1 //===-- llvm/Analysis/DependenceAnalysis.h -------------------- -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // DependenceAnalysis is an LLVM pass that analyses dependences between memory
10 // accesses. Currently, it is an implementation of the approach described in
11 //
12 //            Practical Dependence Testing
13 //            Goff, Kennedy, Tseng
14 //            PLDI 1991
15 //
16 // There's a single entry point that analyzes the dependence between a pair
17 // of memory references in a function, returning either NULL, for no dependence,
18 // or a more-or-less detailed description of the dependence between them.
19 //
20 // This pass exists to support the DependenceGraph pass. There are two separate
21 // passes because there's a useful separation of concerns. A dependence exists
22 // if two conditions are met:
23 //
24 //    1) Two instructions reference the same memory location, and
25 //    2) There is a flow of control leading from one instruction to the other.
26 //
27 // DependenceAnalysis attacks the first condition; DependenceGraph will attack
28 // the second (it's not yet ready).
29 //
30 // Please note that this is work in progress and the interface is subject to
31 // change.
32 //
33 // Plausible changes:
34 //    Return a set of more precise dependences instead of just one dependence
35 //    summarizing all.
36 //
37 //===----------------------------------------------------------------------===//
38 
39 #ifndef LLVM_ANALYSIS_DEPENDENCEANALYSIS_H
40 #define LLVM_ANALYSIS_DEPENDENCEANALYSIS_H
41 
42 #include "llvm/ADT/SmallBitVector.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/PassManager.h"
45 #include "llvm/Pass.h"
46 
47 namespace llvm {
48   class AAResults;
49   template <typename T> class ArrayRef;
50   class Loop;
51   class LoopInfo;
52   class ScalarEvolution;
53   class SCEV;
54   class SCEVConstant;
55   class raw_ostream;
56 
57   /// Dependence - This class represents a dependence between two memory
58   /// memory references in a function. It contains minimal information and
59   /// is used in the very common situation where the compiler is unable to
60   /// determine anything beyond the existence of a dependence; that is, it
61   /// represents a confused dependence (see also FullDependence). In most
62   /// cases (for output, flow, and anti dependences), the dependence implies
63   /// an ordering, where the source must precede the destination; in contrast,
64   /// input dependences are unordered.
65   ///
66   /// When a dependence graph is built, each Dependence will be a member of
67   /// the set of predecessor edges for its destination instruction and a set
68   /// if successor edges for its source instruction. These sets are represented
69   /// as singly-linked lists, with the "next" fields stored in the dependence
70   /// itelf.
71   class Dependence {
72   protected:
73     Dependence(Dependence &&) = default;
74     Dependence &operator=(Dependence &&) = default;
75 
76   public:
77     Dependence(Instruction *Source, Instruction *Destination)
78         : Src(Source), Dst(Destination) {}
79     virtual ~Dependence() = default;
80 
81     /// Dependence::DVEntry - Each level in the distance/direction vector
82     /// has a direction (or perhaps a union of several directions), and
83     /// perhaps a distance.
84     struct DVEntry {
85       enum : unsigned char {
86         NONE = 0,
87         LT = 1,
88         EQ = 2,
89         LE = 3,
90         GT = 4,
91         NE = 5,
92         GE = 6,
93         ALL = 7
94       };
95       unsigned char Direction : 3; // Init to ALL, then refine.
96       bool Scalar    : 1; // Init to true.
97       bool PeelFirst : 1; // Peeling the first iteration will break dependence.
98       bool PeelLast  : 1; // Peeling the last iteration will break the dependence.
99       bool Splitable : 1; // Splitting the loop will break dependence.
100       const SCEV *Distance = nullptr; // NULL implies no distance available.
101       DVEntry()
102           : Direction(ALL), Scalar(true), PeelFirst(false), PeelLast(false),
103             Splitable(false) {}
104     };
105 
106     /// getSrc - Returns the source instruction for this dependence.
107     ///
108     Instruction *getSrc() const { return Src; }
109 
110     /// getDst - Returns the destination instruction for this dependence.
111     ///
112     Instruction *getDst() const { return Dst; }
113 
114     /// isInput - Returns true if this is an input dependence.
115     ///
116     bool isInput() const;
117 
118     /// isOutput - Returns true if this is an output dependence.
119     ///
120     bool isOutput() const;
121 
122     /// isFlow - Returns true if this is a flow (aka true) dependence.
123     ///
124     bool isFlow() const;
125 
126     /// isAnti - Returns true if this is an anti dependence.
127     ///
128     bool isAnti() const;
129 
130     /// isOrdered - Returns true if dependence is Output, Flow, or Anti
131     ///
132     bool isOrdered() const { return isOutput() || isFlow() || isAnti(); }
133 
134     /// isUnordered - Returns true if dependence is Input
135     ///
136     bool isUnordered() const { return isInput(); }
137 
138     /// isLoopIndependent - Returns true if this is a loop-independent
139     /// dependence.
140     virtual bool isLoopIndependent() const { return true; }
141 
142     /// isConfused - Returns true if this dependence is confused
143     /// (the compiler understands nothing and makes worst-case
144     /// assumptions).
145     virtual bool isConfused() const { return true; }
146 
147     /// isConsistent - Returns true if this dependence is consistent
148     /// (occurs every time the source and destination are executed).
149     virtual bool isConsistent() const { return false; }
150 
151     /// getLevels - Returns the number of common loops surrounding the
152     /// source and destination of the dependence.
153     virtual unsigned getLevels() const { return 0; }
154 
155     /// getDirection - Returns the direction associated with a particular
156     /// level.
157     virtual unsigned getDirection(unsigned Level) const { return DVEntry::ALL; }
158 
159     /// getDistance - Returns the distance (or NULL) associated with a
160     /// particular level.
161     virtual const SCEV *getDistance(unsigned Level) const { return nullptr; }
162 
163     /// Check if the direction vector is negative. A negative direction
164     /// vector means Src and Dst are reversed in the actual program.
165     virtual bool isDirectionNegative() const { return false; }
166 
167     /// If the direction vector is negative, normalize the direction
168     /// vector to make it non-negative. Normalization is done by reversing
169     /// Src and Dst, plus reversing the dependence directions and distances
170     /// in the vector.
171     virtual bool normalize(ScalarEvolution *SE) { return false; }
172 
173     /// isPeelFirst - Returns true if peeling the first iteration from
174     /// this loop will break this dependence.
175     virtual bool isPeelFirst(unsigned Level) const { return false; }
176 
177     /// isPeelLast - Returns true if peeling the last iteration from
178     /// this loop will break this dependence.
179     virtual bool isPeelLast(unsigned Level) const { return false; }
180 
181     /// isSplitable - Returns true if splitting this loop will break
182     /// the dependence.
183     virtual bool isSplitable(unsigned Level) const { return false; }
184 
185     /// isScalar - Returns true if a particular level is scalar; that is,
186     /// if no subscript in the source or destination mention the induction
187     /// variable associated with the loop at this level.
188     virtual bool isScalar(unsigned Level) const;
189 
190     /// getNextPredecessor - Returns the value of the NextPredecessor
191     /// field.
192     const Dependence *getNextPredecessor() const { return NextPredecessor; }
193 
194     /// getNextSuccessor - Returns the value of the NextSuccessor
195     /// field.
196     const Dependence *getNextSuccessor() const { return NextSuccessor; }
197 
198     /// setNextPredecessor - Sets the value of the NextPredecessor
199     /// field.
200     void setNextPredecessor(const Dependence *pred) { NextPredecessor = pred; }
201 
202     /// setNextSuccessor - Sets the value of the NextSuccessor
203     /// field.
204     void setNextSuccessor(const Dependence *succ) { NextSuccessor = succ; }
205 
206     /// dump - For debugging purposes, dumps a dependence to OS.
207     ///
208     void dump(raw_ostream &OS) const;
209 
210   protected:
211     Instruction *Src, *Dst;
212 
213   private:
214     const Dependence *NextPredecessor = nullptr, *NextSuccessor = nullptr;
215     friend class DependenceInfo;
216   };
217 
218   /// FullDependence - This class represents a dependence between two memory
219   /// references in a function. It contains detailed information about the
220   /// dependence (direction vectors, etc.) and is used when the compiler is
221   /// able to accurately analyze the interaction of the references; that is,
222   /// it is not a confused dependence (see Dependence). In most cases
223   /// (for output, flow, and anti dependences), the dependence implies an
224   /// ordering, where the source must precede the destination; in contrast,
225   /// input dependences are unordered.
226   class FullDependence final : public Dependence {
227   public:
228     FullDependence(Instruction *Src, Instruction *Dst, bool LoopIndependent,
229                    unsigned Levels);
230 
231     /// isLoopIndependent - Returns true if this is a loop-independent
232     /// dependence.
233     bool isLoopIndependent() const override { return LoopIndependent; }
234 
235     /// isConfused - Returns true if this dependence is confused
236     /// (the compiler understands nothing and makes worst-case
237     /// assumptions).
238     bool isConfused() const override { return false; }
239 
240     /// isConsistent - Returns true if this dependence is consistent
241     /// (occurs every time the source and destination are executed).
242     bool isConsistent() const override { return Consistent; }
243 
244     /// getLevels - Returns the number of common loops surrounding the
245     /// source and destination of the dependence.
246     unsigned getLevels() const override { return Levels; }
247 
248     /// getDirection - Returns the direction associated with a particular
249     /// level.
250     unsigned getDirection(unsigned Level) const override;
251 
252     /// getDistance - Returns the distance (or NULL) associated with a
253     /// particular level.
254     const SCEV *getDistance(unsigned Level) const override;
255 
256     /// Check if the direction vector is negative. A negative direction
257     /// vector means Src and Dst are reversed in the actual program.
258     bool isDirectionNegative() const override;
259 
260     /// If the direction vector is negative, normalize the direction
261     /// vector to make it non-negative. Normalization is done by reversing
262     /// Src and Dst, plus reversing the dependence directions and distances
263     /// in the vector.
264     bool normalize(ScalarEvolution *SE) override;
265 
266     /// isPeelFirst - Returns true if peeling the first iteration from
267     /// this loop will break this dependence.
268     bool isPeelFirst(unsigned Level) const override;
269 
270     /// isPeelLast - Returns true if peeling the last iteration from
271     /// this loop will break this dependence.
272     bool isPeelLast(unsigned Level) const override;
273 
274     /// isSplitable - Returns true if splitting the loop will break
275     /// the dependence.
276     bool isSplitable(unsigned Level) const override;
277 
278     /// isScalar - Returns true if a particular level is scalar; that is,
279     /// if no subscript in the source or destination mention the induction
280     /// variable associated with the loop at this level.
281     bool isScalar(unsigned Level) const override;
282 
283   private:
284     unsigned short Levels;
285     bool LoopIndependent;
286     bool Consistent; // Init to true, then refine.
287     std::unique_ptr<DVEntry[]> DV;
288     friend class DependenceInfo;
289   };
290 
291   /// DependenceInfo - This class is the main dependence-analysis driver.
292   ///
293   class DependenceInfo {
294   public:
295     DependenceInfo(Function *F, AAResults *AA, ScalarEvolution *SE,
296                    LoopInfo *LI)
297         : AA(AA), SE(SE), LI(LI), F(F) {}
298 
299     /// Handle transitive invalidation when the cached analysis results go away.
300     bool invalidate(Function &F, const PreservedAnalyses &PA,
301                     FunctionAnalysisManager::Invalidator &Inv);
302 
303     /// depends - Tests for a dependence between the Src and Dst instructions.
304     /// Returns NULL if no dependence; otherwise, returns a Dependence (or a
305     /// FullDependence) with as much information as can be gleaned.
306     /// The flag PossiblyLoopIndependent should be set by the caller
307     /// if it appears that control flow can reach from Src to Dst
308     /// without traversing a loop back edge.
309     std::unique_ptr<Dependence> depends(Instruction *Src,
310                                         Instruction *Dst,
311                                         bool PossiblyLoopIndependent);
312 
313     /// getSplitIteration - Give a dependence that's splittable at some
314     /// particular level, return the iteration that should be used to split
315     /// the loop.
316     ///
317     /// Generally, the dependence analyzer will be used to build
318     /// a dependence graph for a function (basically a map from instructions
319     /// to dependences). Looking for cycles in the graph shows us loops
320     /// that cannot be trivially vectorized/parallelized.
321     ///
322     /// We can try to improve the situation by examining all the dependences
323     /// that make up the cycle, looking for ones we can break.
324     /// Sometimes, peeling the first or last iteration of a loop will break
325     /// dependences, and there are flags for those possibilities.
326     /// Sometimes, splitting a loop at some other iteration will do the trick,
327     /// and we've got a flag for that case. Rather than waste the space to
328     /// record the exact iteration (since we rarely know), we provide
329     /// a method that calculates the iteration. It's a drag that it must work
330     /// from scratch, but wonderful in that it's possible.
331     ///
332     /// Here's an example:
333     ///
334     ///    for (i = 0; i < 10; i++)
335     ///        A[i] = ...
336     ///        ... = A[11 - i]
337     ///
338     /// There's a loop-carried flow dependence from the store to the load,
339     /// found by the weak-crossing SIV test. The dependence will have a flag,
340     /// indicating that the dependence can be broken by splitting the loop.
341     /// Calling getSplitIteration will return 5.
342     /// Splitting the loop breaks the dependence, like so:
343     ///
344     ///    for (i = 0; i <= 5; i++)
345     ///        A[i] = ...
346     ///        ... = A[11 - i]
347     ///    for (i = 6; i < 10; i++)
348     ///        A[i] = ...
349     ///        ... = A[11 - i]
350     ///
351     /// breaks the dependence and allows us to vectorize/parallelize
352     /// both loops.
353     const SCEV *getSplitIteration(const Dependence &Dep, unsigned Level);
354 
355     Function *getFunction() const { return F; }
356 
357   private:
358     AAResults *AA;
359     ScalarEvolution *SE;
360     LoopInfo *LI;
361     Function *F;
362 
363     /// Subscript - This private struct represents a pair of subscripts from
364     /// a pair of potentially multi-dimensional array references. We use a
365     /// vector of them to guide subscript partitioning.
366     struct Subscript {
367       const SCEV *Src;
368       const SCEV *Dst;
369       enum ClassificationKind { ZIV, SIV, RDIV, MIV, NonLinear } Classification;
370       SmallBitVector Loops;
371       SmallBitVector GroupLoops;
372       SmallBitVector Group;
373     };
374 
375     struct CoefficientInfo {
376       const SCEV *Coeff;
377       const SCEV *PosPart;
378       const SCEV *NegPart;
379       const SCEV *Iterations;
380     };
381 
382     struct BoundInfo {
383       const SCEV *Iterations;
384       const SCEV *Upper[8];
385       const SCEV *Lower[8];
386       unsigned char Direction;
387       unsigned char DirSet;
388     };
389 
390     /// Constraint - This private class represents a constraint, as defined
391     /// in the paper
392     ///
393     ///           Practical Dependence Testing
394     ///           Goff, Kennedy, Tseng
395     ///           PLDI 1991
396     ///
397     /// There are 5 kinds of constraint, in a hierarchy.
398     ///   1) Any - indicates no constraint, any dependence is possible.
399     ///   2) Line - A line ax + by = c, where a, b, and c are parameters,
400     ///             representing the dependence equation.
401     ///   3) Distance - The value d of the dependence distance;
402     ///   4) Point - A point <x, y> representing the dependence from
403     ///              iteration x to iteration y.
404     ///   5) Empty - No dependence is possible.
405     class Constraint {
406     private:
407       enum ConstraintKind { Empty, Point, Distance, Line, Any } Kind;
408       ScalarEvolution *SE;
409       const SCEV *A;
410       const SCEV *B;
411       const SCEV *C;
412       const Loop *AssociatedLoop;
413 
414     public:
415       /// isEmpty - Return true if the constraint is of kind Empty.
416       bool isEmpty() const { return Kind == Empty; }
417 
418       /// isPoint - Return true if the constraint is of kind Point.
419       bool isPoint() const { return Kind == Point; }
420 
421       /// isDistance - Return true if the constraint is of kind Distance.
422       bool isDistance() const { return Kind == Distance; }
423 
424       /// isLine - Return true if the constraint is of kind Line.
425       /// Since Distance's can also be represented as Lines, we also return
426       /// true if the constraint is of kind Distance.
427       bool isLine() const { return Kind == Line || Kind == Distance; }
428 
429       /// isAny - Return true if the constraint is of kind Any;
430       bool isAny() const { return Kind == Any; }
431 
432       /// getX - If constraint is a point <X, Y>, returns X.
433       /// Otherwise assert.
434       const SCEV *getX() const;
435 
436       /// getY - If constraint is a point <X, Y>, returns Y.
437       /// Otherwise assert.
438       const SCEV *getY() const;
439 
440       /// getA - If constraint is a line AX + BY = C, returns A.
441       /// Otherwise assert.
442       const SCEV *getA() const;
443 
444       /// getB - If constraint is a line AX + BY = C, returns B.
445       /// Otherwise assert.
446       const SCEV *getB() const;
447 
448       /// getC - If constraint is a line AX + BY = C, returns C.
449       /// Otherwise assert.
450       const SCEV *getC() const;
451 
452       /// getD - If constraint is a distance, returns D.
453       /// Otherwise assert.
454       const SCEV *getD() const;
455 
456       /// getAssociatedLoop - Returns the loop associated with this constraint.
457       const Loop *getAssociatedLoop() const;
458 
459       /// setPoint - Change a constraint to Point.
460       void setPoint(const SCEV *X, const SCEV *Y, const Loop *CurrentLoop);
461 
462       /// setLine - Change a constraint to Line.
463       void setLine(const SCEV *A, const SCEV *B,
464                    const SCEV *C, const Loop *CurrentLoop);
465 
466       /// setDistance - Change a constraint to Distance.
467       void setDistance(const SCEV *D, const Loop *CurrentLoop);
468 
469       /// setEmpty - Change a constraint to Empty.
470       void setEmpty();
471 
472       /// setAny - Change a constraint to Any.
473       void setAny(ScalarEvolution *SE);
474 
475       /// dump - For debugging purposes. Dumps the constraint
476       /// out to OS.
477       void dump(raw_ostream &OS) const;
478     };
479 
480     /// establishNestingLevels - Examines the loop nesting of the Src and Dst
481     /// instructions and establishes their shared loops. Sets the variables
482     /// CommonLevels, SrcLevels, and MaxLevels.
483     /// The source and destination instructions needn't be contained in the same
484     /// loop. The routine establishNestingLevels finds the level of most deeply
485     /// nested loop that contains them both, CommonLevels. An instruction that's
486     /// not contained in a loop is at level = 0. MaxLevels is equal to the level
487     /// of the source plus the level of the destination, minus CommonLevels.
488     /// This lets us allocate vectors MaxLevels in length, with room for every
489     /// distinct loop referenced in both the source and destination subscripts.
490     /// The variable SrcLevels is the nesting depth of the source instruction.
491     /// It's used to help calculate distinct loops referenced by the destination.
492     /// Here's the map from loops to levels:
493     ///            0 - unused
494     ///            1 - outermost common loop
495     ///          ... - other common loops
496     /// CommonLevels - innermost common loop
497     ///          ... - loops containing Src but not Dst
498     ///    SrcLevels - innermost loop containing Src but not Dst
499     ///          ... - loops containing Dst but not Src
500     ///    MaxLevels - innermost loop containing Dst but not Src
501     /// Consider the follow code fragment:
502     ///    for (a = ...) {
503     ///      for (b = ...) {
504     ///        for (c = ...) {
505     ///          for (d = ...) {
506     ///            A[] = ...;
507     ///          }
508     ///        }
509     ///        for (e = ...) {
510     ///          for (f = ...) {
511     ///            for (g = ...) {
512     ///              ... = A[];
513     ///            }
514     ///          }
515     ///        }
516     ///      }
517     ///    }
518     /// If we're looking at the possibility of a dependence between the store
519     /// to A (the Src) and the load from A (the Dst), we'll note that they
520     /// have 2 loops in common, so CommonLevels will equal 2 and the direction
521     /// vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
522     /// A map from loop names to level indices would look like
523     ///     a - 1
524     ///     b - 2 = CommonLevels
525     ///     c - 3
526     ///     d - 4 = SrcLevels
527     ///     e - 5
528     ///     f - 6
529     ///     g - 7 = MaxLevels
530     void establishNestingLevels(const Instruction *Src,
531                                 const Instruction *Dst);
532 
533     unsigned CommonLevels, SrcLevels, MaxLevels;
534 
535     /// mapSrcLoop - Given one of the loops containing the source, return
536     /// its level index in our numbering scheme.
537     unsigned mapSrcLoop(const Loop *SrcLoop) const;
538 
539     /// mapDstLoop - Given one of the loops containing the destination,
540     /// return its level index in our numbering scheme.
541     unsigned mapDstLoop(const Loop *DstLoop) const;
542 
543     /// isLoopInvariant - Returns true if Expression is loop invariant
544     /// in LoopNest.
545     bool isLoopInvariant(const SCEV *Expression, const Loop *LoopNest) const;
546 
547     /// Makes sure all subscript pairs share the same integer type by
548     /// sign-extending as necessary.
549     /// Sign-extending a subscript is safe because getelementptr assumes the
550     /// array subscripts are signed.
551     void unifySubscriptType(ArrayRef<Subscript *> Pairs);
552 
553     /// removeMatchingExtensions - Examines a subscript pair.
554     /// If the source and destination are identically sign (or zero)
555     /// extended, it strips off the extension in an effort to
556     /// simplify the actual analysis.
557     void removeMatchingExtensions(Subscript *Pair);
558 
559     /// collectCommonLoops - Finds the set of loops from the LoopNest that
560     /// have a level <= CommonLevels and are referred to by the SCEV Expression.
561     void collectCommonLoops(const SCEV *Expression,
562                             const Loop *LoopNest,
563                             SmallBitVector &Loops) const;
564 
565     /// checkSrcSubscript - Examines the SCEV Src, returning true iff it's
566     /// linear. Collect the set of loops mentioned by Src.
567     bool checkSrcSubscript(const SCEV *Src,
568                            const Loop *LoopNest,
569                            SmallBitVector &Loops);
570 
571     /// checkDstSubscript - Examines the SCEV Dst, returning true iff it's
572     /// linear. Collect the set of loops mentioned by Dst.
573     bool checkDstSubscript(const SCEV *Dst,
574                            const Loop *LoopNest,
575                            SmallBitVector &Loops);
576 
577     /// isKnownPredicate - Compare X and Y using the predicate Pred.
578     /// Basically a wrapper for SCEV::isKnownPredicate,
579     /// but tries harder, especially in the presence of sign and zero
580     /// extensions and symbolics.
581     bool isKnownPredicate(ICmpInst::Predicate Pred,
582                           const SCEV *X,
583                           const SCEV *Y) const;
584 
585     /// isKnownLessThan - Compare to see if S is less than Size
586     /// Another wrapper for isKnownNegative(S - max(Size, 1)) with some extra
587     /// checking if S is an AddRec and we can prove lessthan using the loop
588     /// bounds.
589     bool isKnownLessThan(const SCEV *S, const SCEV *Size) const;
590 
591     /// isKnownNonNegative - Compare to see if S is known not to be negative
592     /// Uses the fact that S comes from Ptr, which may be an inbound GEP,
593     /// Proving there is no wrapping going on.
594     bool isKnownNonNegative(const SCEV *S, const Value *Ptr) const;
595 
596     /// collectUpperBound - All subscripts are the same type (on my machine,
597     /// an i64). The loop bound may be a smaller type. collectUpperBound
598     /// find the bound, if available, and zero extends it to the Type T.
599     /// (I zero extend since the bound should always be >= 0.)
600     /// If no upper bound is available, return NULL.
601     const SCEV *collectUpperBound(const Loop *l, Type *T) const;
602 
603     /// collectConstantUpperBound - Calls collectUpperBound(), then
604     /// attempts to cast it to SCEVConstant. If the cast fails,
605     /// returns NULL.
606     const SCEVConstant *collectConstantUpperBound(const Loop *l, Type *T) const;
607 
608     /// classifyPair - Examines the subscript pair (the Src and Dst SCEVs)
609     /// and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
610     /// Collects the associated loops in a set.
611     Subscript::ClassificationKind classifyPair(const SCEV *Src,
612                                            const Loop *SrcLoopNest,
613                                            const SCEV *Dst,
614                                            const Loop *DstLoopNest,
615                                            SmallBitVector &Loops);
616 
617     /// testZIV - Tests the ZIV subscript pair (Src and Dst) for dependence.
618     /// Returns true if any possible dependence is disproved.
619     /// If there might be a dependence, returns false.
620     /// If the dependence isn't proven to exist,
621     /// marks the Result as inconsistent.
622     bool testZIV(const SCEV *Src,
623                  const SCEV *Dst,
624                  FullDependence &Result) const;
625 
626     /// testSIV - Tests the SIV subscript pair (Src and Dst) for dependence.
627     /// Things of the form [c1 + a1*i] and [c2 + a2*j], where
628     /// i and j are induction variables, c1 and c2 are loop invariant,
629     /// and a1 and a2 are constant.
630     /// Returns true if any possible dependence is disproved.
631     /// If there might be a dependence, returns false.
632     /// Sets appropriate direction vector entry and, when possible,
633     /// the distance vector entry.
634     /// If the dependence isn't proven to exist,
635     /// marks the Result as inconsistent.
636     bool testSIV(const SCEV *Src,
637                  const SCEV *Dst,
638                  unsigned &Level,
639                  FullDependence &Result,
640                  Constraint &NewConstraint,
641                  const SCEV *&SplitIter) const;
642 
643     /// testRDIV - Tests the RDIV subscript pair (Src and Dst) for dependence.
644     /// Things of the form [c1 + a1*i] and [c2 + a2*j]
645     /// where i and j are induction variables, c1 and c2 are loop invariant,
646     /// and a1 and a2 are constant.
647     /// With minor algebra, this test can also be used for things like
648     /// [c1 + a1*i + a2*j][c2].
649     /// Returns true if any possible dependence is disproved.
650     /// If there might be a dependence, returns false.
651     /// Marks the Result as inconsistent.
652     bool testRDIV(const SCEV *Src,
653                   const SCEV *Dst,
654                   FullDependence &Result) const;
655 
656     /// testMIV - Tests the MIV subscript pair (Src and Dst) for dependence.
657     /// Returns true if dependence disproved.
658     /// Can sometimes refine direction vectors.
659     bool testMIV(const SCEV *Src,
660                  const SCEV *Dst,
661                  const SmallBitVector &Loops,
662                  FullDependence &Result) const;
663 
664     /// strongSIVtest - Tests the strong SIV subscript pair (Src and Dst)
665     /// for dependence.
666     /// Things of the form [c1 + a*i] and [c2 + a*i],
667     /// where i is an induction variable, c1 and c2 are loop invariant,
668     /// and a is a constant
669     /// Returns true if any possible dependence is disproved.
670     /// If there might be a dependence, returns false.
671     /// Sets appropriate direction and distance.
672     bool strongSIVtest(const SCEV *Coeff,
673                        const SCEV *SrcConst,
674                        const SCEV *DstConst,
675                        const Loop *CurrentLoop,
676                        unsigned Level,
677                        FullDependence &Result,
678                        Constraint &NewConstraint) const;
679 
680     /// weakCrossingSIVtest - Tests the weak-crossing SIV subscript pair
681     /// (Src and Dst) for dependence.
682     /// Things of the form [c1 + a*i] and [c2 - a*i],
683     /// where i is an induction variable, c1 and c2 are loop invariant,
684     /// and a is a constant.
685     /// Returns true if any possible dependence is disproved.
686     /// If there might be a dependence, returns false.
687     /// Sets appropriate direction entry.
688     /// Set consistent to false.
689     /// Marks the dependence as splitable.
690     bool weakCrossingSIVtest(const SCEV *SrcCoeff,
691                              const SCEV *SrcConst,
692                              const SCEV *DstConst,
693                              const Loop *CurrentLoop,
694                              unsigned Level,
695                              FullDependence &Result,
696                              Constraint &NewConstraint,
697                              const SCEV *&SplitIter) const;
698 
699     /// ExactSIVtest - Tests the SIV subscript pair
700     /// (Src and Dst) for dependence.
701     /// Things of the form [c1 + a1*i] and [c2 + a2*i],
702     /// where i is an induction variable, c1 and c2 are loop invariant,
703     /// and a1 and a2 are constant.
704     /// Returns true if any possible dependence is disproved.
705     /// If there might be a dependence, returns false.
706     /// Sets appropriate direction entry.
707     /// Set consistent to false.
708     bool exactSIVtest(const SCEV *SrcCoeff,
709                       const SCEV *DstCoeff,
710                       const SCEV *SrcConst,
711                       const SCEV *DstConst,
712                       const Loop *CurrentLoop,
713                       unsigned Level,
714                       FullDependence &Result,
715                       Constraint &NewConstraint) const;
716 
717     /// weakZeroSrcSIVtest - Tests the weak-zero SIV subscript pair
718     /// (Src and Dst) for dependence.
719     /// Things of the form [c1] and [c2 + a*i],
720     /// where i is an induction variable, c1 and c2 are loop invariant,
721     /// and a is a constant. See also weakZeroDstSIVtest.
722     /// Returns true if any possible dependence is disproved.
723     /// If there might be a dependence, returns false.
724     /// Sets appropriate direction entry.
725     /// Set consistent to false.
726     /// If loop peeling will break the dependence, mark appropriately.
727     bool weakZeroSrcSIVtest(const SCEV *DstCoeff,
728                             const SCEV *SrcConst,
729                             const SCEV *DstConst,
730                             const Loop *CurrentLoop,
731                             unsigned Level,
732                             FullDependence &Result,
733                             Constraint &NewConstraint) const;
734 
735     /// weakZeroDstSIVtest - Tests the weak-zero SIV subscript pair
736     /// (Src and Dst) for dependence.
737     /// Things of the form [c1 + a*i] and [c2],
738     /// where i is an induction variable, c1 and c2 are loop invariant,
739     /// and a is a constant. See also weakZeroSrcSIVtest.
740     /// Returns true if any possible dependence is disproved.
741     /// If there might be a dependence, returns false.
742     /// Sets appropriate direction entry.
743     /// Set consistent to false.
744     /// If loop peeling will break the dependence, mark appropriately.
745     bool weakZeroDstSIVtest(const SCEV *SrcCoeff,
746                             const SCEV *SrcConst,
747                             const SCEV *DstConst,
748                             const Loop *CurrentLoop,
749                             unsigned Level,
750                             FullDependence &Result,
751                             Constraint &NewConstraint) const;
752 
753     /// exactRDIVtest - Tests the RDIV subscript pair for dependence.
754     /// Things of the form [c1 + a*i] and [c2 + b*j],
755     /// where i and j are induction variable, c1 and c2 are loop invariant,
756     /// and a and b are constants.
757     /// Returns true if any possible dependence is disproved.
758     /// Marks the result as inconsistent.
759     /// Works in some cases that symbolicRDIVtest doesn't,
760     /// and vice versa.
761     bool exactRDIVtest(const SCEV *SrcCoeff,
762                        const SCEV *DstCoeff,
763                        const SCEV *SrcConst,
764                        const SCEV *DstConst,
765                        const Loop *SrcLoop,
766                        const Loop *DstLoop,
767                        FullDependence &Result) const;
768 
769     /// symbolicRDIVtest - Tests the RDIV subscript pair for dependence.
770     /// Things of the form [c1 + a*i] and [c2 + b*j],
771     /// where i and j are induction variable, c1 and c2 are loop invariant,
772     /// and a and b are constants.
773     /// Returns true if any possible dependence is disproved.
774     /// Marks the result as inconsistent.
775     /// Works in some cases that exactRDIVtest doesn't,
776     /// and vice versa. Can also be used as a backup for
777     /// ordinary SIV tests.
778     bool symbolicRDIVtest(const SCEV *SrcCoeff,
779                           const SCEV *DstCoeff,
780                           const SCEV *SrcConst,
781                           const SCEV *DstConst,
782                           const Loop *SrcLoop,
783                           const Loop *DstLoop) const;
784 
785     /// gcdMIVtest - Tests an MIV subscript pair for dependence.
786     /// Returns true if any possible dependence is disproved.
787     /// Marks the result as inconsistent.
788     /// Can sometimes disprove the equal direction for 1 or more loops.
789     //  Can handle some symbolics that even the SIV tests don't get,
790     /// so we use it as a backup for everything.
791     bool gcdMIVtest(const SCEV *Src,
792                     const SCEV *Dst,
793                     FullDependence &Result) const;
794 
795     /// banerjeeMIVtest - Tests an MIV subscript pair for dependence.
796     /// Returns true if any possible dependence is disproved.
797     /// Marks the result as inconsistent.
798     /// Computes directions.
799     bool banerjeeMIVtest(const SCEV *Src,
800                          const SCEV *Dst,
801                          const SmallBitVector &Loops,
802                          FullDependence &Result) const;
803 
804     /// collectCoefficientInfo - Walks through the subscript,
805     /// collecting each coefficient, the associated loop bounds,
806     /// and recording its positive and negative parts for later use.
807     CoefficientInfo *collectCoeffInfo(const SCEV *Subscript,
808                                       bool SrcFlag,
809                                       const SCEV *&Constant) const;
810 
811     /// getPositivePart - X^+ = max(X, 0).
812     ///
813     const SCEV *getPositivePart(const SCEV *X) const;
814 
815     /// getNegativePart - X^- = min(X, 0).
816     ///
817     const SCEV *getNegativePart(const SCEV *X) const;
818 
819     /// getLowerBound - Looks through all the bounds info and
820     /// computes the lower bound given the current direction settings
821     /// at each level.
822     const SCEV *getLowerBound(BoundInfo *Bound) const;
823 
824     /// getUpperBound - Looks through all the bounds info and
825     /// computes the upper bound given the current direction settings
826     /// at each level.
827     const SCEV *getUpperBound(BoundInfo *Bound) const;
828 
829     /// exploreDirections - Hierarchically expands the direction vector
830     /// search space, combining the directions of discovered dependences
831     /// in the DirSet field of Bound. Returns the number of distinct
832     /// dependences discovered. If the dependence is disproved,
833     /// it will return 0.
834     unsigned exploreDirections(unsigned Level,
835                                CoefficientInfo *A,
836                                CoefficientInfo *B,
837                                BoundInfo *Bound,
838                                const SmallBitVector &Loops,
839                                unsigned &DepthExpanded,
840                                const SCEV *Delta) const;
841 
842     /// testBounds - Returns true iff the current bounds are plausible.
843     bool testBounds(unsigned char DirKind,
844                     unsigned Level,
845                     BoundInfo *Bound,
846                     const SCEV *Delta) const;
847 
848     /// findBoundsALL - Computes the upper and lower bounds for level K
849     /// using the * direction. Records them in Bound.
850     void findBoundsALL(CoefficientInfo *A,
851                        CoefficientInfo *B,
852                        BoundInfo *Bound,
853                        unsigned K) const;
854 
855     /// findBoundsLT - Computes the upper and lower bounds for level K
856     /// using the < direction. Records them in Bound.
857     void findBoundsLT(CoefficientInfo *A,
858                       CoefficientInfo *B,
859                       BoundInfo *Bound,
860                       unsigned K) const;
861 
862     /// findBoundsGT - Computes the upper and lower bounds for level K
863     /// using the > direction. Records them in Bound.
864     void findBoundsGT(CoefficientInfo *A,
865                       CoefficientInfo *B,
866                       BoundInfo *Bound,
867                       unsigned K) const;
868 
869     /// findBoundsEQ - Computes the upper and lower bounds for level K
870     /// using the = direction. Records them in Bound.
871     void findBoundsEQ(CoefficientInfo *A,
872                       CoefficientInfo *B,
873                       BoundInfo *Bound,
874                       unsigned K) const;
875 
876     /// intersectConstraints - Updates X with the intersection
877     /// of the Constraints X and Y. Returns true if X has changed.
878     bool intersectConstraints(Constraint *X,
879                               const Constraint *Y);
880 
881     /// propagate - Review the constraints, looking for opportunities
882     /// to simplify a subscript pair (Src and Dst).
883     /// Return true if some simplification occurs.
884     /// If the simplification isn't exact (that is, if it is conservative
885     /// in terms of dependence), set consistent to false.
886     bool propagate(const SCEV *&Src,
887                    const SCEV *&Dst,
888                    SmallBitVector &Loops,
889                    SmallVectorImpl<Constraint> &Constraints,
890                    bool &Consistent);
891 
892     /// propagateDistance - Attempt to propagate a distance
893     /// constraint into a subscript pair (Src and Dst).
894     /// Return true if some simplification occurs.
895     /// If the simplification isn't exact (that is, if it is conservative
896     /// in terms of dependence), set consistent to false.
897     bool propagateDistance(const SCEV *&Src,
898                            const SCEV *&Dst,
899                            Constraint &CurConstraint,
900                            bool &Consistent);
901 
902     /// propagatePoint - Attempt to propagate a point
903     /// constraint into a subscript pair (Src and Dst).
904     /// Return true if some simplification occurs.
905     bool propagatePoint(const SCEV *&Src,
906                         const SCEV *&Dst,
907                         Constraint &CurConstraint);
908 
909     /// propagateLine - Attempt to propagate a line
910     /// constraint into a subscript pair (Src and Dst).
911     /// Return true if some simplification occurs.
912     /// If the simplification isn't exact (that is, if it is conservative
913     /// in terms of dependence), set consistent to false.
914     bool propagateLine(const SCEV *&Src,
915                        const SCEV *&Dst,
916                        Constraint &CurConstraint,
917                        bool &Consistent);
918 
919     /// findCoefficient - Given a linear SCEV,
920     /// return the coefficient corresponding to specified loop.
921     /// If there isn't one, return the SCEV constant 0.
922     /// For example, given a*i + b*j + c*k, returning the coefficient
923     /// corresponding to the j loop would yield b.
924     const SCEV *findCoefficient(const SCEV *Expr,
925                                 const Loop *TargetLoop) const;
926 
927     /// zeroCoefficient - Given a linear SCEV,
928     /// return the SCEV given by zeroing out the coefficient
929     /// corresponding to the specified loop.
930     /// For example, given a*i + b*j + c*k, zeroing the coefficient
931     /// corresponding to the j loop would yield a*i + c*k.
932     const SCEV *zeroCoefficient(const SCEV *Expr,
933                                 const Loop *TargetLoop) const;
934 
935     /// addToCoefficient - Given a linear SCEV Expr,
936     /// return the SCEV given by adding some Value to the
937     /// coefficient corresponding to the specified TargetLoop.
938     /// For example, given a*i + b*j + c*k, adding 1 to the coefficient
939     /// corresponding to the j loop would yield a*i + (b+1)*j + c*k.
940     const SCEV *addToCoefficient(const SCEV *Expr,
941                                  const Loop *TargetLoop,
942                                  const SCEV *Value)  const;
943 
944     /// updateDirection - Update direction vector entry
945     /// based on the current constraint.
946     void updateDirection(Dependence::DVEntry &Level,
947                          const Constraint &CurConstraint) const;
948 
949     /// Given a linear access function, tries to recover subscripts
950     /// for each dimension of the array element access.
951     bool tryDelinearize(Instruction *Src, Instruction *Dst,
952                         SmallVectorImpl<Subscript> &Pair);
953 
954     /// Tries to delinearize \p Src and \p Dst access functions for a fixed size
955     /// multi-dimensional array. Calls tryDelinearizeFixedSizeImpl() to
956     /// delinearize \p Src and \p Dst separately,
957     bool tryDelinearizeFixedSize(Instruction *Src, Instruction *Dst,
958                                  const SCEV *SrcAccessFn,
959                                  const SCEV *DstAccessFn,
960                                  SmallVectorImpl<const SCEV *> &SrcSubscripts,
961                                  SmallVectorImpl<const SCEV *> &DstSubscripts);
962 
963     /// Tries to delinearize access function for a multi-dimensional array with
964     /// symbolic runtime sizes.
965     /// Returns true upon success and false otherwise.
966     bool tryDelinearizeParametricSize(
967         Instruction *Src, Instruction *Dst, const SCEV *SrcAccessFn,
968         const SCEV *DstAccessFn, SmallVectorImpl<const SCEV *> &SrcSubscripts,
969         SmallVectorImpl<const SCEV *> &DstSubscripts);
970 
971     /// checkSubscript - Helper function for checkSrcSubscript and
972     /// checkDstSubscript to avoid duplicate code
973     bool checkSubscript(const SCEV *Expr, const Loop *LoopNest,
974                         SmallBitVector &Loops, bool IsSrc);
975   }; // class DependenceInfo
976 
977   /// AnalysisPass to compute dependence information in a function
978   class DependenceAnalysis : public AnalysisInfoMixin<DependenceAnalysis> {
979   public:
980     typedef DependenceInfo Result;
981     Result run(Function &F, FunctionAnalysisManager &FAM);
982 
983   private:
984     static AnalysisKey Key;
985     friend struct AnalysisInfoMixin<DependenceAnalysis>;
986   }; // class DependenceAnalysis
987 
988   /// Printer pass to dump DA results.
989   struct DependenceAnalysisPrinterPass
990       : public PassInfoMixin<DependenceAnalysisPrinterPass> {
991     DependenceAnalysisPrinterPass(raw_ostream &OS,
992                                   bool NormalizeResults = false)
993         : OS(OS), NormalizeResults(NormalizeResults) {}
994 
995     PreservedAnalyses run(Function &F, FunctionAnalysisManager &FAM);
996 
997   private:
998     raw_ostream &OS;
999     bool NormalizeResults;
1000   }; // class DependenceAnalysisPrinterPass
1001 
1002   /// Legacy pass manager pass to access dependence information
1003   class DependenceAnalysisWrapperPass : public FunctionPass {
1004   public:
1005     static char ID; // Class identification, replacement for typeinfo
1006     DependenceAnalysisWrapperPass();
1007 
1008     bool runOnFunction(Function &F) override;
1009     void releaseMemory() override;
1010     void getAnalysisUsage(AnalysisUsage &) const override;
1011     void print(raw_ostream &, const Module * = nullptr) const override;
1012     DependenceInfo &getDI() const;
1013 
1014   private:
1015     std::unique_ptr<DependenceInfo> info;
1016   }; // class DependenceAnalysisWrapperPass
1017 
1018   /// createDependenceAnalysisPass - This creates an instance of the
1019   /// DependenceAnalysis wrapper pass.
1020   FunctionPass *createDependenceAnalysisWrapperPass();
1021 
1022 } // namespace llvm
1023 
1024 #endif
1025