaptor> {
341 public:
342   using PassConceptT =
343       detail::PassConcept<LazyCallGraph::SCC, CGSCCAnalysisManager,
344                           LazyCallGraph &, CGSCCUpdateResult &>;
345 
346   explicit ModuleToPostOrderCGSCCPassAdaptor(std::unique_ptr<PassConceptT> Pass)
347       : Pass(std::move(Pass)) {}
348 
349   ModuleToPostOrderCGSCCPassAdaptor(ModuleToPostOrderCGSCCPassAdaptor &&Arg)
350       : Pass(std::move(Arg.Pass)) {}
351 
352   friend void swap(ModuleToPostOrderCGSCCPassAdaptor &LHS,
353                    ModuleToPostOrderCGSCCPassAdaptor &RHS) {
354     std::swap(LHS.Pass, RHS.Pass);
355   }
356 
357   ModuleToPostOrderCGSCCPassAdaptor &
358   operator=(ModuleToPostOrderCGSCCPassAdaptor RHS) {
359     swap(*this, RHS);
360     return *this;
361   }
362 
363   /// Runs the CGSCC pass across every SCC in the module.
364   PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
365 
366   static bool isRequired() { return true; }
367 
368 private:
369   std::unique_ptr<PassConceptT> Pass;
370 };
371 
372 /// A function to deduce a function pass type and wrap it in the
373 /// templated adaptor.
374 template <typename CGSCCPassT>
375 ModuleToPostOrderCGSCCPassAdaptor
376 createModuleToPostOrderCGSCCPassAdaptor(CGSCCPassT Pass) {
377   using PassModelT = detail::PassModel<LazyCallGraph::SCC, CGSCCPassT,
378                                        PreservedAnalyses, CGSCCAnalysisManager,
379                                        LazyCallGraph &, CGSCCUpdateResult &>;
380   return ModuleToPostOrderCGSCCPassAdaptor(
381       std::make_unique<PassModelT>(std::move(Pass)));
382 }
383 
384 /// A proxy from a \c FunctionAnalysisManager to an \c SCC.
385 ///
386 /// When a module pass runs and triggers invalidation, both the CGSCC and
387 /// Function analysis manager proxies on the module get an invalidation event.
388 /// We don't want to fully duplicate responsibility for most of the
389 /// invalidation logic. Instead, this layer is only responsible for SCC-local
390 /// invalidation events. We work with the module's FunctionAnalysisManager to
391 /// invalidate function analyses.
392 class FunctionAnalysisManagerCGSCCProxy
393     : public AnalysisInfoMixin<FunctionAnalysisManagerCGSCCProxy> {
394 public:
395   class Result {
396   public:
397     explicit Result() : FAM(nullptr) {}
398     explicit Result(FunctionAnalysisManager &FAM) : FAM(&FAM) {}
399 
400     void updateFAM(FunctionAnalysisManager &FAM) { this->FAM = &FAM; }
401     /// Accessor for the analysis manager.
402     FunctionAnalysisManager &getManager() {
403       assert(FAM);
404       return *FAM;
405     }
406 
407     bool invalidate(LazyCallGraph::SCC &C, const PreservedAnalyses &PA,
408                     CGSCCAnalysisManager::Invalidator &Inv);
409 
410   private:
411     FunctionAnalysisManager *FAM;
412   };
413 
414   /// Computes the \c FunctionAnalysisManager and stores it in the result proxy.
415   Result run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM, LazyCallGraph &);
416 
417 private:
418   friend AnalysisInfoMixin<FunctionAnalysisManagerCGSCCProxy>;
419 
420   static AnalysisKey Key;
421 };
422 
423 extern template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>;
424 
425 /// A proxy from a \c CGSCCAnalysisManager to a \c Function.
426 using CGSCCAnalysisManagerFunctionProxy =
427     OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>;
428 
429 /// Helper to update the call graph after running a function pass.
430 ///
431 /// Function passes can only mutate the call graph in specific ways. This
432 /// routine provides a helper that updates the call graph in those ways
433 /// including returning whether any changes were made and populating a CG
434 /// update result struct for the overall CGSCC walk.
435 LazyCallGraph::SCC &updateCGAndAnalysisManagerForFunctionPass(
436     LazyCallGraph &G, LazyCallGraph::SCC &C, LazyCallGraph::Node &N,
437     CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR,
438     FunctionAnalysisManager &FAM);
439 
440 /// Helper to update the call graph after running a CGSCC pass.
441 ///
442 /// CGSCC passes can only mutate the call graph in specific ways. This
443 /// routine provides a helper that updates the call graph in those ways
444 /// including returning whether any changes were made and populating a CG
445 /// update result struct for the overall CGSCC walk.
446 LazyCallGraph::SCC &updateCGAndAnalysisManagerForCGSCCPass(
447     LazyCallGraph &G, LazyCallGraph::SCC &C, LazyCallGraph::Node &N,
448     CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR,
449     FunctionAnalysisManager &FAM);
450 
451 /// Adaptor that maps from a SCC to its functions.
452 ///
453 /// Designed to allow composition of a FunctionPass(Manager) and
454 /// a CGSCCPassManager. Note that if this pass is constructed with a pointer
455 /// to a \c CGSCCAnalysisManager it will run the
456 /// \c FunctionAnalysisManagerCGSCCProxy analysis prior to running the function
457 /// pass over the SCC to enable a \c FunctionAnalysisManager to be used
458 /// within this run safely.
459 class CGSCCToFunctionPassAdaptor
460     : public PassInfoMixin<CGSCCToFunctionPassAdaptor> {
461 public:
462   using PassConceptT = detail::PassConcept<Function, FunctionAnalysisManager>;
463 
464   explicit CGSCCToFunctionPassAdaptor(std::unique_ptr<PassConceptT> Pass)
465       : Pass(std::move(Pass)) {}
466 
467   CGSCCToFunctionPassAdaptor(CGSCCToFunctionPassAdaptor &&Arg)
468       : Pass(std::move(Arg.Pass)) {}
469 
470   friend void swap(CGSCCToFunctionPassAdaptor &LHS,
471                    CGSCCToFunctionPassAdaptor &RHS) {
472     std::swap(LHS.Pass, RHS.Pass);
473   }
474 
475   CGSCCToFunctionPassAdaptor &operator=(CGSCCToFunctionPassAdaptor RHS) {
476     swap(*this, RHS);
477     return *this;
478   }
479 
480   /// Runs the function pass across every function in the module.
481   PreservedAnalyses run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
482                         LazyCallGraph &CG, CGSCCUpdateResult &UR);
483 
484   static bool isRequired() { return true; }
485 
486 private:
487   std::unique_ptr<PassConceptT> Pass;
488 };
489 
490 /// A function to deduce a function pass type and wrap it in the
491 /// templated adaptor.
492 template <typename FunctionPassT>
493 CGSCCToFunctionPassAdaptor
494 createCGSCCToFunctionPassAdaptor(FunctionPassT Pass) {
495   using PassModelT =
496       detail::PassModel<Function, FunctionPassT, PreservedAnalyses,
497                         FunctionAnalysisManager>;
498   return CGSCCToFunctionPassAdaptor(
499       std::make_unique<PassModelT>(std::move(Pass)));
500 }
501 
502 /// A helper that repeats an SCC pass each time an indirect call is refined to
503 /// a direct call by that pass.
504 ///
505 /// While the CGSCC pass manager works to re-visit SCCs and RefSCCs as they
506 /// change shape, we may also want to repeat an SCC pass if it simply refines
507 /// an indirect call to a direct call, even if doing so does not alter the
508 /// shape of the graph. Note that this only pertains to direct calls to
509 /// functions where IPO across the SCC may be able to compute more precise
510 /// results. For intrinsics, we assume scalar optimizations already can fully
511 /// reason about them.
512 ///
513 /// This repetition has the potential to be very large however, as each one
514 /// might refine a single call site. As a consequence, in practice we use an
515 /// upper bound on the number of repetitions to limit things.
516 class DevirtSCCRepeatedPass : public PassInfoMixin<DevirtSCCRepeatedPass> {
517 public:
518   using PassConceptT =
519       detail::PassConcept<LazyCallGraph::SCC, CGSCCAnalysisManager,
520                           LazyCallGraph &, CGSCCUpdateResult &>;
521 
522   explicit DevirtSCCRepeatedPass(std::unique_ptr<PassConceptT> Pass,
523                                  int MaxIterations)
524       : Pass(std::move(Pass)), MaxIterations(MaxIterations) {}
525 
526   /// Runs the wrapped pass up to \c MaxIterations on the SCC, iterating
527   /// whenever an indirect call is refined.
528   PreservedAnalyses run(LazyCallGraph::SCC &InitialC, CGSCCAnalysisManager &AM,
529                         LazyCallGraph &CG, CGSCCUpdateResult &UR);
530 
531 private:
532   std::unique_ptr<PassConceptT> Pass;
533   int MaxIterations;
534 };
535 
536 /// A function to deduce a function pass type and wrap it in the
537 /// templated adaptor.
538 template <typename CGSCCPassT>
539 DevirtSCCRepeatedPass createDevirtSCCRepeatedPass(CGSCCPassT Pass,
540                                                   int MaxIterations) {
541   using PassModelT = detail::PassModel<LazyCallGraph::SCC, CGSCCPassT,
542                                        PreservedAnalyses, CGSCCAnalysisManager,
543                                        LazyCallGraph &, CGSCCUpdateResult &>;
544   return DevirtSCCRepeatedPass(std::make_unique<PassModelT>(std::move(Pass)),
545                                MaxIterations);
546 }
547 
548 // Clear out the debug logging macro.
549 #undef DEBUG_TYPE
550 
551 } // end namespace llvm
552 
553 #endif // LLVM_ANALYSIS_CGSCCPASSMANAGER_H
554