1 //===- llvm/Analysis/IVDescriptors.h - IndVar Descriptors -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file "describes" induction and recurrence variables.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_ANALYSIS_IVDESCRIPTORS_H
14 #define LLVM_ANALYSIS_IVDESCRIPTORS_H
15 
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/IR/IntrinsicInst.h"
20 #include "llvm/IR/ValueHandle.h"
21 
22 namespace llvm {
23 
24 class AssumptionCache;
25 class DemandedBits;
26 class DominatorTree;
27 class Instruction;
28 class Loop;
29 class PredicatedScalarEvolution;
30 class ScalarEvolution;
31 class SCEV;
32 class StoreInst;
33 
34 /// These are the kinds of recurrences that we support.
35 enum class RecurKind {
36   None,       ///< Not a recurrence.
37   Add,        ///< Sum of integers.
38   Mul,        ///< Product of integers.
39   Or,         ///< Bitwise or logical OR of integers.
40   And,        ///< Bitwise or logical AND of integers.
41   Xor,        ///< Bitwise or logical XOR of integers.
42   SMin,       ///< Signed integer min implemented in terms of select(cmp()).
43   SMax,       ///< Signed integer max implemented in terms of select(cmp()).
44   UMin,       ///< Unisgned integer min implemented in terms of select(cmp()).
45   UMax,       ///< Unsigned integer max implemented in terms of select(cmp()).
46   FAdd,       ///< Sum of floats.
47   FMul,       ///< Product of floats.
48   FMin,       ///< FP min implemented in terms of select(cmp()).
49   FMax,       ///< FP max implemented in terms of select(cmp()).
50   FMulAdd,    ///< Fused multiply-add of floats (a * b + c).
51   SelectICmp, ///< Integer select(icmp(),x,y) where one of (x,y) is loop
52               ///< invariant
53   SelectFCmp  ///< Integer select(fcmp(),x,y) where one of (x,y) is loop
54               ///< invariant
55 };
56 
57 /// The RecurrenceDescriptor is used to identify recurrences variables in a
58 /// loop. Reduction is a special case of recurrence that has uses of the
59 /// recurrence variable outside the loop. The method isReductionPHI identifies
60 /// reductions that are basic recurrences.
61 ///
62 /// Basic recurrences are defined as the summation, product, OR, AND, XOR, min,
63 /// or max of a set of terms. For example: for(i=0; i<n; i++) { total +=
64 /// array[i]; } is a summation of array elements. Basic recurrences are a
65 /// special case of chains of recurrences (CR). See ScalarEvolution for CR
66 /// references.
67 
68 /// This struct holds information about recurrence variables.
69 class RecurrenceDescriptor {
70 public:
71   RecurrenceDescriptor() = default;
72 
73   RecurrenceDescriptor(Value *Start, Instruction *Exit, StoreInst *Store,
74                        RecurKind K, FastMathFlags FMF, Instruction *ExactFP,
75                        Type *RT, bool Signed, bool Ordered,
76                        SmallPtrSetImpl<Instruction *> &CI,
77                        unsigned MinWidthCastToRecurTy)
78       : IntermediateStore(Store), StartValue(Start), LoopExitInstr(Exit),
79         Kind(K), FMF(FMF), ExactFPMathInst(ExactFP), RecurrenceType(RT),
80         IsSigned(Signed), IsOrdered(Ordered),
81         MinWidthCastToRecurrenceType(MinWidthCastToRecurTy) {
82     CastInsts.insert(CI.begin(), CI.end());
83   }
84 
85   /// This POD struct holds information about a potential recurrence operation.
86   class InstDesc {
87   public:
88     InstDesc(bool IsRecur, Instruction *I, Instruction *ExactFP = nullptr)
89         : IsRecurrence(IsRecur), PatternLastInst(I),
90           RecKind(RecurKind::None), ExactFPMathInst(ExactFP) {}
91 
92     InstDesc(Instruction *I, RecurKind K, Instruction *ExactFP = nullptr)
93         : IsRecurrence(true), PatternLastInst(I), RecKind(K),
94           ExactFPMathInst(ExactFP) {}
95 
96     bool isRecurrence() const { return IsRecurrence; }
97 
98     bool needsExactFPMath() const { return ExactFPMathInst != nullptr; }
99 
100     Instruction *getExactFPMathInst() const { return ExactFPMathInst; }
101 
102     RecurKind getRecKind() const { return RecKind; }
103 
104     Instruction *getPatternInst() const { return PatternLastInst; }
105 
106   private:
107     // Is this instruction a recurrence candidate.
108     bool IsRecurrence;
109     // The last instruction in a min/max pattern (select of the select(icmp())
110     // pattern), or the current recurrence instruction otherwise.
111     Instruction *PatternLastInst;
112     // If this is a min/max pattern.
113     RecurKind RecKind;
114     // Recurrence does not allow floating-point reassociation.
115     Instruction *ExactFPMathInst;
116   };
117 
118   /// Returns a struct describing if the instruction 'I' can be a recurrence
119   /// variable of type 'Kind' for a Loop \p L and reduction PHI \p Phi.
120   /// If the recurrence is a min/max pattern of select(icmp()) this function
121   /// advances the instruction pointer 'I' from the compare instruction to the
122   /// select instruction and stores this pointer in 'PatternLastInst' member of
123   /// the returned struct.
124   static InstDesc isRecurrenceInstr(Loop *L, PHINode *Phi, Instruction *I,
125                                     RecurKind Kind, InstDesc &Prev,
126                                     FastMathFlags FuncFMF);
127 
128   /// Returns true if instruction I has multiple uses in Insts
129   static bool hasMultipleUsesOf(Instruction *I,
130                                 SmallPtrSetImpl<Instruction *> &Insts,
131                                 unsigned MaxNumUses);
132 
133   /// Returns true if all uses of the instruction I is within the Set.
134   static bool areAllUsesIn(Instruction *I, SmallPtrSetImpl<Instruction *> &Set);
135 
136   /// Returns a struct describing if the instruction is a llvm.(s/u)(min/max),
137   /// llvm.minnum/maxnum or a Select(ICmp(X, Y), X, Y) pair of instructions
138   /// corresponding to a min(X, Y) or max(X, Y), matching the recurrence kind \p
139   /// Kind. \p Prev specifies the description of an already processed select
140   /// instruction, so its corresponding cmp can be matched to it.
141   static InstDesc isMinMaxPattern(Instruction *I, RecurKind Kind,
142                                   const InstDesc &Prev);
143 
144   /// Returns a struct describing whether the instruction is either a
145   ///   Select(ICmp(A, B), X, Y), or
146   ///   Select(FCmp(A, B), X, Y)
147   /// where one of (X, Y) is a loop invariant integer and the other is a PHI
148   /// value. \p Prev specifies the description of an already processed select
149   /// instruction, so its corresponding cmp can be matched to it.
150   static InstDesc isSelectCmpPattern(Loop *Loop, PHINode *OrigPhi,
151                                      Instruction *I, InstDesc &Prev);
152 
153   /// Returns a struct describing if the instruction is a
154   /// Select(FCmp(X, Y), (Z = X op PHINode), PHINode) instruction pattern.
155   static InstDesc isConditionalRdxPattern(RecurKind Kind, Instruction *I);
156 
157   /// Returns identity corresponding to the RecurrenceKind.
158   Value *getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF) const;
159 
160   /// Returns the opcode corresponding to the RecurrenceKind.
161   static unsigned getOpcode(RecurKind Kind);
162 
163   /// Returns true if Phi is a reduction of type Kind and adds it to the
164   /// RecurrenceDescriptor. If either \p DB is non-null or \p AC and \p DT are
165   /// non-null, the minimal bit width needed to compute the reduction will be
166   /// computed.
167   static bool
168   AddReductionVar(PHINode *Phi, RecurKind Kind, Loop *TheLoop,
169                   FastMathFlags FuncFMF, RecurrenceDescriptor &RedDes,
170                   DemandedBits *DB = nullptr, AssumptionCache *AC = nullptr,
171                   DominatorTree *DT = nullptr, ScalarEvolution *SE = nullptr);
172 
173   /// Returns true if Phi is a reduction in TheLoop. The RecurrenceDescriptor
174   /// is returned in RedDes. If either \p DB is non-null or \p AC and \p DT are
175   /// non-null, the minimal bit width needed to compute the reduction will be
176   /// computed. If \p SE is non-null, store instructions to loop invariant
177   /// addresses are processed.
178   static bool
179   isReductionPHI(PHINode *Phi, Loop *TheLoop, RecurrenceDescriptor &RedDes,
180                  DemandedBits *DB = nullptr, AssumptionCache *AC = nullptr,
181                  DominatorTree *DT = nullptr, ScalarEvolution *SE = nullptr);
182 
183   /// Returns true if Phi is a fixed-order recurrence. A fixed-order recurrence
184   /// is a non-reduction recurrence relation in which the value of the
185   /// recurrence in the current loop iteration equals a value defined in a
186   /// previous iteration (e.g. if the value is defined in the previous
187   /// iteration, we refer to it as first-order recurrence, if it is defined in
188   /// the iteration before the previous, we refer to it as second-order
189   /// recurrence and so on). \p SinkAfter includes pairs of instructions where
190   /// the first will be rescheduled to appear after the second if/when the loop
191   /// is vectorized. It may be augmented with additional pairs if needed in
192   /// order to handle Phi as a first-order recurrence.
193   static bool
194   isFixedOrderRecurrence(PHINode *Phi, Loop *TheLoop,
195                          MapVector<Instruction *, Instruction *> &SinkAfter,
196                          DominatorTree *DT);
197 
198   RecurKind getRecurrenceKind() const { return Kind; }
199 
200   unsigned getOpcode() const { return getOpcode(getRecurrenceKind()); }
201 
202   FastMathFlags getFastMathFlags() const { return FMF; }
203 
204   TrackingVH<Value> getRecurrenceStartValue() const { return StartValue; }
205 
206   Instruction *getLoopExitInstr() const { return LoopExitInstr; }
207 
208   /// Returns true if the recurrence has floating-point math that requires
209   /// precise (ordered) operations.
210   bool hasExactFPMath() const { return ExactFPMathInst != nullptr; }
211 
212   /// Returns 1st non-reassociative FP instruction in the PHI node's use-chain.
213   Instruction *getExactFPMathInst() const { return ExactFPMathInst; }
214 
215   /// Returns true if the recurrence kind is an integer kind.
216   static bool isIntegerRecurrenceKind(RecurKind Kind);
217 
218   /// Returns true if the recurrence kind is a floating point kind.
219   static bool isFloatingPointRecurrenceKind(RecurKind Kind);
220 
221   /// Returns true if the recurrence kind is an integer min/max kind.
222   static bool isIntMinMaxRecurrenceKind(RecurKind Kind) {
223     return Kind == RecurKind::UMin || Kind == RecurKind::UMax ||
224            Kind == RecurKind::SMin || Kind == RecurKind::SMax;
225   }
226 
227   /// Returns true if the recurrence kind is a floating-point min/max kind.
228   static bool isFPMinMaxRecurrenceKind(RecurKind Kind) {
229     return Kind == RecurKind::FMin || Kind == RecurKind::FMax;
230   }
231 
232   /// Returns true if the recurrence kind is any min/max kind.
233   static bool isMinMaxRecurrenceKind(RecurKind Kind) {
234     return isIntMinMaxRecurrenceKind(Kind) || isFPMinMaxRecurrenceKind(Kind);
235   }
236 
237   /// Returns true if the recurrence kind is of the form
238   ///   select(cmp(),x,y) where one of (x,y) is loop invariant.
239   static bool isSelectCmpRecurrenceKind(RecurKind Kind) {
240     return Kind == RecurKind::SelectICmp || Kind == RecurKind::SelectFCmp;
241   }
242 
243   /// Returns the type of the recurrence. This type can be narrower than the
244   /// actual type of the Phi if the recurrence has been type-promoted.
245   Type *getRecurrenceType() const { return RecurrenceType; }
246 
247   /// Returns a reference to the instructions used for type-promoting the
248   /// recurrence.
249   const SmallPtrSet<Instruction *, 8> &getCastInsts() const { return CastInsts; }
250 
251   /// Returns the minimum width used by the recurrence in bits.
252   unsigned getMinWidthCastToRecurrenceTypeInBits() const {
253     return MinWidthCastToRecurrenceType;
254   }
255 
256   /// Returns true if all source operands of the recurrence are SExtInsts.
257   bool isSigned() const { return IsSigned; }
258 
259   /// Expose an ordered FP reduction to the instance users.
260   bool isOrdered() const { return IsOrdered; }
261 
262   /// Attempts to find a chain of operations from Phi to LoopExitInst that can
263   /// be treated as a set of reductions instructions for in-loop reductions.
264   SmallVector<Instruction *, 4> getReductionOpChain(PHINode *Phi,
265                                                     Loop *L) const;
266 
267   /// Returns true if the instruction is a call to the llvm.fmuladd intrinsic.
268   static bool isFMulAddIntrinsic(Instruction *I) {
269     return isa<IntrinsicInst>(I) &&
270            cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fmuladd;
271   }
272 
273   /// Reductions may store temporary or final result to an invariant address.
274   /// If there is such a store in the loop then, after successfull run of
275   /// AddReductionVar method, this field will be assigned the last met store.
276   StoreInst *IntermediateStore = nullptr;
277 
278 private:
279   // The starting value of the recurrence.
280   // It does not have to be zero!
281   TrackingVH<Value> StartValue;
282   // The instruction who's value is used outside the loop.
283   Instruction *LoopExitInstr = nullptr;
284   // The kind of the recurrence.
285   RecurKind Kind = RecurKind::None;
286   // The fast-math flags on the recurrent instructions.  We propagate these
287   // fast-math flags into the vectorized FP instructions we generate.
288   FastMathFlags FMF;
289   // First instance of non-reassociative floating-point in the PHI's use-chain.
290   Instruction *ExactFPMathInst = nullptr;
291   // The type of the recurrence.
292   Type *RecurrenceType = nullptr;
293   // True if all source operands of the recurrence are SExtInsts.
294   bool IsSigned = false;
295   // True if this recurrence can be treated as an in-order reduction.
296   // Currently only a non-reassociative FAdd can be considered in-order,
297   // if it is also the only FAdd in the PHI's use chain.
298   bool IsOrdered = false;
299   // Instructions used for type-promoting the recurrence.
300   SmallPtrSet<Instruction *, 8> CastInsts;
301   // The minimum width used by the recurrence.
302   unsigned MinWidthCastToRecurrenceType;
303 };
304 
305 /// A struct for saving information about induction variables.
306 class InductionDescriptor {
307 public:
308   /// This enum represents the kinds of inductions that we support.
309   enum InductionKind {
310     IK_NoInduction,  ///< Not an induction variable.
311     IK_IntInduction, ///< Integer induction variable. Step = C.
312     IK_PtrInduction, ///< Pointer induction var. Step = C / sizeof(elem).
313     IK_FpInduction   ///< Floating point induction variable.
314   };
315 
316 public:
317   /// Default constructor - creates an invalid induction.
318   InductionDescriptor() = default;
319 
320   Value *getStartValue() const { return StartValue; }
321   InductionKind getKind() const { return IK; }
322   const SCEV *getStep() const { return Step; }
323   BinaryOperator *getInductionBinOp() const { return InductionBinOp; }
324   ConstantInt *getConstIntStepValue() const;
325 
326   /// Returns true if \p Phi is an induction in the loop \p L. If \p Phi is an
327   /// induction, the induction descriptor \p D will contain the data describing
328   /// this induction. If by some other means the caller has a better SCEV
329   /// expression for \p Phi than the one returned by the ScalarEvolution
330   /// analysis, it can be passed through \p Expr. If the def-use chain
331   /// associated with the phi includes casts (that we know we can ignore
332   /// under proper runtime checks), they are passed through \p CastsToIgnore.
333   static bool
334   isInductionPHI(PHINode *Phi, const Loop *L, ScalarEvolution *SE,
335                  InductionDescriptor &D, const SCEV *Expr = nullptr,
336                  SmallVectorImpl<Instruction *> *CastsToIgnore = nullptr);
337 
338   /// Returns true if \p Phi is a floating point induction in the loop \p L.
339   /// If \p Phi is an induction, the induction descriptor \p D will contain
340   /// the data describing this induction.
341   static bool isFPInductionPHI(PHINode *Phi, const Loop *L, ScalarEvolution *SE,
342                                InductionDescriptor &D);
343 
344   /// Returns true if \p Phi is a loop \p L induction, in the context associated
345   /// with the run-time predicate of PSE. If \p Assume is true, this can add
346   /// further SCEV predicates to \p PSE in order to prove that \p Phi is an
347   /// induction.
348   /// If \p Phi is an induction, \p D will contain the data describing this
349   /// induction.
350   static bool isInductionPHI(PHINode *Phi, const Loop *L,
351                              PredicatedScalarEvolution &PSE,
352                              InductionDescriptor &D, bool Assume = false);
353 
354   /// Returns floating-point induction operator that does not allow
355   /// reassociation (transforming the induction requires an override of normal
356   /// floating-point rules).
357   Instruction *getExactFPMathInst() {
358     if (IK == IK_FpInduction && InductionBinOp &&
359         !InductionBinOp->hasAllowReassoc())
360       return InductionBinOp;
361     return nullptr;
362   }
363 
364   /// Returns binary opcode of the induction operator.
365   Instruction::BinaryOps getInductionOpcode() const {
366     return InductionBinOp ? InductionBinOp->getOpcode()
367                           : Instruction::BinaryOpsEnd;
368   }
369 
370   Type *getElementType() const {
371     assert(IK == IK_PtrInduction && "Only pointer induction has element type");
372     return ElementType;
373   }
374 
375   /// Returns a reference to the type cast instructions in the induction
376   /// update chain, that are redundant when guarded with a runtime
377   /// SCEV overflow check.
378   const SmallVectorImpl<Instruction *> &getCastInsts() const {
379     return RedundantCasts;
380   }
381 
382 private:
383   /// Private constructor - used by \c isInductionPHI.
384   InductionDescriptor(Value *Start, InductionKind K, const SCEV *Step,
385                       BinaryOperator *InductionBinOp = nullptr,
386                       Type *ElementType = nullptr,
387                       SmallVectorImpl<Instruction *> *Casts = nullptr);
388 
389   /// Start value.
390   TrackingVH<Value> StartValue;
391   /// Induction kind.
392   InductionKind IK = IK_NoInduction;
393   /// Step value.
394   const SCEV *Step = nullptr;
395   // Instruction that advances induction variable.
396   BinaryOperator *InductionBinOp = nullptr;
397   // Element type for pointer induction variables.
398   // TODO: This can be dropped once support for typed pointers is removed.
399   Type *ElementType = nullptr;
400   // Instructions used for type-casts of the induction variable,
401   // that are redundant when guarded with a runtime SCEV overflow check.
402   SmallVector<Instruction *, 2> RedundantCasts;
403 };
404 
405 } // end namespace llvm
406 
407 #endif // LLVM_ANALYSIS_IVDESCRIPTORS_H
408