1 //===- CGSCCPassManager.h - Call graph pass management ----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// This header provides classes for managing passes over SCCs of the call
11 /// graph. These passes form an important component of LLVM's interprocedural
12 /// optimizations. Because they operate on the SCCs of the call graph, and they
13 /// traverse the graph in post-order, they can effectively do pair-wise
14 /// interprocedural optimizations for all call edges in the program while
15 /// incrementally refining it and improving the context of these pair-wise
16 /// optimizations. At each call site edge, the callee has already been
17 /// optimized as much as is possible. This in turn allows very accurate
18 /// analysis of it for IPO.
19 ///
20 /// A secondary more general goal is to be able to isolate optimization on
21 /// unrelated parts of the IR module. This is useful to ensure our
22 /// optimizations are principled and don't miss oportunities where refinement
23 /// of one part of the module influences transformations in another part of the
24 /// module. But this is also useful if we want to parallelize the optimizations
25 /// across common large module graph shapes which tend to be very wide and have
26 /// large regions of unrelated cliques.
27 ///
28 /// To satisfy these goals, we use the LazyCallGraph which provides two graphs
29 /// nested inside each other (and built lazily from the bottom-up): the call
30 /// graph proper, and a reference graph. The reference graph is super set of
31 /// the call graph and is a conservative approximation of what could through
32 /// scalar or CGSCC transforms *become* the call graph. Using this allows us to
33 /// ensure we optimize functions prior to them being introduced into the call
34 /// graph by devirtualization or other technique, and thus ensures that
35 /// subsequent pair-wise interprocedural optimizations observe the optimized
36 /// form of these functions. The (potentially transitive) reference
37 /// reachability used by the reference graph is a conservative approximation
38 /// that still allows us to have independent regions of the graph.
39 ///
40 /// FIXME: There is one major drawback of the reference graph: in its naive
41 /// form it is quadratic because it contains a distinct edge for each
42 /// (potentially indirect) reference, even if are all through some common
43 /// global table of function pointers. This can be fixed in a number of ways
44 /// that essentially preserve enough of the normalization. While it isn't
45 /// expected to completely preclude the usability of this, it will need to be
46 /// addressed.
47 ///
48 ///
49 /// All of these issues are made substantially more complex in the face of
50 /// mutations to the call graph while optimization passes are being run. When
51 /// mutations to the call graph occur we want to achieve two different things:
52 ///
53 /// - We need to update the call graph in-flight and invalidate analyses
54 ///   cached on entities in the graph. Because of the cache-based analysis
55 ///   design of the pass manager, it is essential to have stable identities for
56 ///   the elements of the IR that passes traverse, and to invalidate any
57 ///   analyses cached on these elements as the mutations take place.
58 ///
59 /// - We want to preserve the incremental and post-order traversal of the
60 ///   graph even as it is refined and mutated. This means we want optimization
61 ///   to observe the most refined form of the call graph and to do so in
62 ///   post-order.
63 ///
64 /// To address this, the CGSCC manager uses both worklists that can be expanded
65 /// by passes which transform the IR, and provides invalidation tests to skip
66 /// entries that become dead. This extra data is provided to every SCC pass so
67 /// that it can carefully update the manager's traversal as the call graph
68 /// mutates.
69 ///
70 /// We also provide support for running function passes within the CGSCC walk,
71 /// and there we provide automatic update of the call graph including of the
72 /// pass manager to reflect call graph changes that fall out naturally as part
73 /// of scalar transformations.
74 ///
75 /// The patterns used to ensure the goals of post-order visitation of the fully
76 /// refined graph:
77 ///
78 /// 1) Sink toward the "bottom" as the graph is refined. This means that any
79 ///    iteration continues in some valid post-order sequence after the mutation
80 ///    has altered the structure.
81 ///
82 /// 2) Enqueue in post-order, including the current entity. If the current
83 ///    entity's shape changes, it and everything after it in post-order needs
84 ///    to be visited to observe that shape.
85 ///
86 //===----------------------------------------------------------------------===//
87 
88 #ifndef LLVM_ANALYSIS_CGSCCPASSMANAGER_H
89 #define LLVM_ANALYSIS_CGSCCPASSMANAGER_H
90 
91 #include "llvm/ADT/MapVector.h"
92 #include "llvm/Analysis/LazyCallGraph.h"
93 #include "llvm/IR/PassManager.h"
94 #include "llvm/IR/ValueHandle.h"
95 #include "llvm/Support/raw_ostream.h"
96 #include <cassert>
97 #include <utility>
98 
99 namespace llvm {
100 
101 class Function;
102 class Value;
103 template <typename T, unsigned int N> class SmallPriorityWorklist;
104 struct CGSCCUpdateResult;
105 
106 class Module;
107 
108 // Allow debug logging in this inline function.
109 #define DEBUG_TYPE "cgscc"
110 
111 /// Extern template declaration for the analysis set for this IR unit.
112 extern template class AllAnalysesOn<LazyCallGraph::SCC>;
113 
114 extern template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>;
115 
116 /// The CGSCC analysis manager.
117 ///
118 /// See the documentation for the AnalysisManager template for detail
119 /// documentation. This type serves as a convenient way to refer to this
120 /// construct in the adaptors and proxies used to integrate this into the larger
121 /// pass manager infrastructure.
122 using CGSCCAnalysisManager =
123     AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>;
124 
125 // Explicit specialization and instantiation declarations for the pass manager.
126 // See the comments on the definition of the specialization for details on how
127 // it differs from the primary template.
128 template <>
129 PreservedAnalyses
130 PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &,
131             CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC,
132                                       CGSCCAnalysisManager &AM,
133                                       LazyCallGraph &G, CGSCCUpdateResult &UR);
134 extern template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager,
135                                   LazyCallGraph &, CGSCCUpdateResult &>;
136 
137 /// The CGSCC pass manager.
138 ///
139 /// See the documentation for the PassManager template for details. It runs
140 /// a sequence of SCC passes over each SCC that the manager is run over. This
141 /// type serves as a convenient way to refer to this construct.
142 using CGSCCPassManager =
143     PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &,
144                 CGSCCUpdateResult &>;
145 
146 /// An explicit specialization of the require analysis template pass.
147 template <typename AnalysisT>
148 struct RequireAnalysisPass<AnalysisT, LazyCallGraph::SCC, CGSCCAnalysisManager,
149                            LazyCallGraph &, CGSCCUpdateResult &>
150     : PassInfoMixin<RequireAnalysisPass<AnalysisT, LazyCallGraph::SCC,
151                                         CGSCCAnalysisManager, LazyCallGraph &,
152                                         CGSCCUpdateResult &>> {
153   PreservedAnalyses run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
154                         LazyCallGraph &CG, CGSCCUpdateResult &) {
155     (void)AM.template getResult<AnalysisT>(C, CG);
156     return PreservedAnalyses::all();
157   }
158   void printPipeline(raw_ostream &OS,
159                      function_ref<StringRef(StringRef)> MapClassName2PassName) {
160     auto ClassName = AnalysisT::name();
161     auto PassName = MapClassName2PassName(ClassName);
162     OS << "require<" << PassName << ">";
163   }
164 };
165 
166 /// A proxy from a \c CGSCCAnalysisManager to a \c Module.
167 using CGSCCAnalysisManagerModuleProxy =
168     InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>;
169 
170 /// We need a specialized result for the \c CGSCCAnalysisManagerModuleProxy so
171 /// it can have access to the call graph in order to walk all the SCCs when
172 /// invalidating things.
173 template <> class CGSCCAnalysisManagerModuleProxy::Result {
174 public:
175   explicit Result(CGSCCAnalysisManager &InnerAM, LazyCallGraph &G)
176       : InnerAM(&InnerAM), G(&G) {}
177 
178   /// Accessor for the analysis manager.
179   CGSCCAnalysisManager &getManager() { return *InnerAM; }
180 
181   /// Handler for invalidation of the Module.
182   ///
183   /// If the proxy analysis itself is preserved, then we assume that the set of
184   /// SCCs in the Module hasn't changed. Thus any pointers to SCCs in the
185   /// CGSCCAnalysisManager are still valid, and we don't need to call \c clear
186   /// on the CGSCCAnalysisManager.
187   ///
188   /// Regardless of whether this analysis is marked as preserved, all of the
189   /// analyses in the \c CGSCCAnalysisManager are potentially invalidated based
190   /// on the set of preserved analyses.
191   bool invalidate(Module &M, const PreservedAnalyses &PA,
192                   ModuleAnalysisManager::Invalidator &Inv);
193 
194 private:
195   CGSCCAnalysisManager *InnerAM;
196   LazyCallGraph *G;
197 };
198 
199 /// Provide a specialized run method for the \c CGSCCAnalysisManagerModuleProxy
200 /// so it can pass the lazy call graph to the result.
201 template <>
202 CGSCCAnalysisManagerModuleProxy::Result
203 CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM);
204 
205 // Ensure the \c CGSCCAnalysisManagerModuleProxy is provided as an extern
206 // template.
207 extern template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>;
208 
209 extern template class OuterAnalysisManagerProxy<
210     ModuleAnalysisManager, LazyCallGraph::SCC, LazyCallGraph &>;
211 
212 /// A proxy from a \c ModuleAnalysisManager to an \c SCC.
213 using ModuleAnalysisManagerCGSCCProxy =
214     OuterAnalysisManagerProxy<ModuleAnalysisManager, LazyCallGraph::SCC,
215                               LazyCallGraph &>;
216 
217 /// Support structure for SCC passes to communicate updates the call graph back
218 /// to the CGSCC pass manager infrastructure.
219 ///
220 /// The CGSCC pass manager runs SCC passes which are allowed to update the call
221 /// graph and SCC structures. This means the structure the pass manager works
222 /// on is mutating underneath it. In order to support that, there needs to be
223 /// careful communication about the precise nature and ramifications of these
224 /// updates to the pass management infrastructure.
225 ///
226 /// All SCC passes will have to accept a reference to the management layer's
227 /// update result struct and use it to reflect the results of any CG updates
228 /// performed.
229 ///
230 /// Passes which do not change the call graph structure in any way can just
231 /// ignore this argument to their run method.
232 struct CGSCCUpdateResult {
233   /// Worklist of the RefSCCs queued for processing.
234   ///
235   /// When a pass refines the graph and creates new RefSCCs or causes them to
236   /// have a different shape or set of component SCCs it should add the RefSCCs
237   /// to this worklist so that we visit them in the refined form.
238   ///
239   /// This worklist is in reverse post-order, as we pop off the back in order
240   /// to observe RefSCCs in post-order. When adding RefSCCs, clients should add
241   /// them in reverse post-order.
242   SmallPriorityWorklist<LazyCallGraph::RefSCC *, 1> &RCWorklist;
243 
244   /// Worklist of the SCCs queued for processing.
245   ///
246   /// When a pass refines the graph and creates new SCCs or causes them to have
247   /// a different shape or set of component functions it should add the SCCs to
248   /// this worklist so that we visit them in the refined form.
249   ///
250   /// Note that if the SCCs are part of a RefSCC that is added to the \c
251   /// RCWorklist, they don't need to be added here as visiting the RefSCC will
252   /// be sufficient to re-visit the SCCs within it.
253   ///
254   /// This worklist is in reverse post-order, as we pop off the back in order
255   /// to observe SCCs in post-order. When adding SCCs, clients should add them
256   /// in reverse post-order.
257   SmallPriorityWorklist<LazyCallGraph::SCC *, 1> &CWorklist;
258 
259   /// The set of invalidated RefSCCs which should be skipped if they are found
260   /// in \c RCWorklist.
261   ///
262   /// This is used to quickly prune out RefSCCs when they get deleted and
263   /// happen to already be on the worklist. We use this primarily to avoid
264   /// scanning the list and removing entries from it.
265   SmallPtrSetImpl<LazyCallGraph::RefSCC *> &InvalidatedRefSCCs;
266 
267   /// The set of invalidated SCCs which should be skipped if they are found
268   /// in \c CWorklist.
269   ///
270   /// This is used to quickly prune out SCCs when they get deleted and happen
271   /// to already be on the worklist. We use this primarily to avoid scanning
272   /// the list and removing entries from it.
273   SmallPtrSetImpl<LazyCallGraph::SCC *> &InvalidatedSCCs;
274 
275   /// If non-null, the updated current \c SCC being processed.
276   ///
277   /// This is set when a graph refinement takes place and the "current" point
278   /// in the graph moves "down" or earlier in the post-order walk. This will
279   /// often cause the "current" SCC to be a newly created SCC object and the
280   /// old one to be added to the above worklist. When that happens, this
281   /// pointer is non-null and can be used to continue processing the "top" of
282   /// the post-order walk.
283   LazyCallGraph::SCC *UpdatedC;
284 
285   /// Preserved analyses across SCCs.
286   ///
287   /// We specifically want to allow CGSCC passes to mutate ancestor IR
288   /// (changing both the CG structure and the function IR itself). However,
289   /// this means we need to take special care to correctly mark what analyses
290   /// are preserved *across* SCCs. We have to track this out-of-band here
291   /// because within the main `PassManager` infrastructure we need to mark
292   /// everything within an SCC as preserved in order to avoid repeatedly
293   /// invalidating the same analyses as we unnest pass managers and adaptors.
294   /// So we track the cross-SCC version of the preserved analyses here from any
295   /// code that does direct invalidation of SCC analyses, and then use it
296   /// whenever we move forward in the post-order walk of SCCs before running
297   /// passes over the new SCC.
298   PreservedAnalyses CrossSCCPA;
299 
300   /// A hacky area where the inliner can retain history about inlining
301   /// decisions that mutated the call graph's SCC structure in order to avoid
302   /// infinite inlining. See the comments in the inliner's CG update logic.
303   ///
304   /// FIXME: Keeping this here seems like a big layering issue, we should look
305   /// for a better technique.
306   SmallDenseSet<std::pair<LazyCallGraph::Node *, LazyCallGraph::SCC *>, 4>
307       &InlinedInternalEdges;
308 
309   /// Weak VHs to keep track of indirect calls for the purposes of detecting
310   /// devirtualization.
311   ///
312   /// This is a map to avoid having duplicate entries. If a Value is
313   /// deallocated, its corresponding WeakTrackingVH will be nulled out. When
314   /// checking if a Value is in the map or not, also check if the corresponding
315   /// WeakTrackingVH is null to avoid issues with a new Value sharing the same
316   /// address as a deallocated one.
317   SmallMapVector<Value *, WeakTrackingVH, 16> IndirectVHs;
318 };
319 
320 /// The core module pass which does a post-order walk of the SCCs and
321 /// runs a CGSCC pass over each one.
322 ///
323 /// Designed to allow composition of a CGSCCPass(Manager) and
324 /// a ModulePassManager. Note that this pass must be run with a module analysis
325 /// manager as it uses the LazyCallGraph analysis. It will also run the
326 /// \c CGSCCAnalysisManagerModuleProxy analysis prior to running the CGSCC
327 /// pass over the module to enable a \c FunctionAnalysisManager to be used
328 /// within this run safely.
329 class ModuleToPostOrderCGSCCPassAdaptor
330     : public PassInfoMixin<ModuleToPostOrderCGSCCPassAdaptor> {
331 public:
332   using PassConceptT =
333       detail::PassConcept<LazyCallGraph::SCC, CGSCCAnalysisManager,
334                           LazyCallGraph &, CGSCCUpdateResult &>;
335 
336   explicit ModuleToPostOrderCGSCCPassAdaptor(std::unique_ptr<PassConceptT> Pass)
337       : Pass(std::move(Pass)) {}
338 
339   ModuleToPostOrderCGSCCPassAdaptor(ModuleToPostOrderCGSCCPassAdaptor &&Arg)
340       : Pass(std::move(Arg.Pass)) {}
341 
342   friend void swap(ModuleToPostOrderCGSCCPassAdaptor &LHS,
343                    ModuleToPostOrderCGSCCPassAdaptor &RHS) {
344     std::swap(LHS.Pass, RHS.Pass);
345   }
346 
347   ModuleToPostOrderCGSCCPassAdaptor &
348   operator=(ModuleToPostOrderCGSCCPassAdaptor RHS) {
349     swap(*this, RHS);
350     return *this;
351   }
352 
353   /// Runs the CGSCC pass across every SCC in the module.
354   PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
355 
356   void printPipeline(raw_ostream &OS,
357                      function_ref<StringRef(StringRef)> MapClassName2PassName) {
358     OS << "cgscc(";
359     Pass->printPipeline(OS, MapClassName2PassName);
360     OS << ")";
361   }
362 
363   static bool isRequired() { return true; }
364 
365 private:
366   std::unique_ptr<PassConceptT> Pass;
367 };
368 
369 /// A function to deduce a function pass type and wrap it in the
370 /// templated adaptor.
371 template <typename CGSCCPassT>
372 ModuleToPostOrderCGSCCPassAdaptor
373 createModuleToPostOrderCGSCCPassAdaptor(CGSCCPassT &&Pass) {
374   using PassModelT = detail::PassModel<LazyCallGraph::SCC, CGSCCPassT,
375                                        PreservedAnalyses, CGSCCAnalysisManager,
376                                        LazyCallGraph &, CGSCCUpdateResult &>;
377   // Do not use make_unique, it causes too many template instantiations,
378   // causing terrible compile times.
379   return ModuleToPostOrderCGSCCPassAdaptor(
380       std::unique_ptr<ModuleToPostOrderCGSCCPassAdaptor::PassConceptT>(
381           new PassModelT(std::forward<CGSCCPassT>(Pass))));
382 }
383 
384 /// A proxy from a \c FunctionAnalysisManager to an \c SCC.
385 ///
386 /// When a module pass runs and triggers invalidation, both the CGSCC and
387 /// Function analysis manager proxies on the module get an invalidation event.
388 /// We don't want to fully duplicate responsibility for most of the
389 /// invalidation logic. Instead, this layer is only responsible for SCC-local
390 /// invalidation events. We work with the module's FunctionAnalysisManager to
391 /// invalidate function analyses.
392 class FunctionAnalysisManagerCGSCCProxy
393     : public AnalysisInfoMixin<FunctionAnalysisManagerCGSCCProxy> {
394 public:
395   class Result {
396   public:
397     explicit Result() : FAM(nullptr) {}
398     explicit Result(FunctionAnalysisManager &FAM) : FAM(&FAM) {}
399 
400     void updateFAM(FunctionAnalysisManager &FAM) { this->FAM = &FAM; }
401     /// Accessor for the analysis manager.
402     FunctionAnalysisManager &getManager() {
403       assert(FAM);
404       return *FAM;
405     }
406 
407     bool invalidate(LazyCallGraph::SCC &C, const PreservedAnalyses &PA,
408                     CGSCCAnalysisManager::Invalidator &Inv);
409 
410   private:
411     FunctionAnalysisManager *FAM;
412   };
413 
414   /// Computes the \c FunctionAnalysisManager and stores it in the result proxy.
415   Result run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM, LazyCallGraph &);
416 
417 private:
418   friend AnalysisInfoMixin<FunctionAnalysisManagerCGSCCProxy>;
419 
420   static AnalysisKey Key;
421 };
422 
423 extern template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>;
424 
425 /// A proxy from a \c CGSCCAnalysisManager to a \c Function.
426 using CGSCCAnalysisManagerFunctionProxy =
427     OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>;
428 
429 /// Helper to update the call graph after running a function pass.
430 ///
431 /// Function passes can only mutate the call graph in specific ways. This
432 /// routine provides a helper that updates the call graph in those ways
433 /// including returning whether any changes were made and populating a CG
434 /// update result struct for the overall CGSCC walk.
435 LazyCallGraph::SCC &updateCGAndAnalysisManagerForFunctionPass(
436     LazyCallGraph &G, LazyCallGraph::SCC &C, LazyCallGraph::Node &N,
437     CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR,
438     FunctionAnalysisManager &FAM);
439 
440 /// Helper to update the call graph after running a CGSCC pass.
441 ///
442 /// CGSCC passes can only mutate the call graph in specific ways. This
443 /// routine provides a helper that updates the call graph in those ways
444 /// including returning whether any changes were made and populating a CG
445 /// update result struct for the overall CGSCC walk.
446 LazyCallGraph::SCC &updateCGAndAnalysisManagerForCGSCCPass(
447     LazyCallGraph &G, LazyCallGraph::SCC &C, LazyCallGraph::Node &N,
448     CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR,
449     FunctionAnalysisManager &FAM);
450 
451 /// Adaptor that maps from a SCC to its functions.
452 ///
453 /// Designed to allow composition of a FunctionPass(Manager) and
454 /// a CGSCCPassManager. Note that if this pass is constructed with a pointer
455 /// to a \c CGSCCAnalysisManager it will run the
456 /// \c FunctionAnalysisManagerCGSCCProxy analysis prior to running the function
457 /// pass over the SCC to enable a \c FunctionAnalysisManager to be used
458 /// within this run safely.
459 class CGSCCToFunctionPassAdaptor
460     : public PassInfoMixin<CGSCCToFunctionPassAdaptor> {
461 public:
462   using PassConceptT = detail::PassConcept<Function, FunctionAnalysisManager>;
463 
464   explicit CGSCCToFunctionPassAdaptor(std::unique_ptr<PassConceptT> Pass,
465                                       bool EagerlyInvalidate, bool NoRerun)
466       : Pass(std::move(Pass)), EagerlyInvalidate(EagerlyInvalidate),
467         NoRerun(NoRerun) {}
468 
469   CGSCCToFunctionPassAdaptor(CGSCCToFunctionPassAdaptor &&Arg)
470       : Pass(std::move(Arg.Pass)), EagerlyInvalidate(Arg.EagerlyInvalidate),
471         NoRerun(Arg.NoRerun) {}
472 
473   friend void swap(CGSCCToFunctionPassAdaptor &LHS,
474                    CGSCCToFunctionPassAdaptor &RHS) {
475     std::swap(LHS.Pass, RHS.Pass);
476   }
477 
478   CGSCCToFunctionPassAdaptor &operator=(CGSCCToFunctionPassAdaptor RHS) {
479     swap(*this, RHS);
480     return *this;
481   }
482 
483   /// Runs the function pass across every function in the module.
484   PreservedAnalyses run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
485                         LazyCallGraph &CG, CGSCCUpdateResult &UR);
486 
487   void printPipeline(raw_ostream &OS,
488                      function_ref<StringRef(StringRef)> MapClassName2PassName) {
489     OS << "function";
490     if (EagerlyInvalidate)
491       OS << "<eager-inv>";
492     OS << "(";
493     Pass->printPipeline(OS, MapClassName2PassName);
494     OS << ")";
495   }
496 
497   static bool isRequired() { return true; }
498 
499 private:
500   std::unique_ptr<PassConceptT> Pass;
501   bool EagerlyInvalidate;
502   bool NoRerun;
503 };
504 
505 /// A function to deduce a function pass type and wrap it in the
506 /// templated adaptor.
507 template <typename FunctionPassT>
508 CGSCCToFunctionPassAdaptor
509 createCGSCCToFunctionPassAdaptor(FunctionPassT &&Pass,
510                                  bool EagerlyInvalidate = false,
511                                  bool NoRerun = false) {
512   using PassModelT =
513       detail::PassModel<Function, FunctionPassT, PreservedAnalyses,
514                         FunctionAnalysisManager>;
515   // Do not use make_unique, it causes too many template instantiations,
516   // causing terrible compile times.
517   return CGSCCToFunctionPassAdaptor(
518       std::unique_ptr<CGSCCToFunctionPassAdaptor::PassConceptT>(
519           new PassModelT(std::forward<FunctionPassT>(Pass))),
520       EagerlyInvalidate, NoRerun);
521 }
522 
523 // A marker to determine if function passes should be run on a function within a
524 // CGSCCToFunctionPassAdaptor. This is used to prevent running an expensive
525 // function pass (manager) on a function multiple times if SCC mutations cause a
526 // function to be visited multiple times and the function is not modified by
527 // other SCC passes.
528 class ShouldNotRunFunctionPassesAnalysis
529     : public AnalysisInfoMixin<ShouldNotRunFunctionPassesAnalysis> {
530 public:
531   static AnalysisKey Key;
532   struct Result {};
533 
534   Result run(Function &F, FunctionAnalysisManager &FAM) { return Result(); }
535 };
536 
537 /// A helper that repeats an SCC pass each time an indirect call is refined to
538 /// a direct call by that pass.
539 ///
540 /// While the CGSCC pass manager works to re-visit SCCs and RefSCCs as they
541 /// change shape, we may also want to repeat an SCC pass if it simply refines
542 /// an indirect call to a direct call, even if doing so does not alter the
543 /// shape of the graph. Note that this only pertains to direct calls to
544 /// functions where IPO across the SCC may be able to compute more precise
545 /// results. For intrinsics, we assume scalar optimizations already can fully
546 /// reason about them.
547 ///
548 /// This repetition has the potential to be very large however, as each one
549 /// might refine a single call site. As a consequence, in practice we use an
550 /// upper bound on the number of repetitions to limit things.
551 class DevirtSCCRepeatedPass : public PassInfoMixin<DevirtSCCRepeatedPass> {
552 public:
553   using PassConceptT =
554       detail::PassConcept<LazyCallGraph::SCC, CGSCCAnalysisManager,
555                           LazyCallGraph &, CGSCCUpdateResult &>;
556 
557   explicit DevirtSCCRepeatedPass(std::unique_ptr<PassConceptT> Pass,
558                                  int MaxIterations)
559       : Pass(std::move(Pass)), MaxIterations(MaxIterations) {}
560 
561   /// Runs the wrapped pass up to \c MaxIterations on the SCC, iterating
562   /// whenever an indirect call is refined.
563   PreservedAnalyses run(LazyCallGraph::SCC &InitialC, CGSCCAnalysisManager &AM,
564                         LazyCallGraph &CG, CGSCCUpdateResult &UR);
565 
566   void printPipeline(raw_ostream &OS,
567                      function_ref<StringRef(StringRef)> MapClassName2PassName) {
568     OS << "devirt<" << MaxIterations << ">(";
569     Pass->printPipeline(OS, MapClassName2PassName);
570     OS << ")";
571   }
572 
573 private:
574   std::unique_ptr<PassConceptT> Pass;
575   int MaxIterations;
576 };
577 
578 /// A function to deduce a function pass type and wrap it in the
579 /// templated adaptor.
580 template <typename CGSCCPassT>
581 DevirtSCCRepeatedPass createDevirtSCCRepeatedPass(CGSCCPassT &&Pass,
582                                                   int MaxIterations) {
583   using PassModelT = detail::PassModel<LazyCallGraph::SCC, CGSCCPassT,
584                                        PreservedAnalyses, CGSCCAnalysisManager,
585                                        LazyCallGraph &, CGSCCUpdateResult &>;
586   // Do not use make_unique, it causes too many template instantiations,
587   // causing terrible compile times.
588   return DevirtSCCRepeatedPass(
589       std::unique_ptr<DevirtSCCRepeatedPass::PassConceptT>(
590           new PassModelT(std::forward<CGSCCPassT>(Pass))),
591       MaxIterations);
592 }
593 
594 // Clear out the debug logging macro.
595 #undef DEBUG_TYPE
596 
597 } // end namespace llvm
598 
599 #endif // LLVM_ANALYSIS_CGSCCPASSMANAGER_H
600