1 //===- IRSimilarityIdentifier.h - Find similarity in a module --------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // \file
10 // Interface file for the IRSimilarityIdentifier for identifying similarities in
11 // IR including the IRInstructionMapper, which maps an Instruction to unsigned
12 // integers.
13 //
14 // Two sequences of instructions are called "similar" if they perform the same
15 // series of operations for all inputs.
16 //
17 // \code
18 // %1 = add i32 %a, 10
19 // %2 = add i32 %a, %1
20 // %3 = icmp slt icmp %1, %2
21 // \endcode
22 //
23 // and
24 //
25 // \code
26 // %1 = add i32 11, %a
27 // %2 = sub i32 %a, %1
28 // %3 = icmp sgt icmp %2, %1
29 // \endcode
30 //
31 // ultimately have the same result, even if the inputs, and structure are
32 // slightly different.
33 //
34 // For instructions, we do not worry about operands that do not have fixed
35 // semantic meaning to the program.  We consider the opcode that the instruction
36 // has, the types, parameters, and extra information such as the function name,
37 // or comparison predicate.  These are used to create a hash to map instructions
38 // to integers to be used in similarity matching in sequences of instructions
39 //
40 // Terminology:
41 // An IRSimilarityCandidate is a region of IRInstructionData (wrapped
42 // Instructions), usually used to denote a region of similarity has been found.
43 //
44 // A SimilarityGroup is a set of IRSimilarityCandidates that are structurally
45 // similar to one another.
46 //
47 //===----------------------------------------------------------------------===//
48 
49 #ifndef LLVM_ANALYSIS_IRSIMILARITYIDENTIFIER_H
50 #define LLVM_ANALYSIS_IRSIMILARITYIDENTIFIER_H
51 
52 #include "llvm/IR/InstVisitor.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/PassManager.h"
55 #include "llvm/Pass.h"
56 #include "llvm/Support/Allocator.h"
57 #include <optional>
58 
59 namespace llvm {
60 class Module;
61 
62 namespace IRSimilarity {
63 
64 struct IRInstructionDataList;
65 
66 /// This represents what is and is not supported when finding similarity in
67 /// Instructions.
68 ///
69 /// Legal Instructions are considered when looking at similarity between
70 /// Instructions.
71 ///
72 /// Illegal Instructions cannot be considered when looking for similarity
73 /// between Instructions. They act as boundaries between similarity regions.
74 ///
75 /// Invisible Instructions are skipped over during analysis.
76 // TODO: Shared with MachineOutliner
77 enum InstrType { Legal, Illegal, Invisible };
78 
79 /// This provides the utilities for hashing an Instruction to an unsigned
80 /// integer. Two IRInstructionDatas produce the same hash value when their
81 /// underlying Instructions perform the same operation (even if they don't have
82 /// the same input operands.)
83 /// As a more concrete example, consider the following:
84 ///
85 /// \code
86 /// %add1 = add i32 %a, %b
87 /// %add2 = add i32 %c, %d
88 /// %add3 = add i64 %e, %f
89 /// \endcode
90 ///
91 // Then the IRInstructionData wrappers for these Instructions may be hashed like
92 /// so:
93 ///
94 /// \code
95 /// ; These two adds have the same types and operand types, so they hash to the
96 /// ; same number.
97 /// %add1 = add i32 %a, %b ; Hash: 1
98 /// %add2 = add i32 %c, %d ; Hash: 1
99 /// ; This add produces an i64. This differentiates it from %add1 and %add2. So,
100 /// ; it hashes to a different number.
101 /// %add3 = add i64 %e, %f; Hash: 2
102 /// \endcode
103 ///
104 ///
105 /// This hashing scheme will be used to represent the program as a very long
106 /// string. This string can then be placed in a data structure which can be used
107 /// for similarity queries.
108 ///
109 /// TODO: Handle types of Instructions which can be equal even with different
110 /// operands. (E.g. comparisons with swapped predicates.)
111 /// TODO: Handle CallInsts, which are only checked for function type
112 /// by \ref isSameOperationAs.
113 /// TODO: Handle GetElementPtrInsts, as some of the operands have to be the
114 /// exact same, and some do not.
115 struct IRInstructionData
116     : ilist_node<IRInstructionData, ilist_sentinel_tracking<true>> {
117 
118   /// The source Instruction that is being wrapped.
119   Instruction *Inst = nullptr;
120   /// The values of the operands in the Instruction.
121   SmallVector<Value *, 4> OperVals;
122   /// The legality of the wrapped instruction. This is informed by InstrType,
123   /// and is used when checking when two instructions are considered similar.
124   /// If either instruction is not legal, the instructions are automatically not
125   /// considered similar.
126   bool Legal = false;
127 
128   /// This is only relevant if we are wrapping a CmpInst where we needed to
129   /// change the predicate of a compare instruction from a greater than form
130   /// to a less than form.  It is None otherwise.
131   std::optional<CmpInst::Predicate> RevisedPredicate;
132 
133   /// This is only relevant if we are wrapping a CallInst. If we are requiring
134   /// that the function calls have matching names as well as types, and the
135   /// call is not an indirect call, this will hold the name of the function.  If
136   /// it is an indirect string, it will be the empty string.  However, if this
137   /// requirement is not in place it will be the empty string regardless of the
138   /// function call type.  The value held here is used to create the hash of the
139   /// instruction, and check to make sure two instructions are close to one
140   /// another.
141   std::optional<std::string> CalleeName;
142 
143   /// This structure holds the distances of how far "ahead of" or "behind" the
144   /// target blocks of a branch, or the incoming blocks of a phi nodes are.
145   /// If the value is negative, it means that the block was registered before
146   /// the block of this instruction in terms of blocks in the function.
147   /// Code Example:
148   /// \code
149   /// block_1:
150   ///   br i1 %0, label %block_2, label %block_3
151   /// block_2:
152   ///   br i1 %1, label %block_1, label %block_2
153   /// block_3:
154   ///   br i1 %2, label %block_2, label %block_1
155   /// ; Replacing the labels with relative values, this becomes:
156   /// block_1:
157   ///   br i1 %0, distance 1, distance 2
158   /// block_2:
159   ///   br i1 %1, distance -1, distance 0
160   /// block_3:
161   ///   br i1 %2, distance -1, distance -2
162   /// \endcode
163   /// Taking block_2 as our example, block_1 is "behind" block_2, and block_2 is
164   /// "ahead" of block_2.
165   SmallVector<int, 4> RelativeBlockLocations;
166 
167   /// Gather the information that is difficult to gather for an Instruction, or
168   /// is changed. i.e. the operands of an Instruction and the Types of those
169   /// operands. This extra information allows for similarity matching to make
170   /// assertions that allow for more flexibility when checking for whether an
171   /// Instruction performs the same operation.
172   IRInstructionData(Instruction &I, bool Legality, IRInstructionDataList &IDL);
173   IRInstructionData(IRInstructionDataList &IDL);
174 
175   /// Fills data stuctures for IRInstructionData when it is constructed from a
176   // reference or a pointer.
177   void initializeInstruction();
178 
179   /// Get the predicate that the compare instruction is using for hashing the
180   /// instruction. the IRInstructionData must be wrapping a CmpInst.
181   CmpInst::Predicate getPredicate() const;
182 
183   /// Get the callee name that the call instruction is using for hashing the
184   /// instruction. The IRInstructionData must be wrapping a CallInst.
185   StringRef getCalleeName() const;
186 
187   /// A function that swaps the predicates to their less than form if they are
188   /// in a greater than form. Otherwise, the predicate is unchanged.
189   ///
190   /// \param CI - The comparison operation to find a consistent preidcate for.
191   /// \return the consistent comparison predicate.
192   static CmpInst::Predicate predicateForConsistency(CmpInst *CI);
193 
194   /// For an IRInstructionData containing a branch, finds the
195   /// relative distances from the source basic block to the target by taking
196   /// the difference of the number assigned to the current basic block and the
197   /// target basic block of the branch.
198   ///
199   /// \param BasicBlockToInteger - The mapping of basic blocks to their location
200   /// in the module.
201   void
202   setBranchSuccessors(DenseMap<BasicBlock *, unsigned> &BasicBlockToInteger);
203 
204   /// For an IRInstructionData containing a CallInst, set the function name
205   /// appropriately.  This will be an empty string if it is an indirect call,
206   /// or we are not matching by name of the called function.  It will be the
207   /// name of the function if \p MatchByName is true and it is not an indirect
208   /// call.  We may decide not to match by name in order to expand the
209   /// size of the regions we can match.  If a function name has the same type
210   /// signature, but the different name, the region of code is still almost the
211   /// same.  Since function names can be treated as constants, the name itself
212   /// could be extrapolated away.  However, matching by name provides a
213   /// specificity and more "identical" code than not matching by name.
214   ///
215   /// \param MatchByName - A flag to mark whether we are using the called
216   /// function name as a differentiating parameter.
217   void setCalleeName(bool MatchByName = true);
218 
219   /// For an IRInstructionData containing a PHINode, finds the
220   /// relative distances from the incoming basic block to the current block by
221   /// taking the difference of the number assigned to the current basic block
222   /// and the incoming basic block of the branch.
223   ///
224   /// \param BasicBlockToInteger - The mapping of basic blocks to their location
225   /// in the module.
226   void
227   setPHIPredecessors(DenseMap<BasicBlock *, unsigned> &BasicBlockToInteger);
228 
229   /// Hashes \p Value based on its opcode, types, and operand types.
230   /// Two IRInstructionData instances produce the same hash when they perform
231   /// the same operation.
232   ///
233   /// As a simple example, consider the following instructions.
234   ///
235   /// \code
236   /// %add1 = add i32 %x1, %y1
237   /// %add2 = add i32 %x2, %y2
238   ///
239   /// %sub = sub i32 %x1, %y1
240   ///
241   /// %add_i64 = add i64 %x2, %y2
242   /// \endcode
243   ///
244   /// Because the first two adds operate the same types, and are performing the
245   /// same action, they will be hashed to the same value.
246   ///
247   /// However, the subtraction instruction is not the same as an addition, and
248   /// will be hashed to a different value.
249   ///
250   /// Finally, the last add has a different type compared to the first two add
251   /// instructions, so it will also be hashed to a different value that any of
252   /// the previous instructions.
253   ///
254   /// \param [in] ID - The IRInstructionData instance to be hashed.
255   /// \returns A hash_value of the IRInstructionData.
256   friend hash_code hash_value(const IRInstructionData &ID) {
257     SmallVector<Type *, 4> OperTypes;
258     for (Value *V : ID.OperVals)
259       OperTypes.push_back(V->getType());
260 
261     if (isa<CmpInst>(ID.Inst))
262       return llvm::hash_combine(
263           llvm::hash_value(ID.Inst->getOpcode()),
264           llvm::hash_value(ID.Inst->getType()),
265           llvm::hash_value(ID.getPredicate()),
266           llvm::hash_combine_range(OperTypes.begin(), OperTypes.end()));
267 
268     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(ID.Inst)) {
269       // To hash intrinsics, we use the opcode, and types like the other
270       // instructions, but also, the Intrinsic ID, and the Name of the
271       // intrinsic.
272       Intrinsic::ID IntrinsicID = II->getIntrinsicID();
273       return llvm::hash_combine(
274           llvm::hash_value(ID.Inst->getOpcode()),
275           llvm::hash_value(ID.Inst->getType()), llvm::hash_value(IntrinsicID),
276           llvm::hash_value(*ID.CalleeName),
277           llvm::hash_combine_range(OperTypes.begin(), OperTypes.end()));
278     }
279 
280     if (isa<CallInst>(ID.Inst)) {
281       std::string FunctionName = *ID.CalleeName;
282       return llvm::hash_combine(
283           llvm::hash_value(ID.Inst->getOpcode()),
284           llvm::hash_value(ID.Inst->getType()),
285           llvm::hash_value(ID.Inst->getType()), llvm::hash_value(FunctionName),
286           llvm::hash_combine_range(OperTypes.begin(), OperTypes.end()));
287     }
288 
289     return llvm::hash_combine(
290         llvm::hash_value(ID.Inst->getOpcode()),
291         llvm::hash_value(ID.Inst->getType()),
292         llvm::hash_combine_range(OperTypes.begin(), OperTypes.end()));
293   }
294 
295   IRInstructionDataList *IDL = nullptr;
296 };
297 
298 struct IRInstructionDataList
299     : simple_ilist<IRInstructionData, ilist_sentinel_tracking<true>> {};
300 
301 /// Compare one IRInstructionData class to another IRInstructionData class for
302 /// whether they are performing a the same operation, and can mapped to the
303 /// same value. For regular instructions if the hash value is the same, then
304 /// they will also be close.
305 ///
306 /// \param A - The first IRInstructionData class to compare
307 /// \param B - The second IRInstructionData class to compare
308 /// \returns true if \p A and \p B are similar enough to be mapped to the same
309 /// value.
310 bool isClose(const IRInstructionData &A, const IRInstructionData &B);
311 
312 struct IRInstructionDataTraits : DenseMapInfo<IRInstructionData *> {
313   static inline IRInstructionData *getEmptyKey() { return nullptr; }
314   static inline IRInstructionData *getTombstoneKey() {
315     return reinterpret_cast<IRInstructionData *>(-1);
316   }
317 
318   static unsigned getHashValue(const IRInstructionData *E) {
319     using llvm::hash_value;
320     assert(E && "IRInstructionData is a nullptr?");
321     return hash_value(*E);
322   }
323 
324   static bool isEqual(const IRInstructionData *LHS,
325                       const IRInstructionData *RHS) {
326     if (RHS == getEmptyKey() || RHS == getTombstoneKey() ||
327         LHS == getEmptyKey() || LHS == getTombstoneKey())
328       return LHS == RHS;
329 
330     assert(LHS && RHS && "nullptr should have been caught by getEmptyKey?");
331     return isClose(*LHS, *RHS);
332   }
333 };
334 
335 /// Helper struct for converting the Instructions in a Module into a vector of
336 /// unsigned integers. This vector of unsigned integers can be thought of as a
337 /// "numeric string". This numeric string can then be queried by, for example,
338 /// data structures that find repeated substrings.
339 ///
340 /// This hashing is done per BasicBlock in the module. To hash Instructions
341 /// based off of their operations, each Instruction is wrapped in an
342 /// IRInstructionData struct. The unsigned integer for an IRInstructionData
343 /// depends on:
344 /// - The hash provided by the IRInstructionData.
345 /// - Which member of InstrType the IRInstructionData is classified as.
346 // See InstrType for more details on the possible classifications, and how they
347 // manifest in the numeric string.
348 ///
349 /// The numeric string for an individual BasicBlock is terminated by an unique
350 /// unsigned integer. This prevents data structures which rely on repetition
351 /// from matching across BasicBlocks. (For example, the SuffixTree.)
352 /// As a concrete example, if we have the following two BasicBlocks:
353 /// \code
354 /// bb0:
355 /// %add1 = add i32 %a, %b
356 /// %add2 = add i32 %c, %d
357 /// %add3 = add i64 %e, %f
358 /// bb1:
359 /// %sub = sub i32 %c, %d
360 /// \endcode
361 /// We may hash the Instructions like this (via IRInstructionData):
362 /// \code
363 /// bb0:
364 /// %add1 = add i32 %a, %b ; Hash: 1
365 /// %add2 = add i32 %c, %d; Hash: 1
366 /// %add3 = add i64 %e, %f; Hash: 2
367 /// bb1:
368 /// %sub = sub i32 %c, %d; Hash: 3
369 /// %add4 = add i32 %c, %d ; Hash: 1
370 /// \endcode
371 /// And produce a "numeric string representation" like so:
372 /// 1, 1, 2, unique_integer_1, 3, 1, unique_integer_2
373 ///
374 /// TODO: This is very similar to the MachineOutliner, and should be
375 /// consolidated into the same interface.
376 struct IRInstructionMapper {
377   /// The starting illegal instruction number to map to.
378   ///
379   /// Set to -3 for compatibility with DenseMapInfo<unsigned>.
380   unsigned IllegalInstrNumber = static_cast<unsigned>(-3);
381 
382   /// The next available integer to assign to a legal Instruction to.
383   unsigned LegalInstrNumber = 0;
384 
385   /// Correspondence from IRInstructionData to unsigned integers.
386   DenseMap<IRInstructionData *, unsigned, IRInstructionDataTraits>
387       InstructionIntegerMap;
388 
389   /// A mapping for a basic block in a module to its assigned number/location
390   /// in the module.
391   DenseMap<BasicBlock *, unsigned> BasicBlockToInteger;
392 
393   /// Set if we added an illegal number in the previous step.
394   /// Since each illegal number is unique, we only need one of them between
395   /// each range of legal numbers. This lets us make sure we don't add more
396   /// than one illegal number per range.
397   bool AddedIllegalLastTime = false;
398 
399   /// Marks whether we found a illegal instruction in the previous step.
400   bool CanCombineWithPrevInstr = false;
401 
402   /// Marks whether we have found a set of instructions that is long enough
403   /// to be considered for similarity.
404   bool HaveLegalRange = false;
405 
406   /// Marks whether we should use exact function names, as well as types to
407   /// find similarity between calls.
408   bool EnableMatchCallsByName = false;
409 
410   /// This allocator pointer is in charge of holding on to the IRInstructionData
411   /// so it is not deallocated until whatever external tool is using it is done
412   /// with the information.
413   SpecificBumpPtrAllocator<IRInstructionData> *InstDataAllocator = nullptr;
414 
415   /// This allocator pointer is in charge of creating the IRInstructionDataList
416   /// so it is not deallocated until whatever external tool is using it is done
417   /// with the information.
418   SpecificBumpPtrAllocator<IRInstructionDataList> *IDLAllocator = nullptr;
419 
420   /// Get an allocated IRInstructionData struct using the InstDataAllocator.
421   ///
422   /// \param I - The Instruction to wrap with IRInstructionData.
423   /// \param Legality - A boolean value that is true if the instruction is to
424   /// be considered for similarity, and false if not.
425   /// \param IDL - The InstructionDataList that the IRInstructionData is
426   /// inserted into.
427   /// \returns An allocated IRInstructionData struct.
428   IRInstructionData *allocateIRInstructionData(Instruction &I, bool Legality,
429                                                IRInstructionDataList &IDL);
430 
431   /// Get an empty allocated IRInstructionData struct using the
432   /// InstDataAllocator.
433   ///
434   /// \param IDL - The InstructionDataList that the IRInstructionData is
435   /// inserted into.
436   /// \returns An allocated IRInstructionData struct.
437   IRInstructionData *allocateIRInstructionData(IRInstructionDataList &IDL);
438 
439   /// Get an allocated IRInstructionDataList object using the IDLAllocator.
440   ///
441   /// \returns An allocated IRInstructionDataList object.
442   IRInstructionDataList *allocateIRInstructionDataList();
443 
444   IRInstructionDataList *IDL = nullptr;
445 
446   /// Assigns values to all the basic blocks in function \p F starting from
447   /// integer \p BBNumber.
448   ///
449   /// \param F - The function containing the basic blocks to assign numbers to.
450   /// \param BBNumber - The number to start from.
451   void initializeForBBs(Function &F, unsigned &BBNumber) {
452     for (BasicBlock &BB : F)
453       BasicBlockToInteger.insert(std::make_pair(&BB, BBNumber++));
454   }
455 
456   /// Assigns values to all the basic blocks in Module \p M.
457   /// \param M - The module containing the basic blocks to assign numbers to.
458   void initializeForBBs(Module &M) {
459     unsigned BBNumber = 0;
460     for (Function &F : M)
461       initializeForBBs(F, BBNumber);
462   }
463 
464   /// Maps the Instructions in a BasicBlock \p BB to legal or illegal integers
465   /// determined by \p InstrType. Two Instructions are mapped to the same value
466   /// if they are close as defined by the InstructionData class above.
467   ///
468   /// \param [in] BB - The BasicBlock to be mapped to integers.
469   /// \param [in,out] InstrList - Vector of IRInstructionData to append to.
470   /// \param [in,out] IntegerMapping - Vector of unsigned integers to append to.
471   void convertToUnsignedVec(BasicBlock &BB,
472                             std::vector<IRInstructionData *> &InstrList,
473                             std::vector<unsigned> &IntegerMapping);
474 
475   /// Maps an Instruction to a legal integer.
476   ///
477   /// \param [in] It - The Instruction to be mapped to an integer.
478   /// \param [in,out] IntegerMappingForBB - Vector of unsigned integers to
479   /// append to.
480   /// \param [in,out] InstrListForBB - Vector of InstructionData to append to.
481   /// \returns The integer \p It was mapped to.
482   unsigned mapToLegalUnsigned(BasicBlock::iterator &It,
483                               std::vector<unsigned> &IntegerMappingForBB,
484                               std::vector<IRInstructionData *> &InstrListForBB);
485 
486   /// Maps an Instruction to an illegal integer.
487   ///
488   /// \param [in] It - The \p Instruction to be mapped to an integer.
489   /// \param [in,out] IntegerMappingForBB - Vector of unsigned integers to
490   /// append to.
491   /// \param [in,out] InstrListForBB - Vector of IRInstructionData to append to.
492   /// \param End - true if creating a dummy IRInstructionData at the end of a
493   /// basic block.
494   /// \returns The integer \p It was mapped to.
495   unsigned mapToIllegalUnsigned(
496       BasicBlock::iterator &It, std::vector<unsigned> &IntegerMappingForBB,
497       std::vector<IRInstructionData *> &InstrListForBB, bool End = false);
498 
499   IRInstructionMapper(SpecificBumpPtrAllocator<IRInstructionData> *IDA,
500                       SpecificBumpPtrAllocator<IRInstructionDataList> *IDLA)
501       : InstDataAllocator(IDA), IDLAllocator(IDLA) {
502     // Make sure that the implementation of DenseMapInfo<unsigned> hasn't
503     // changed.
504     assert(DenseMapInfo<unsigned>::getEmptyKey() == static_cast<unsigned>(-1) &&
505            "DenseMapInfo<unsigned>'s empty key isn't -1!");
506     assert(DenseMapInfo<unsigned>::getTombstoneKey() ==
507                static_cast<unsigned>(-2) &&
508            "DenseMapInfo<unsigned>'s tombstone key isn't -2!");
509 
510     IDL = new (IDLAllocator->Allocate())
511         IRInstructionDataList();
512   }
513 
514   /// Custom InstVisitor to classify different instructions for whether it can
515   /// be analyzed for similarity.
516   struct InstructionClassification
517       : public InstVisitor<InstructionClassification, InstrType> {
518     InstructionClassification() = default;
519 
520     // TODO: Determine a scheme to resolve when the label is similar enough.
521     InstrType visitBranchInst(BranchInst &BI) {
522       if (EnableBranches)
523         return Legal;
524       return Illegal;
525     }
526     InstrType visitPHINode(PHINode &PN) {
527       if (EnableBranches)
528         return Legal;
529       return Illegal;
530     }
531     // TODO: Handle allocas.
532     InstrType visitAllocaInst(AllocaInst &AI) { return Illegal; }
533     // We exclude variable argument instructions since variable arguments
534     // requires extra checking of the argument list.
535     InstrType visitVAArgInst(VAArgInst &VI) { return Illegal; }
536     // We exclude all exception handling cases since they are so context
537     // dependent.
538     InstrType visitLandingPadInst(LandingPadInst &LPI) { return Illegal; }
539     InstrType visitFuncletPadInst(FuncletPadInst &FPI) { return Illegal; }
540     // DebugInfo should be included in the regions, but should not be
541     // analyzed for similarity as it has no bearing on the outcome of the
542     // program.
543     InstrType visitDbgInfoIntrinsic(DbgInfoIntrinsic &DII) { return Invisible; }
544     InstrType visitIntrinsicInst(IntrinsicInst &II) {
545       // These are disabled due to complications in the CodeExtractor when
546       // outlining these instructions.  For instance, It is unclear what we
547       // should do when moving only the start or end lifetime instruction into
548       // an outlined function. Also, assume-like intrinsics could be removed
549       // from the region, removing arguments, causing discrepencies in the
550       // number of inputs between different regions.
551       if (II.isAssumeLikeIntrinsic())
552         return Illegal;
553       return EnableIntrinsics ? Legal : Illegal;
554     }
555     // We only allow call instructions where the function has a name and
556     // is not an indirect call.
557     InstrType visitCallInst(CallInst &CI) {
558       Function *F = CI.getCalledFunction();
559       bool IsIndirectCall = CI.isIndirectCall();
560       if (IsIndirectCall && !EnableIndirectCalls)
561         return Illegal;
562       if (!F && !IsIndirectCall)
563         return Illegal;
564       // Functions marked with the swifttailcc and tailcc calling conventions
565       // require special handling when outlining musttail functions.  The
566       // calling convention must be passed down to the outlined function as
567       // well. Further, there is special handling for musttail calls as well,
568       // requiring a return call directly after.  For now, the outliner does not
569       // support this, so we do not handle matching this case either.
570       if ((CI.getCallingConv() == CallingConv::SwiftTail ||
571            CI.getCallingConv() == CallingConv::Tail) &&
572           !EnableMustTailCalls)
573         return Illegal;
574       if (CI.isMustTailCall() && !EnableMustTailCalls)
575         return Illegal;
576       return Legal;
577     }
578     // TODO: We do not current handle similarity that changes the control flow.
579     InstrType visitInvokeInst(InvokeInst &II) { return Illegal; }
580     // TODO: We do not current handle similarity that changes the control flow.
581     InstrType visitCallBrInst(CallBrInst &CBI) { return Illegal; }
582     // TODO: Handle interblock similarity.
583     InstrType visitTerminator(Instruction &I) { return Illegal; }
584     InstrType visitInstruction(Instruction &I) { return Legal; }
585 
586     // The flag variable that lets the classifier know whether we should
587     // allow branches to be checked for similarity.
588     bool EnableBranches = false;
589 
590     // The flag variable that lets the classifier know whether we should
591     // allow indirect calls to be considered legal instructions.
592     bool EnableIndirectCalls = false;
593 
594     // Flag that lets the classifier know whether we should allow intrinsics to
595     // be checked for similarity.
596     bool EnableIntrinsics = false;
597 
598     // Flag that lets the classifier know whether we should allow tail calls to
599     // be checked for similarity.
600     bool EnableMustTailCalls = false;
601   };
602 
603   /// Maps an Instruction to a member of InstrType.
604   InstructionClassification InstClassifier;
605 };
606 
607 /// This is a class that wraps a range of IRInstructionData from one point to
608 /// another in the vector of IRInstructionData, which is a region of the
609 /// program.  It is also responsible for defining the structure within this
610 /// region of instructions.
611 ///
612 /// The structure of a region is defined through a value numbering system
613 /// assigned to each unique value in a region at the creation of the
614 /// IRSimilarityCandidate.
615 ///
616 /// For example, for each Instruction we add a mapping for each new
617 /// value seen in that Instruction.
618 /// IR:                    Mapping Added:
619 /// %add1 = add i32 %a, c1    %add1 -> 3, %a -> 1, c1 -> 2
620 /// %add2 = add i32 %a, %1    %add2 -> 4
621 /// %add3 = add i32 c2, c1    %add3 -> 6, c2 -> 5
622 ///
623 /// We can compare IRSimilarityCandidates against one another.
624 /// The \ref isSimilar function compares each IRInstructionData against one
625 /// another and if we have the same sequences of IRInstructionData that would
626 /// create the same hash, we have similar IRSimilarityCandidates.
627 ///
628 /// We can also compare the structure of IRSimilarityCandidates. If we can
629 /// create a mapping of registers in the region contained by one
630 /// IRSimilarityCandidate to the region contained by different
631 /// IRSimilarityCandidate, they can be considered structurally similar.
632 ///
633 /// IRSimilarityCandidate1:   IRSimilarityCandidate2:
634 /// %add1 = add i32 %a, %b    %add1 = add i32 %d, %e
635 /// %add2 = add i32 %a, %c    %add2 = add i32 %d, %f
636 /// %add3 = add i32 c1, c2    %add3 = add i32 c3, c4
637 ///
638 /// Can have the following mapping from candidate to candidate of:
639 /// %a -> %d, %b -> %e, %c -> %f, c1 -> c3, c2 -> c4
640 /// and can be considered similar.
641 ///
642 /// IRSimilarityCandidate1:   IRSimilarityCandidate2:
643 /// %add1 = add i32 %a, %b    %add1 = add i32 %d, c4
644 /// %add2 = add i32 %a, %c    %add2 = add i32 %d, %f
645 /// %add3 = add i32 c1, c2    %add3 = add i32 c3, c4
646 ///
647 /// We cannot create the same mapping since the use of c4 is not used in the
648 /// same way as %b or c2.
649 class IRSimilarityCandidate {
650 private:
651   /// The start index of this IRSimilarityCandidate in the instruction list.
652   unsigned StartIdx = 0;
653 
654   /// The number of instructions in this IRSimilarityCandidate.
655   unsigned Len = 0;
656 
657   /// The first instruction in this IRSimilarityCandidate.
658   IRInstructionData *FirstInst = nullptr;
659 
660   /// The last instruction in this IRSimilarityCandidate.
661   IRInstructionData *LastInst = nullptr;
662 
663   /// Global Value Numbering structures
664   /// @{
665   /// Stores the mapping of the value to the number assigned to it in the
666   /// IRSimilarityCandidate.
667   DenseMap<Value *, unsigned> ValueToNumber;
668   /// Stores the mapping of the number to the value assigned this number.
669   DenseMap<unsigned, Value *> NumberToValue;
670   /// Stores the mapping of a value's number to canonical numbering in the
671   /// candidate's respective similarity group.
672   DenseMap<unsigned, unsigned> NumberToCanonNum;
673   /// Stores the mapping of canonical number in the candidate's respective
674   /// similarity group to a value number.
675   DenseMap<unsigned, unsigned> CanonNumToNumber;
676   /// @}
677 
678 public:
679   /// \param StartIdx - The starting location of the region.
680   /// \param Len - The length of the region.
681   /// \param FirstInstIt - The starting IRInstructionData of the region.
682   /// \param LastInstIt - The ending IRInstructionData of the region.
683   IRSimilarityCandidate(unsigned StartIdx, unsigned Len,
684                         IRInstructionData *FirstInstIt,
685                         IRInstructionData *LastInstIt);
686 
687   /// \param A - The first IRInstructionCandidate to compare.
688   /// \param B - The second IRInstructionCandidate to compare.
689   /// \returns True when every IRInstructionData in \p A is similar to every
690   /// IRInstructionData in \p B.
691   static bool isSimilar(const IRSimilarityCandidate &A,
692                         const IRSimilarityCandidate &B);
693 
694   /// \param [in] A - The first IRInstructionCandidate to compare.
695   /// \param [in] B - The second IRInstructionCandidate to compare.
696   /// \returns True when every IRInstructionData in \p A is structurally similar
697   /// to \p B.
698   static bool compareStructure(const IRSimilarityCandidate &A,
699                                const IRSimilarityCandidate &B);
700 
701   /// \param [in] A - The first IRInstructionCandidate to compare.
702   /// \param [in] B - The second IRInstructionCandidate to compare.
703   /// \param [in,out] ValueNumberMappingA - A mapping of value numbers from
704   /// candidate \p A to candidate \B.
705   /// \param [in,out] ValueNumberMappingB - A mapping of value numbers from
706   /// candidate \p B to candidate \A.
707   /// \returns True when every IRInstructionData in \p A is structurally similar
708   /// to \p B.
709   static bool
710   compareStructure(const IRSimilarityCandidate &A,
711                    const IRSimilarityCandidate &B,
712                    DenseMap<unsigned, DenseSet<unsigned>> &ValueNumberMappingA,
713                    DenseMap<unsigned, DenseSet<unsigned>> &ValueNumberMappingB);
714 
715   struct OperandMapping {
716     /// The IRSimilarityCandidate that holds the instruction the OperVals were
717     /// pulled from.
718     const IRSimilarityCandidate &IRSC;
719 
720     /// The operand values to be analyzed.
721     ArrayRef<Value *> &OperVals;
722 
723     /// The current mapping of global value numbers from one IRSimilarityCandidate
724     /// to another IRSimilarityCandidate.
725     DenseMap<unsigned, DenseSet<unsigned>> &ValueNumberMapping;
726   };
727 
728   /// A helper struct to hold the candidate, for a branch instruction, the
729   /// relative location of a label, and the label itself.  This is mostly to
730   /// group the values together before passing them as a bundle to a function.
731   struct RelativeLocMapping {
732     /// The IRSimilarityCandidate that holds the instruction the relative
733     /// location was pulled from.
734     const IRSimilarityCandidate &IRSC;
735 
736     /// The relative location to be analyzed.
737     int RelativeLocation;
738 
739     /// The corresponding value.
740     Value *OperVal;
741   };
742 
743   /// Compare the operands in \p A and \p B and check that the current mapping
744   /// of global value numbers from \p A to \p B and \p B to \A is consistent.
745   ///
746   /// \param A - The first IRInstructionCandidate, operand values, and current
747   /// operand mappings to compare.
748   /// \param B - The second IRInstructionCandidate, operand values, and current
749   /// operand mappings to compare.
750   /// \returns true if the IRSimilarityCandidates operands are compatible.
751   static bool compareNonCommutativeOperandMapping(OperandMapping A,
752                                                   OperandMapping B);
753 
754   /// Compare the operands in \p A and \p B and check that the current mapping
755   /// of global value numbers from \p A to \p B and \p B to \A is consistent
756   /// given that the operands are commutative.
757   ///
758   /// \param A - The first IRInstructionCandidate, operand values, and current
759   /// operand mappings to compare.
760   /// \param B - The second IRInstructionCandidate, operand values, and current
761   /// operand mappings to compare.
762   /// \returns true if the IRSimilarityCandidates operands are compatible.
763   static bool compareCommutativeOperandMapping(OperandMapping A,
764                                                OperandMapping B);
765 
766   /// Compare the relative locations in \p A and \p B and check that the
767   /// distances match if both locations are contained in the region, and that
768   /// the branches both point outside the region if they do not.
769   /// Example Region:
770   /// \code
771   /// entry:
772   ///   br i1 %0, label %block_1, label %block_3
773   /// block_0:
774   ///   br i1 %0, label %block_1, label %block_2
775   /// block_1:
776   ///   br i1 %0, label %block_2, label %block_3
777   /// block_2:
778   ///   br i1 %1, label %block_1, label %block_4
779   /// block_3:
780   ///   br i1 %2, label %block_2, label %block_5
781   /// \endcode
782   /// If we compare the branches in block_0 and block_1 the relative values are
783   /// 1 and 2 for both, so we consider this a match.
784   ///
785   /// If we compare the branches in entry and block_0 the relative values are
786   /// 2 and 3, and 1 and 2 respectively.  Since these are not the same we do not
787   /// consider them a match.
788   ///
789   /// If we compare the branches in block_1 and block_2 the relative values are
790   /// 1 and 2, and -1 and None respectively.  As a result we do not consider
791   /// these to be the same
792   ///
793   /// If we compare the branches in block_2 and block_3 the relative values are
794   /// -1 and None for both.  We do consider these to be a match.
795   ///
796   /// \param A - The first IRInstructionCandidate, relative location value,
797   /// and incoming block.
798   /// \param B - The second IRInstructionCandidate, relative location value,
799   /// and incoming block.
800   /// \returns true if the relative locations match.
801   static bool checkRelativeLocations(RelativeLocMapping A,
802                                      RelativeLocMapping B);
803 
804   /// Create a mapping from the value numbering to a different separate set of
805   /// numbers. This will serve as a guide for relating one candidate to another.
806   /// The canonical number gives use the ability identify which global value
807   /// number in one candidate relates to the global value number in the other.
808   ///
809   /// \param [in, out] CurrCand - The IRSimilarityCandidate to create a
810   /// canonical numbering for.
811   static void createCanonicalMappingFor(IRSimilarityCandidate &CurrCand);
812 
813   /// Create a mapping for the value numbering of the calling
814   /// IRSimilarityCandidate, to a different separate set of numbers, based on
815   /// the canonical ordering in \p SourceCand. These are defined based on the
816   /// found mappings in \p ToSourceMapping and \p FromSourceMapping.  Both of
817   /// these relationships should have the same information, just in opposite
818   /// directions.
819   ///
820   /// \param [in, out] SourceCand - The IRSimilarityCandidate to create a
821   /// canonical numbering from.
822   /// \param ToSourceMapping - The mapping of value numbers from this candidate
823   /// to \p SourceCand.
824   /// \param FromSourceMapping - The mapping of value numbers from \p SoureCand
825   /// to this candidate.
826   void createCanonicalRelationFrom(
827       IRSimilarityCandidate &SourceCand,
828       DenseMap<unsigned, DenseSet<unsigned>> &ToSourceMapping,
829       DenseMap<unsigned, DenseSet<unsigned>> &FromSourceMapping);
830 
831   /// \param [in,out] BBSet - The set to track the basic blocks.
832   void getBasicBlocks(DenseSet<BasicBlock *> &BBSet) const {
833     for (IRInstructionData &ID : *this) {
834       BasicBlock *BB = ID.Inst->getParent();
835       BBSet.insert(BB);
836     }
837   }
838 
839   /// \param [in,out] BBSet - The set to track the basic blocks.
840   /// \param [in,out] BBList - A list in order of use to track the basic blocks.
841   void getBasicBlocks(DenseSet<BasicBlock *> &BBSet,
842                       SmallVector<BasicBlock *> &BBList) const {
843     for (IRInstructionData &ID : *this) {
844       BasicBlock *BB = ID.Inst->getParent();
845       if (BBSet.insert(BB).second)
846         BBList.push_back(BB);
847     }
848   }
849 
850   /// Compare the start and end indices of the two IRSimilarityCandidates for
851   /// whether they overlap. If the start instruction of one
852   /// IRSimilarityCandidate is less than the end instruction of the other, and
853   /// the start instruction of one is greater than the start instruction of the
854   /// other, they overlap.
855   ///
856   /// \returns true if the IRSimilarityCandidates do not have overlapping
857   /// instructions.
858   static bool overlap(const IRSimilarityCandidate &A,
859                       const IRSimilarityCandidate &B);
860 
861   /// \returns the number of instructions in this Candidate.
862   unsigned getLength() const { return Len; }
863 
864   /// \returns the start index of this IRSimilarityCandidate.
865   unsigned getStartIdx() const { return StartIdx; }
866 
867   /// \returns the end index of this IRSimilarityCandidate.
868   unsigned getEndIdx() const { return StartIdx + Len - 1; }
869 
870   /// \returns The first IRInstructionData.
871   IRInstructionData *front() const { return FirstInst; }
872   /// \returns The last IRInstructionData.
873   IRInstructionData *back() const { return LastInst; }
874 
875   /// \returns The first Instruction.
876   Instruction *frontInstruction() { return FirstInst->Inst; }
877   /// \returns The last Instruction
878   Instruction *backInstruction() { return LastInst->Inst; }
879 
880   /// \returns The BasicBlock the IRSimilarityCandidate starts in.
881   BasicBlock *getStartBB() { return FirstInst->Inst->getParent(); }
882   /// \returns The BasicBlock the IRSimilarityCandidate ends in.
883   BasicBlock *getEndBB() { return LastInst->Inst->getParent(); }
884 
885   /// \returns The Function that the IRSimilarityCandidate is located in.
886   Function *getFunction() { return getStartBB()->getParent(); }
887 
888   /// Finds the positive number associated with \p V if it has been mapped.
889   /// \param [in] V - the Value to find.
890   /// \returns The positive number corresponding to the value.
891   /// \returns std::nullopt if not present.
892   std::optional<unsigned> getGVN(Value *V) {
893     assert(V != nullptr && "Value is a nullptr?");
894     DenseMap<Value *, unsigned>::iterator VNIt = ValueToNumber.find(V);
895     if (VNIt == ValueToNumber.end())
896       return std::nullopt;
897     return VNIt->second;
898   }
899 
900   /// Finds the Value associate with \p Num if it exists.
901   /// \param [in] Num - the number to find.
902   /// \returns The Value associated with the number.
903   /// \returns std::nullopt if not present.
904   std::optional<Value *> fromGVN(unsigned Num) {
905     DenseMap<unsigned, Value *>::iterator VNIt = NumberToValue.find(Num);
906     if (VNIt == NumberToValue.end())
907       return std::nullopt;
908     assert(VNIt->second != nullptr && "Found value is a nullptr!");
909     return VNIt->second;
910   }
911 
912   /// Find the canonical number from the global value number \p N stored in the
913   /// candidate.
914   ///
915   /// \param N - The global value number to find the canonical number for.
916   /// \returns An optional containing the value, and std::nullopt if it could
917   /// not be found.
918   std::optional<unsigned> getCanonicalNum(unsigned N) {
919     DenseMap<unsigned, unsigned>::iterator NCIt = NumberToCanonNum.find(N);
920     if (NCIt == NumberToCanonNum.end())
921       return std::nullopt;
922     return NCIt->second;
923   }
924 
925   /// Find the global value number from the canonical number \p N stored in the
926   /// candidate.
927   ///
928   /// \param N - The canonical number to find the global vlaue number for.
929   /// \returns An optional containing the value, and std::nullopt if it could
930   /// not be found.
931   std::optional<unsigned> fromCanonicalNum(unsigned N) {
932     DenseMap<unsigned, unsigned>::iterator CNIt = CanonNumToNumber.find(N);
933     if (CNIt == CanonNumToNumber.end())
934       return std::nullopt;
935     return CNIt->second;
936   }
937 
938   /// \param RHS -The IRSimilarityCandidate to compare against
939   /// \returns true if the IRSimilarityCandidate is occurs after the
940   /// IRSimilarityCandidate in the program.
941   bool operator<(const IRSimilarityCandidate &RHS) const {
942     return getStartIdx() > RHS.getStartIdx();
943   }
944 
945   using iterator = IRInstructionDataList::iterator;
946   iterator begin() const { return iterator(front()); }
947   iterator end() const { return std::next(iterator(back())); }
948 };
949 
950 typedef DenseMap<IRSimilarityCandidate *,
951                  DenseMap<unsigned, DenseSet<unsigned>>>
952     CandidateGVNMapping;
953 typedef std::vector<IRSimilarityCandidate> SimilarityGroup;
954 typedef std::vector<SimilarityGroup> SimilarityGroupList;
955 
956 /// This class puts all the pieces of the IRInstructionData,
957 /// IRInstructionMapper, IRSimilarityCandidate together.
958 ///
959 /// It first feeds the Module or vector of Modules into the IRInstructionMapper,
960 /// and puts all the mapped instructions into a single long list of
961 /// IRInstructionData.
962 ///
963 /// The list of unsigned integers is given to the Suffix Tree or similar data
964 /// structure to find repeated subsequences.  We construct an
965 /// IRSimilarityCandidate for each instance of the subsequence.  We compare them
966 /// against one another since  These repeated subsequences can have different
967 /// structure.  For each different kind of structure found, we create a
968 /// similarity group.
969 ///
970 /// If we had four IRSimilarityCandidates A, B, C, and D where A, B and D are
971 /// structurally similar to one another, while C is different we would have two
972 /// SimilarityGroups:
973 ///
974 /// SimilarityGroup 1:  SimilarityGroup 2
975 /// A, B, D             C
976 ///
977 /// A list of the different similarity groups is then returned after
978 /// analyzing the module.
979 class IRSimilarityIdentifier {
980 public:
981   IRSimilarityIdentifier(bool MatchBranches = true,
982                          bool MatchIndirectCalls = true,
983                          bool MatchCallsWithName = false,
984                          bool MatchIntrinsics = true,
985                          bool MatchMustTailCalls = true)
986       : Mapper(&InstDataAllocator, &InstDataListAllocator),
987         EnableBranches(MatchBranches), EnableIndirectCalls(MatchIndirectCalls),
988         EnableMatchingCallsByName(MatchCallsWithName),
989         EnableIntrinsics(MatchIntrinsics),
990         EnableMustTailCalls(MatchMustTailCalls) {}
991 
992 private:
993   /// Map the instructions in the module to unsigned integers, using mapping
994   /// already present in the Mapper if possible.
995   ///
996   /// \param [in] M Module - To map to integers.
997   /// \param [in,out] InstrList - The vector to append IRInstructionData to.
998   /// \param [in,out] IntegerMapping - The vector to append integers to.
999   void populateMapper(Module &M, std::vector<IRInstructionData *> &InstrList,
1000                       std::vector<unsigned> &IntegerMapping);
1001 
1002   /// Map the instructions in the modules vector to unsigned integers, using
1003   /// mapping already present in the mapper if possible.
1004   ///
1005   /// \param [in] Modules - The list of modules to use to populate the mapper
1006   /// \param [in,out] InstrList - The vector to append IRInstructionData to.
1007   /// \param [in,out] IntegerMapping - The vector to append integers to.
1008   void populateMapper(ArrayRef<std::unique_ptr<Module>> &Modules,
1009                       std::vector<IRInstructionData *> &InstrList,
1010                       std::vector<unsigned> &IntegerMapping);
1011 
1012   /// Find the similarity candidates in \p InstrList and corresponding
1013   /// \p UnsignedVec
1014   ///
1015   /// \param [in,out] InstrList - The vector to append IRInstructionData to.
1016   /// \param [in,out] IntegerMapping - The vector to append integers to.
1017   /// candidates found in the program.
1018   void findCandidates(std::vector<IRInstructionData *> &InstrList,
1019                       std::vector<unsigned> &IntegerMapping);
1020 
1021 public:
1022   // Find the IRSimilarityCandidates in the \p Modules and group by structural
1023   // similarity in a SimilarityGroup, each group is returned in a
1024   // SimilarityGroupList.
1025   //
1026   // \param [in] Modules - the modules to analyze.
1027   // \returns The groups of similarity ranges found in the modules.
1028   SimilarityGroupList &
1029   findSimilarity(ArrayRef<std::unique_ptr<Module>> Modules);
1030 
1031   // Find the IRSimilarityCandidates in the given Module grouped by structural
1032   // similarity in a SimilarityGroup, contained inside a SimilarityGroupList.
1033   //
1034   // \param [in] M - the module to analyze.
1035   // \returns The groups of similarity ranges found in the module.
1036   SimilarityGroupList &findSimilarity(Module &M);
1037 
1038   // Clears \ref SimilarityCandidates if it is already filled by a previous run.
1039   void resetSimilarityCandidates() {
1040     // If we've already analyzed a Module or set of Modules, so we must clear
1041     // the SimilarityCandidates to make sure we do not have only old values
1042     // hanging around.
1043     if (SimilarityCandidates)
1044       SimilarityCandidates->clear();
1045     else
1046       SimilarityCandidates = SimilarityGroupList();
1047   }
1048 
1049   // \returns The groups of similarity ranges found in the most recently passed
1050   // set of modules.
1051   std::optional<SimilarityGroupList> &getSimilarity() {
1052     return SimilarityCandidates;
1053   }
1054 
1055 private:
1056   /// The allocator for IRInstructionData.
1057   SpecificBumpPtrAllocator<IRInstructionData> InstDataAllocator;
1058 
1059   /// The allocator for IRInstructionDataLists.
1060   SpecificBumpPtrAllocator<IRInstructionDataList> InstDataListAllocator;
1061 
1062   /// Map Instructions to unsigned integers and wraps the Instruction in an
1063   /// instance of IRInstructionData.
1064   IRInstructionMapper Mapper;
1065 
1066   /// The flag variable that marks whether we should check branches for
1067   /// similarity, or only look within basic blocks.
1068   bool EnableBranches = true;
1069 
1070   /// The flag variable that marks whether we allow indirect calls to be checked
1071   /// for similarity, or exclude them as a legal instruction.
1072   bool EnableIndirectCalls = true;
1073 
1074   /// The flag variable that marks whether we allow calls to be marked as
1075   /// similar if they do not have the same name, only the same calling
1076   /// convention, attributes and type signature.
1077   bool EnableMatchingCallsByName = true;
1078 
1079   /// The flag variable that marks whether we should check intrinsics for
1080   /// similarity.
1081   bool EnableIntrinsics = true;
1082 
1083   // The flag variable that marks whether we should allow tailcalls
1084   // to be checked for similarity.
1085   bool EnableMustTailCalls = false;
1086 
1087   /// The SimilarityGroups found with the most recent run of \ref
1088   /// findSimilarity. std::nullopt if there is no recent run.
1089   std::optional<SimilarityGroupList> SimilarityCandidates;
1090 };
1091 
1092 } // end namespace IRSimilarity
1093 
1094 /// An analysis pass based on legacy pass manager that runs and returns
1095 /// IRSimilarityIdentifier run on the Module.
1096 class IRSimilarityIdentifierWrapperPass : public ModulePass {
1097   std::unique_ptr<IRSimilarity::IRSimilarityIdentifier> IRSI;
1098 
1099 public:
1100   static char ID;
1101   IRSimilarityIdentifierWrapperPass();
1102 
1103   IRSimilarity::IRSimilarityIdentifier &getIRSI() { return *IRSI; }
1104   const IRSimilarity::IRSimilarityIdentifier &getIRSI() const { return *IRSI; }
1105 
1106   bool doInitialization(Module &M) override;
1107   bool doFinalization(Module &M) override;
1108   bool runOnModule(Module &M) override;
1109   void getAnalysisUsage(AnalysisUsage &AU) const override {
1110     AU.setPreservesAll();
1111   }
1112 };
1113 
1114 /// An analysis pass that runs and returns the IRSimilarityIdentifier run on the
1115 /// Module.
1116 class IRSimilarityAnalysis : public AnalysisInfoMixin<IRSimilarityAnalysis> {
1117 public:
1118   typedef IRSimilarity::IRSimilarityIdentifier Result;
1119 
1120   Result run(Module &M, ModuleAnalysisManager &);
1121 
1122 private:
1123   friend AnalysisInfoMixin<IRSimilarityAnalysis>;
1124   static AnalysisKey Key;
1125 };
1126 
1127 /// Printer pass that uses \c IRSimilarityAnalysis.
1128 class IRSimilarityAnalysisPrinterPass
1129     : public PassInfoMixin<IRSimilarityAnalysisPrinterPass> {
1130   raw_ostream &OS;
1131 
1132 public:
1133   explicit IRSimilarityAnalysisPrinterPass(raw_ostream &OS) : OS(OS) {}
1134   PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
1135 };
1136 
1137 } // end namespace llvm
1138 
1139 #endif // LLVM_ANALYSIS_IRSIMILARITYIDENTIFIER_H
1140