1 //===- CGSCCPassManager.h - Call graph pass management ----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// This header provides classes for managing passes over SCCs of the call
11 /// graph. These passes form an important component of LLVM's interprocedural
12 /// optimizations. Because they operate on the SCCs of the call graph, and they
13 /// traverse the graph in post-order, they can effectively do pair-wise
14 /// interprocedural optimizations for all call edges in the program while
15 /// incrementally refining it and improving the context of these pair-wise
16 /// optimizations. At each call site edge, the callee has already been
17 /// optimized as much as is possible. This in turn allows very accurate
18 /// analysis of it for IPO.
19 ///
20 /// A secondary more general goal is to be able to isolate optimization on
21 /// unrelated parts of the IR module. This is useful to ensure our
22 /// optimizations are principled and don't miss oportunities where refinement
23 /// of one part of the module influences transformations in another part of the
24 /// module. But this is also useful if we want to parallelize the optimizations
25 /// across common large module graph shapes which tend to be very wide and have
26 /// large regions of unrelated cliques.
27 ///
28 /// To satisfy these goals, we use the LazyCallGraph which provides two graphs
29 /// nested inside each other (and built lazily from the bottom-up): the call
30 /// graph proper, and a reference graph. The reference graph is super set of
31 /// the call graph and is a conservative approximation of what could through
32 /// scalar or CGSCC transforms *become* the call graph. Using this allows us to
33 /// ensure we optimize functions prior to them being introduced into the call
34 /// graph by devirtualization or other technique, and thus ensures that
35 /// subsequent pair-wise interprocedural optimizations observe the optimized
36 /// form of these functions. The (potentially transitive) reference
37 /// reachability used by the reference graph is a conservative approximation
38 /// that still allows us to have independent regions of the graph.
39 ///
40 /// FIXME: There is one major drawback of the reference graph: in its naive
41 /// form it is quadratic because it contains a distinct edge for each
42 /// (potentially indirect) reference, even if are all through some common
43 /// global table of function pointers. This can be fixed in a number of ways
44 /// that essentially preserve enough of the normalization. While it isn't
45 /// expected to completely preclude the usability of this, it will need to be
46 /// addressed.
47 ///
48 ///
49 /// All of these issues are made substantially more complex in the face of
50 /// mutations to the call graph while optimization passes are being run. When
51 /// mutations to the call graph occur we want to achieve two different things:
52 ///
53 /// - We need to update the call graph in-flight and invalidate analyses
54 ///   cached on entities in the graph. Because of the cache-based analysis
55 ///   design of the pass manager, it is essential to have stable identities for
56 ///   the elements of the IR that passes traverse, and to invalidate any
57 ///   analyses cached on these elements as the mutations take place.
58 ///
59 /// - We want to preserve the incremental and post-order traversal of the
60 ///   graph even as it is refined and mutated. This means we want optimization
61 ///   to observe the most refined form of the call graph and to do so in
62 ///   post-order.
63 ///
64 /// To address this, the CGSCC manager uses both worklists that can be expanded
65 /// by passes which transform the IR, and provides invalidation tests to skip
66 /// entries that become dead. This extra data is provided to every SCC pass so
67 /// that it can carefully update the manager's traversal as the call graph
68 /// mutates.
69 ///
70 /// We also provide support for running function passes within the CGSCC walk,
71 /// and there we provide automatic update of the call graph including of the
72 /// pass manager to reflect call graph changes that fall out naturally as part
73 /// of scalar transformations.
74 ///
75 /// The patterns used to ensure the goals of post-order visitation of the fully
76 /// refined graph:
77 ///
78 /// 1) Sink toward the "bottom" as the graph is refined. This means that any
79 ///    iteration continues in some valid post-order sequence after the mutation
80 ///    has altered the structure.
81 ///
82 /// 2) Enqueue in post-order, including the current entity. If the current
83 ///    entity's shape changes, it and everything after it in post-order needs
84 ///    to be visited to observe that shape.
85 ///
86 //===----------------------------------------------------------------------===//
87 
88 #ifndef LLVM_ANALYSIS_CGSCCPASSMANAGER_H
89 #define LLVM_ANALYSIS_CGSCCPASSMANAGER_H
90 
91 #include "llvm/ADT/DenseMap.h"
92 #include "llvm/ADT/DenseSet.h"
93 #include "llvm/ADT/MapVector.h"
94 #include "llvm/ADT/PriorityWorklist.h"
95 #include "llvm/ADT/STLExtras.h"
96 #include "llvm/ADT/SmallPtrSet.h"
97 #include "llvm/ADT/SmallVector.h"
98 #include "llvm/Analysis/LazyCallGraph.h"
99 #include "llvm/IR/Function.h"
100 #include "llvm/IR/InstIterator.h"
101 #include "llvm/IR/PassManager.h"
102 #include "llvm/IR/ValueHandle.h"
103 #include "llvm/Support/Debug.h"
104 #include "llvm/Support/raw_ostream.h"
105 #include <algorithm>
106 #include <cassert>
107 #include <utility>
108 
109 namespace llvm {
110 
111 struct CGSCCUpdateResult;
112 class Module;
113 
114 // Allow debug logging in this inline function.
115 #define DEBUG_TYPE "cgscc"
116 
117 /// Extern template declaration for the analysis set for this IR unit.
118 extern template class AllAnalysesOn<LazyCallGraph::SCC>;
119 
120 extern template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>;
121 
122 /// The CGSCC analysis manager.
123 ///
124 /// See the documentation for the AnalysisManager template for detail
125 /// documentation. This type serves as a convenient way to refer to this
126 /// construct in the adaptors and proxies used to integrate this into the larger
127 /// pass manager infrastructure.
128 using CGSCCAnalysisManager =
129     AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>;
130 
131 // Explicit specialization and instantiation declarations for the pass manager.
132 // See the comments on the definition of the specialization for details on how
133 // it differs from the primary template.
134 template <>
135 PreservedAnalyses
136 PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &,
137             CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC,
138                                       CGSCCAnalysisManager &AM,
139                                       LazyCallGraph &G, CGSCCUpdateResult &UR);
140 extern template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager,
141                                   LazyCallGraph &, CGSCCUpdateResult &>;
142 
143 /// The CGSCC pass manager.
144 ///
145 /// See the documentation for the PassManager template for details. It runs
146 /// a sequence of SCC passes over each SCC that the manager is run over. This
147 /// type serves as a convenient way to refer to this construct.
148 using CGSCCPassManager =
149     PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &,
150                 CGSCCUpdateResult &>;
151 
152 /// An explicit specialization of the require analysis template pass.
153 template <typename AnalysisT>
154 struct RequireAnalysisPass<AnalysisT, LazyCallGraph::SCC, CGSCCAnalysisManager,
155                            LazyCallGraph &, CGSCCUpdateResult &>
156     : PassInfoMixin<RequireAnalysisPass<AnalysisT, LazyCallGraph::SCC,
157                                         CGSCCAnalysisManager, LazyCallGraph &,
158                                         CGSCCUpdateResult &>> {
159   PreservedAnalyses run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
160                         LazyCallGraph &CG, CGSCCUpdateResult &) {
161     (void)AM.template getResult<AnalysisT>(C, CG);
162     return PreservedAnalyses::all();
163   }
164   void printPipeline(raw_ostream &OS,
165                      function_ref<StringRef(StringRef)> MapClassName2PassName) {
166     auto ClassName = AnalysisT::name();
167     auto PassName = MapClassName2PassName(ClassName);
168     OS << "require<" << PassName << ">";
169   }
170 };
171 
172 /// A proxy from a \c CGSCCAnalysisManager to a \c Module.
173 using CGSCCAnalysisManagerModuleProxy =
174     InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>;
175 
176 /// We need a specialized result for the \c CGSCCAnalysisManagerModuleProxy so
177 /// it can have access to the call graph in order to walk all the SCCs when
178 /// invalidating things.
179 template <> class CGSCCAnalysisManagerModuleProxy::Result {
180 public:
181   explicit Result(CGSCCAnalysisManager &InnerAM, LazyCallGraph &G)
182       : InnerAM(&InnerAM), G(&G) {}
183 
184   /// Accessor for the analysis manager.
185   CGSCCAnalysisManager &getManager() { return *InnerAM; }
186 
187   /// Handler for invalidation of the Module.
188   ///
189   /// If the proxy analysis itself is preserved, then we assume that the set of
190   /// SCCs in the Module hasn't changed. Thus any pointers to SCCs in the
191   /// CGSCCAnalysisManager are still valid, and we don't need to call \c clear
192   /// on the CGSCCAnalysisManager.
193   ///
194   /// Regardless of whether this analysis is marked as preserved, all of the
195   /// analyses in the \c CGSCCAnalysisManager are potentially invalidated based
196   /// on the set of preserved analyses.
197   bool invalidate(Module &M, const PreservedAnalyses &PA,
198                   ModuleAnalysisManager::Invalidator &Inv);
199 
200 private:
201   CGSCCAnalysisManager *InnerAM;
202   LazyCallGraph *G;
203 };
204 
205 /// Provide a specialized run method for the \c CGSCCAnalysisManagerModuleProxy
206 /// so it can pass the lazy call graph to the result.
207 template <>
208 CGSCCAnalysisManagerModuleProxy::Result
209 CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM);
210 
211 // Ensure the \c CGSCCAnalysisManagerModuleProxy is provided as an extern
212 // template.
213 extern template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>;
214 
215 extern template class OuterAnalysisManagerProxy<
216     ModuleAnalysisManager, LazyCallGraph::SCC, LazyCallGraph &>;
217 
218 /// A proxy from a \c ModuleAnalysisManager to an \c SCC.
219 using ModuleAnalysisManagerCGSCCProxy =
220     OuterAnalysisManagerProxy<ModuleAnalysisManager, LazyCallGraph::SCC,
221                               LazyCallGraph &>;
222 
223 /// Support structure for SCC passes to communicate updates the call graph back
224 /// to the CGSCC pass manager infrastructure.
225 ///
226 /// The CGSCC pass manager runs SCC passes which are allowed to update the call
227 /// graph and SCC structures. This means the structure the pass manager works
228 /// on is mutating underneath it. In order to support that, there needs to be
229 /// careful communication about the precise nature and ramifications of these
230 /// updates to the pass management infrastructure.
231 ///
232 /// All SCC passes will have to accept a reference to the management layer's
233 /// update result struct and use it to reflect the results of any CG updates
234 /// performed.
235 ///
236 /// Passes which do not change the call graph structure in any way can just
237 /// ignore this argument to their run method.
238 struct CGSCCUpdateResult {
239   /// Worklist of the RefSCCs queued for processing.
240   ///
241   /// When a pass refines the graph and creates new RefSCCs or causes them to
242   /// have a different shape or set of component SCCs it should add the RefSCCs
243   /// to this worklist so that we visit them in the refined form.
244   ///
245   /// This worklist is in reverse post-order, as we pop off the back in order
246   /// to observe RefSCCs in post-order. When adding RefSCCs, clients should add
247   /// them in reverse post-order.
248   SmallPriorityWorklist<LazyCallGraph::RefSCC *, 1> &RCWorklist;
249 
250   /// Worklist of the SCCs queued for processing.
251   ///
252   /// When a pass refines the graph and creates new SCCs or causes them to have
253   /// a different shape or set of component functions it should add the SCCs to
254   /// this worklist so that we visit them in the refined form.
255   ///
256   /// Note that if the SCCs are part of a RefSCC that is added to the \c
257   /// RCWorklist, they don't need to be added here as visiting the RefSCC will
258   /// be sufficient to re-visit the SCCs within it.
259   ///
260   /// This worklist is in reverse post-order, as we pop off the back in order
261   /// to observe SCCs in post-order. When adding SCCs, clients should add them
262   /// in reverse post-order.
263   SmallPriorityWorklist<LazyCallGraph::SCC *, 1> &CWorklist;
264 
265   /// The set of invalidated RefSCCs which should be skipped if they are found
266   /// in \c RCWorklist.
267   ///
268   /// This is used to quickly prune out RefSCCs when they get deleted and
269   /// happen to already be on the worklist. We use this primarily to avoid
270   /// scanning the list and removing entries from it.
271   SmallPtrSetImpl<LazyCallGraph::RefSCC *> &InvalidatedRefSCCs;
272 
273   /// The set of invalidated SCCs which should be skipped if they are found
274   /// in \c CWorklist.
275   ///
276   /// This is used to quickly prune out SCCs when they get deleted and happen
277   /// to already be on the worklist. We use this primarily to avoid scanning
278   /// the list and removing entries from it.
279   SmallPtrSetImpl<LazyCallGraph::SCC *> &InvalidatedSCCs;
280 
281   /// If non-null, the updated current \c RefSCC being processed.
282   ///
283   /// This is set when a graph refinement takes place and the "current" point
284   /// in the graph moves "down" or earlier in the post-order walk. This will
285   /// often cause the "current" RefSCC to be a newly created RefSCC object and
286   /// the old one to be added to the above worklist. When that happens, this
287   /// pointer is non-null and can be used to continue processing the "top" of
288   /// the post-order walk.
289   LazyCallGraph::RefSCC *UpdatedRC;
290 
291   /// If non-null, the updated current \c SCC being processed.
292   ///
293   /// This is set when a graph refinement takes place and the "current" point
294   /// in the graph moves "down" or earlier in the post-order walk. This will
295   /// often cause the "current" SCC to be a newly created SCC object and the
296   /// old one to be added to the above worklist. When that happens, this
297   /// pointer is non-null and can be used to continue processing the "top" of
298   /// the post-order walk.
299   LazyCallGraph::SCC *UpdatedC;
300 
301   /// Preserved analyses across SCCs.
302   ///
303   /// We specifically want to allow CGSCC passes to mutate ancestor IR
304   /// (changing both the CG structure and the function IR itself). However,
305   /// this means we need to take special care to correctly mark what analyses
306   /// are preserved *across* SCCs. We have to track this out-of-band here
307   /// because within the main `PassManager` infrastructure we need to mark
308   /// everything within an SCC as preserved in order to avoid repeatedly
309   /// invalidating the same analyses as we unnest pass managers and adaptors.
310   /// So we track the cross-SCC version of the preserved analyses here from any
311   /// code that does direct invalidation of SCC analyses, and then use it
312   /// whenever we move forward in the post-order walk of SCCs before running
313   /// passes over the new SCC.
314   PreservedAnalyses CrossSCCPA;
315 
316   /// A hacky area where the inliner can retain history about inlining
317   /// decisions that mutated the call graph's SCC structure in order to avoid
318   /// infinite inlining. See the comments in the inliner's CG update logic.
319   ///
320   /// FIXME: Keeping this here seems like a big layering issue, we should look
321   /// for a better technique.
322   SmallDenseSet<std::pair<LazyCallGraph::Node *, LazyCallGraph::SCC *>, 4>
323       &InlinedInternalEdges;
324 
325   /// Weak VHs to keep track of indirect calls for the purposes of detecting
326   /// devirtualization.
327   ///
328   /// This is a map to avoid having duplicate entries. If a Value is
329   /// deallocated, its corresponding WeakTrackingVH will be nulled out. When
330   /// checking if a Value is in the map or not, also check if the corresponding
331   /// WeakTrackingVH is null to avoid issues with a new Value sharing the same
332   /// address as a deallocated one.
333   SmallMapVector<Value *, WeakTrackingVH, 16> IndirectVHs;
334 };
335 
336 /// The core module pass which does a post-order walk of the SCCs and
337 /// runs a CGSCC pass over each one.
338 ///
339 /// Designed to allow composition of a CGSCCPass(Manager) and
340 /// a ModulePassManager. Note that this pass must be run with a module analysis
341 /// manager as it uses the LazyCallGraph analysis. It will also run the
342 /// \c CGSCCAnalysisManagerModuleProxy analysis prior to running the CGSCC
343 /// pass over the module to enable a \c FunctionAnalysisManager to be used
344 /// within this run safely.
345 class ModuleToPostOrderCGSCCPassAdaptor
346     : public PassInfoMixin<ModuleToPostOrderCGSCCPassAdaptor> {
347 public:
348   using PassConceptT =
349       detail::PassConcept<LazyCallGraph::SCC, CGSCCAnalysisManager,
350                           LazyCallGraph &, CGSCCUpdateResult &>;
351 
352   explicit ModuleToPostOrderCGSCCPassAdaptor(std::unique_ptr<PassConceptT> Pass)
353       : Pass(std::move(Pass)) {}
354 
355   ModuleToPostOrderCGSCCPassAdaptor(ModuleToPostOrderCGSCCPassAdaptor &&Arg)
356       : Pass(std::move(Arg.Pass)) {}
357 
358   friend void swap(ModuleToPostOrderCGSCCPassAdaptor &LHS,
359                    ModuleToPostOrderCGSCCPassAdaptor &RHS) {
360     std::swap(LHS.Pass, RHS.Pass);
361   }
362 
363   ModuleToPostOrderCGSCCPassAdaptor &
364   operator=(ModuleToPostOrderCGSCCPassAdaptor RHS) {
365     swap(*this, RHS);
366     return *this;
367   }
368 
369   /// Runs the CGSCC pass across every SCC in the module.
370   PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
371 
372   void printPipeline(raw_ostream &OS,
373                      function_ref<StringRef(StringRef)> MapClassName2PassName) {
374     OS << "cgscc(";
375     Pass->printPipeline(OS, MapClassName2PassName);
376     OS << ")";
377   }
378 
379   static bool isRequired() { return true; }
380 
381 private:
382   std::unique_ptr<PassConceptT> Pass;
383 };
384 
385 /// A function to deduce a function pass type and wrap it in the
386 /// templated adaptor.
387 template <typename CGSCCPassT>
388 ModuleToPostOrderCGSCCPassAdaptor
389 createModuleToPostOrderCGSCCPassAdaptor(CGSCCPassT &&Pass) {
390   using PassModelT = detail::PassModel<LazyCallGraph::SCC, CGSCCPassT,
391                                        PreservedAnalyses, CGSCCAnalysisManager,
392                                        LazyCallGraph &, CGSCCUpdateResult &>;
393   // Do not use make_unique, it causes too many template instantiations,
394   // causing terrible compile times.
395   return ModuleToPostOrderCGSCCPassAdaptor(
396       std::unique_ptr<ModuleToPostOrderCGSCCPassAdaptor::PassConceptT>(
397           new PassModelT(std::forward<CGSCCPassT>(Pass))));
398 }
399 
400 /// A proxy from a \c FunctionAnalysisManager to an \c SCC.
401 ///
402 /// When a module pass runs and triggers invalidation, both the CGSCC and
403 /// Function analysis manager proxies on the module get an invalidation event.
404 /// We don't want to fully duplicate responsibility for most of the
405 /// invalidation logic. Instead, this layer is only responsible for SCC-local
406 /// invalidation events. We work with the module's FunctionAnalysisManager to
407 /// invalidate function analyses.
408 class FunctionAnalysisManagerCGSCCProxy
409     : public AnalysisInfoMixin<FunctionAnalysisManagerCGSCCProxy> {
410 public:
411   class Result {
412   public:
413     explicit Result() : FAM(nullptr) {}
414     explicit Result(FunctionAnalysisManager &FAM) : FAM(&FAM) {}
415 
416     void updateFAM(FunctionAnalysisManager &FAM) { this->FAM = &FAM; }
417     /// Accessor for the analysis manager.
418     FunctionAnalysisManager &getManager() {
419       assert(FAM);
420       return *FAM;
421     }
422 
423     bool invalidate(LazyCallGraph::SCC &C, const PreservedAnalyses &PA,
424                     CGSCCAnalysisManager::Invalidator &Inv);
425 
426   private:
427     FunctionAnalysisManager *FAM;
428   };
429 
430   /// Computes the \c FunctionAnalysisManager and stores it in the result proxy.
431   Result run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM, LazyCallGraph &);
432 
433 private:
434   friend AnalysisInfoMixin<FunctionAnalysisManagerCGSCCProxy>;
435 
436   static AnalysisKey Key;
437 };
438 
439 extern template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>;
440 
441 /// A proxy from a \c CGSCCAnalysisManager to a \c Function.
442 using CGSCCAnalysisManagerFunctionProxy =
443     OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>;
444 
445 /// Helper to update the call graph after running a function pass.
446 ///
447 /// Function passes can only mutate the call graph in specific ways. This
448 /// routine provides a helper that updates the call graph in those ways
449 /// including returning whether any changes were made and populating a CG
450 /// update result struct for the overall CGSCC walk.
451 LazyCallGraph::SCC &updateCGAndAnalysisManagerForFunctionPass(
452     LazyCallGraph &G, LazyCallGraph::SCC &C, LazyCallGraph::Node &N,
453     CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR,
454     FunctionAnalysisManager &FAM);
455 
456 /// Helper to update the call graph after running a CGSCC pass.
457 ///
458 /// CGSCC passes can only mutate the call graph in specific ways. This
459 /// routine provides a helper that updates the call graph in those ways
460 /// including returning whether any changes were made and populating a CG
461 /// update result struct for the overall CGSCC walk.
462 LazyCallGraph::SCC &updateCGAndAnalysisManagerForCGSCCPass(
463     LazyCallGraph &G, LazyCallGraph::SCC &C, LazyCallGraph::Node &N,
464     CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR,
465     FunctionAnalysisManager &FAM);
466 
467 /// Adaptor that maps from a SCC to its functions.
468 ///
469 /// Designed to allow composition of a FunctionPass(Manager) and
470 /// a CGSCCPassManager. Note that if this pass is constructed with a pointer
471 /// to a \c CGSCCAnalysisManager it will run the
472 /// \c FunctionAnalysisManagerCGSCCProxy analysis prior to running the function
473 /// pass over the SCC to enable a \c FunctionAnalysisManager to be used
474 /// within this run safely.
475 class CGSCCToFunctionPassAdaptor
476     : public PassInfoMixin<CGSCCToFunctionPassAdaptor> {
477 public:
478   using PassConceptT = detail::PassConcept<Function, FunctionAnalysisManager>;
479 
480   explicit CGSCCToFunctionPassAdaptor(std::unique_ptr<PassConceptT> Pass,
481                                       bool EagerlyInvalidate, bool NoRerun)
482       : Pass(std::move(Pass)), EagerlyInvalidate(EagerlyInvalidate),
483         NoRerun(NoRerun) {}
484 
485   CGSCCToFunctionPassAdaptor(CGSCCToFunctionPassAdaptor &&Arg)
486       : Pass(std::move(Arg.Pass)), EagerlyInvalidate(Arg.EagerlyInvalidate),
487         NoRerun(Arg.NoRerun) {}
488 
489   friend void swap(CGSCCToFunctionPassAdaptor &LHS,
490                    CGSCCToFunctionPassAdaptor &RHS) {
491     std::swap(LHS.Pass, RHS.Pass);
492   }
493 
494   CGSCCToFunctionPassAdaptor &operator=(CGSCCToFunctionPassAdaptor RHS) {
495     swap(*this, RHS);
496     return *this;
497   }
498 
499   /// Runs the function pass across every function in the module.
500   PreservedAnalyses run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
501                         LazyCallGraph &CG, CGSCCUpdateResult &UR);
502 
503   void printPipeline(raw_ostream &OS,
504                      function_ref<StringRef(StringRef)> MapClassName2PassName) {
505     OS << "function";
506     if (EagerlyInvalidate)
507       OS << "<eager-inv>";
508     OS << "(";
509     Pass->printPipeline(OS, MapClassName2PassName);
510     OS << ")";
511   }
512 
513   static bool isRequired() { return true; }
514 
515 private:
516   std::unique_ptr<PassConceptT> Pass;
517   bool EagerlyInvalidate;
518   bool NoRerun;
519 };
520 
521 /// A function to deduce a function pass type and wrap it in the
522 /// templated adaptor.
523 template <typename FunctionPassT>
524 CGSCCToFunctionPassAdaptor
525 createCGSCCToFunctionPassAdaptor(FunctionPassT &&Pass,
526                                  bool EagerlyInvalidate = false,
527                                  bool NoRerun = false) {
528   using PassModelT =
529       detail::PassModel<Function, FunctionPassT, PreservedAnalyses,
530                         FunctionAnalysisManager>;
531   // Do not use make_unique, it causes too many template instantiations,
532   // causing terrible compile times.
533   return CGSCCToFunctionPassAdaptor(
534       std::unique_ptr<CGSCCToFunctionPassAdaptor::PassConceptT>(
535           new PassModelT(std::forward<FunctionPassT>(Pass))),
536       EagerlyInvalidate, NoRerun);
537 }
538 
539 // A marker to determine if function passes should be run on a function within a
540 // CGSCCToFunctionPassAdaptor. This is used to prevent running an expensive
541 // function pass (manager) on a function multiple times if SCC mutations cause a
542 // function to be visited multiple times and the function is not modified by
543 // other SCC passes.
544 class ShouldNotRunFunctionPassesAnalysis
545     : public AnalysisInfoMixin<ShouldNotRunFunctionPassesAnalysis> {
546 public:
547   static AnalysisKey Key;
548   struct Result {};
549 
550   Result run(Function &F, FunctionAnalysisManager &FAM) { return Result(); }
551 };
552 
553 /// A helper that repeats an SCC pass each time an indirect call is refined to
554 /// a direct call by that pass.
555 ///
556 /// While the CGSCC pass manager works to re-visit SCCs and RefSCCs as they
557 /// change shape, we may also want to repeat an SCC pass if it simply refines
558 /// an indirect call to a direct call, even if doing so does not alter the
559 /// shape of the graph. Note that this only pertains to direct calls to
560 /// functions where IPO across the SCC may be able to compute more precise
561 /// results. For intrinsics, we assume scalar optimizations already can fully
562 /// reason about them.
563 ///
564 /// This repetition has the potential to be very large however, as each one
565 /// might refine a single call site. As a consequence, in practice we use an
566 /// upper bound on the number of repetitions to limit things.
567 class DevirtSCCRepeatedPass : public PassInfoMixin<DevirtSCCRepeatedPass> {
568 public:
569   using PassConceptT =
570       detail::PassConcept<LazyCallGraph::SCC, CGSCCAnalysisManager,
571                           LazyCallGraph &, CGSCCUpdateResult &>;
572 
573   explicit DevirtSCCRepeatedPass(std::unique_ptr<PassConceptT> Pass,
574                                  int MaxIterations)
575       : Pass(std::move(Pass)), MaxIterations(MaxIterations) {}
576 
577   /// Runs the wrapped pass up to \c MaxIterations on the SCC, iterating
578   /// whenever an indirect call is refined.
579   PreservedAnalyses run(LazyCallGraph::SCC &InitialC, CGSCCAnalysisManager &AM,
580                         LazyCallGraph &CG, CGSCCUpdateResult &UR);
581 
582   void printPipeline(raw_ostream &OS,
583                      function_ref<StringRef(StringRef)> MapClassName2PassName) {
584     OS << "devirt<" << MaxIterations << ">(";
585     Pass->printPipeline(OS, MapClassName2PassName);
586     OS << ")";
587   }
588 
589 private:
590   std::unique_ptr<PassConceptT> Pass;
591   int MaxIterations;
592 };
593 
594 /// A function to deduce a function pass type and wrap it in the
595 /// templated adaptor.
596 template <typename CGSCCPassT>
597 DevirtSCCRepeatedPass createDevirtSCCRepeatedPass(CGSCCPassT &&Pass,
598                                                   int MaxIterations) {
599   using PassModelT = detail::PassModel<LazyCallGraph::SCC, CGSCCPassT,
600                                        PreservedAnalyses, CGSCCAnalysisManager,
601                                        LazyCallGraph &, CGSCCUpdateResult &>;
602   // Do not use make_unique, it causes too many template instantiations,
603   // causing terrible compile times.
604   return DevirtSCCRepeatedPass(
605       std::unique_ptr<DevirtSCCRepeatedPass::PassConceptT>(
606           new PassModelT(std::forward<CGSCCPassT>(Pass))),
607       MaxIterations);
608 }
609 
610 // Clear out the debug logging macro.
611 #undef DEBUG_TYPE
612 
613 } // end namespace llvm
614 
615 #endif // LLVM_ANALYSIS_CGSCCPASSMANAGER_H
616