1 //===- llvm/Analysis/IVDescriptors.h - IndVar Descriptors -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file "describes" induction and recurrence variables.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_ANALYSIS_IVDESCRIPTORS_H
14 #define LLVM_ANALYSIS_IVDESCRIPTORS_H
15 
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/IR/IntrinsicInst.h"
20 #include "llvm/IR/ValueHandle.h"
21 
22 namespace llvm {
23 
24 class AssumptionCache;
25 class DemandedBits;
26 class DominatorTree;
27 class Instruction;
28 class Loop;
29 class PredicatedScalarEvolution;
30 class ScalarEvolution;
31 class SCEV;
32 class StoreInst;
33 
34 /// These are the kinds of recurrences that we support.
35 enum class RecurKind {
36   None,       ///< Not a recurrence.
37   Add,        ///< Sum of integers.
38   Mul,        ///< Product of integers.
39   Or,         ///< Bitwise or logical OR of integers.
40   And,        ///< Bitwise or logical AND of integers.
41   Xor,        ///< Bitwise or logical XOR of integers.
42   SMin,       ///< Signed integer min implemented in terms of select(cmp()).
43   SMax,       ///< Signed integer max implemented in terms of select(cmp()).
44   UMin,       ///< Unisgned integer min implemented in terms of select(cmp()).
45   UMax,       ///< Unsigned integer max implemented in terms of select(cmp()).
46   FAdd,       ///< Sum of floats.
47   FMul,       ///< Product of floats.
48   FMin,       ///< FP min implemented in terms of select(cmp()).
49   FMax,       ///< FP max implemented in terms of select(cmp()).
50   FMinimum,   ///< FP min with llvm.minimum semantics
51   FMaximum,   ///< FP max with llvm.maximum semantics
52   FMulAdd,    ///< Fused multiply-add of floats (a * b + c).
53   SelectICmp, ///< Integer select(icmp(),x,y) where one of (x,y) is loop
54               ///< invariant
55   SelectFCmp  ///< Integer select(fcmp(),x,y) where one of (x,y) is loop
56               ///< invariant
57 };
58 
59 /// The RecurrenceDescriptor is used to identify recurrences variables in a
60 /// loop. Reduction is a special case of recurrence that has uses of the
61 /// recurrence variable outside the loop. The method isReductionPHI identifies
62 /// reductions that are basic recurrences.
63 ///
64 /// Basic recurrences are defined as the summation, product, OR, AND, XOR, min,
65 /// or max of a set of terms. For example: for(i=0; i<n; i++) { total +=
66 /// array[i]; } is a summation of array elements. Basic recurrences are a
67 /// special case of chains of recurrences (CR). See ScalarEvolution for CR
68 /// references.
69 
70 /// This struct holds information about recurrence variables.
71 class RecurrenceDescriptor {
72 public:
73   RecurrenceDescriptor() = default;
74 
75   RecurrenceDescriptor(Value *Start, Instruction *Exit, StoreInst *Store,
76                        RecurKind K, FastMathFlags FMF, Instruction *ExactFP,
77                        Type *RT, bool Signed, bool Ordered,
78                        SmallPtrSetImpl<Instruction *> &CI,
79                        unsigned MinWidthCastToRecurTy)
80       : IntermediateStore(Store), StartValue(Start), LoopExitInstr(Exit),
81         Kind(K), FMF(FMF), ExactFPMathInst(ExactFP), RecurrenceType(RT),
82         IsSigned(Signed), IsOrdered(Ordered),
83         MinWidthCastToRecurrenceType(MinWidthCastToRecurTy) {
84     CastInsts.insert(CI.begin(), CI.end());
85   }
86 
87   /// This POD struct holds information about a potential recurrence operation.
88   class InstDesc {
89   public:
90     InstDesc(bool IsRecur, Instruction *I, Instruction *ExactFP = nullptr)
91         : IsRecurrence(IsRecur), PatternLastInst(I),
92           RecKind(RecurKind::None), ExactFPMathInst(ExactFP) {}
93 
94     InstDesc(Instruction *I, RecurKind K, Instruction *ExactFP = nullptr)
95         : IsRecurrence(true), PatternLastInst(I), RecKind(K),
96           ExactFPMathInst(ExactFP) {}
97 
98     bool isRecurrence() const { return IsRecurrence; }
99 
100     bool needsExactFPMath() const { return ExactFPMathInst != nullptr; }
101 
102     Instruction *getExactFPMathInst() const { return ExactFPMathInst; }
103 
104     RecurKind getRecKind() const { return RecKind; }
105 
106     Instruction *getPatternInst() const { return PatternLastInst; }
107 
108   private:
109     // Is this instruction a recurrence candidate.
110     bool IsRecurrence;
111     // The last instruction in a min/max pattern (select of the select(icmp())
112     // pattern), or the current recurrence instruction otherwise.
113     Instruction *PatternLastInst;
114     // If this is a min/max pattern.
115     RecurKind RecKind;
116     // Recurrence does not allow floating-point reassociation.
117     Instruction *ExactFPMathInst;
118   };
119 
120   /// Returns a struct describing if the instruction 'I' can be a recurrence
121   /// variable of type 'Kind' for a Loop \p L and reduction PHI \p Phi.
122   /// If the recurrence is a min/max pattern of select(icmp()) this function
123   /// advances the instruction pointer 'I' from the compare instruction to the
124   /// select instruction and stores this pointer in 'PatternLastInst' member of
125   /// the returned struct.
126   static InstDesc isRecurrenceInstr(Loop *L, PHINode *Phi, Instruction *I,
127                                     RecurKind Kind, InstDesc &Prev,
128                                     FastMathFlags FuncFMF);
129 
130   /// Returns true if instruction I has multiple uses in Insts
131   static bool hasMultipleUsesOf(Instruction *I,
132                                 SmallPtrSetImpl<Instruction *> &Insts,
133                                 unsigned MaxNumUses);
134 
135   /// Returns true if all uses of the instruction I is within the Set.
136   static bool areAllUsesIn(Instruction *I, SmallPtrSetImpl<Instruction *> &Set);
137 
138   /// Returns a struct describing if the instruction is a llvm.(s/u)(min/max),
139   /// llvm.minnum/maxnum or a Select(ICmp(X, Y), X, Y) pair of instructions
140   /// corresponding to a min(X, Y) or max(X, Y), matching the recurrence kind \p
141   /// Kind. \p Prev specifies the description of an already processed select
142   /// instruction, so its corresponding cmp can be matched to it.
143   static InstDesc isMinMaxPattern(Instruction *I, RecurKind Kind,
144                                   const InstDesc &Prev);
145 
146   /// Returns a struct describing whether the instruction is either a
147   ///   Select(ICmp(A, B), X, Y), or
148   ///   Select(FCmp(A, B), X, Y)
149   /// where one of (X, Y) is a loop invariant integer and the other is a PHI
150   /// value. \p Prev specifies the description of an already processed select
151   /// instruction, so its corresponding cmp can be matched to it.
152   static InstDesc isSelectCmpPattern(Loop *Loop, PHINode *OrigPhi,
153                                      Instruction *I, InstDesc &Prev);
154 
155   /// Returns a struct describing if the instruction is a
156   /// Select(FCmp(X, Y), (Z = X op PHINode), PHINode) instruction pattern.
157   static InstDesc isConditionalRdxPattern(RecurKind Kind, Instruction *I);
158 
159   /// Returns identity corresponding to the RecurrenceKind.
160   Value *getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF) const;
161 
162   /// Returns the opcode corresponding to the RecurrenceKind.
163   static unsigned getOpcode(RecurKind Kind);
164 
165   /// Returns true if Phi is a reduction of type Kind and adds it to the
166   /// RecurrenceDescriptor. If either \p DB is non-null or \p AC and \p DT are
167   /// non-null, the minimal bit width needed to compute the reduction will be
168   /// computed.
169   static bool
170   AddReductionVar(PHINode *Phi, RecurKind Kind, Loop *TheLoop,
171                   FastMathFlags FuncFMF, RecurrenceDescriptor &RedDes,
172                   DemandedBits *DB = nullptr, AssumptionCache *AC = nullptr,
173                   DominatorTree *DT = nullptr, ScalarEvolution *SE = nullptr);
174 
175   /// Returns true if Phi is a reduction in TheLoop. The RecurrenceDescriptor
176   /// is returned in RedDes. If either \p DB is non-null or \p AC and \p DT are
177   /// non-null, the minimal bit width needed to compute the reduction will be
178   /// computed. If \p SE is non-null, store instructions to loop invariant
179   /// addresses are processed.
180   static bool
181   isReductionPHI(PHINode *Phi, Loop *TheLoop, RecurrenceDescriptor &RedDes,
182                  DemandedBits *DB = nullptr, AssumptionCache *AC = nullptr,
183                  DominatorTree *DT = nullptr, ScalarEvolution *SE = nullptr);
184 
185   /// Returns true if Phi is a fixed-order recurrence. A fixed-order recurrence
186   /// is a non-reduction recurrence relation in which the value of the
187   /// recurrence in the current loop iteration equals a value defined in a
188   /// previous iteration (e.g. if the value is defined in the previous
189   /// iteration, we refer to it as first-order recurrence, if it is defined in
190   /// the iteration before the previous, we refer to it as second-order
191   /// recurrence and so on). Note that this function optimistically assumes that
192   /// uses of the recurrence can be re-ordered if necessary and users need to
193   /// check and perform the re-ordering.
194   static bool isFixedOrderRecurrence(PHINode *Phi, Loop *TheLoop,
195                                      DominatorTree *DT);
196 
197   RecurKind getRecurrenceKind() const { return Kind; }
198 
199   unsigned getOpcode() const { return getOpcode(getRecurrenceKind()); }
200 
201   FastMathFlags getFastMathFlags() const { return FMF; }
202 
203   TrackingVH<Value> getRecurrenceStartValue() const { return StartValue; }
204 
205   Instruction *getLoopExitInstr() const { return LoopExitInstr; }
206 
207   /// Returns true if the recurrence has floating-point math that requires
208   /// precise (ordered) operations.
209   bool hasExactFPMath() const { return ExactFPMathInst != nullptr; }
210 
211   /// Returns 1st non-reassociative FP instruction in the PHI node's use-chain.
212   Instruction *getExactFPMathInst() const { return ExactFPMathInst; }
213 
214   /// Returns true if the recurrence kind is an integer kind.
215   static bool isIntegerRecurrenceKind(RecurKind Kind);
216 
217   /// Returns true if the recurrence kind is a floating point kind.
218   static bool isFloatingPointRecurrenceKind(RecurKind Kind);
219 
220   /// Returns true if the recurrence kind is an integer min/max kind.
221   static bool isIntMinMaxRecurrenceKind(RecurKind Kind) {
222     return Kind == RecurKind::UMin || Kind == RecurKind::UMax ||
223            Kind == RecurKind::SMin || Kind == RecurKind::SMax;
224   }
225 
226   /// Returns true if the recurrence kind is a floating-point min/max kind.
227   static bool isFPMinMaxRecurrenceKind(RecurKind Kind) {
228     return Kind == RecurKind::FMin || Kind == RecurKind::FMax ||
229            Kind == RecurKind::FMinimum || Kind == RecurKind::FMaximum;
230   }
231 
232   /// Returns true if the recurrence kind is any min/max kind.
233   static bool isMinMaxRecurrenceKind(RecurKind Kind) {
234     return isIntMinMaxRecurrenceKind(Kind) || isFPMinMaxRecurrenceKind(Kind);
235   }
236 
237   /// Returns true if the recurrence kind is of the form
238   ///   select(cmp(),x,y) where one of (x,y) is loop invariant.
239   static bool isSelectCmpRecurrenceKind(RecurKind Kind) {
240     return Kind == RecurKind::SelectICmp || Kind == RecurKind::SelectFCmp;
241   }
242 
243   /// Returns the type of the recurrence. This type can be narrower than the
244   /// actual type of the Phi if the recurrence has been type-promoted.
245   Type *getRecurrenceType() const { return RecurrenceType; }
246 
247   /// Returns a reference to the instructions used for type-promoting the
248   /// recurrence.
249   const SmallPtrSet<Instruction *, 8> &getCastInsts() const { return CastInsts; }
250 
251   /// Returns the minimum width used by the recurrence in bits.
252   unsigned getMinWidthCastToRecurrenceTypeInBits() const {
253     return MinWidthCastToRecurrenceType;
254   }
255 
256   /// Returns true if all source operands of the recurrence are SExtInsts.
257   bool isSigned() const { return IsSigned; }
258 
259   /// Expose an ordered FP reduction to the instance users.
260   bool isOrdered() const { return IsOrdered; }
261 
262   /// Attempts to find a chain of operations from Phi to LoopExitInst that can
263   /// be treated as a set of reductions instructions for in-loop reductions.
264   SmallVector<Instruction *, 4> getReductionOpChain(PHINode *Phi,
265                                                     Loop *L) const;
266 
267   /// Returns true if the instruction is a call to the llvm.fmuladd intrinsic.
268   static bool isFMulAddIntrinsic(Instruction *I) {
269     return isa<IntrinsicInst>(I) &&
270            cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fmuladd;
271   }
272 
273   /// Reductions may store temporary or final result to an invariant address.
274   /// If there is such a store in the loop then, after successfull run of
275   /// AddReductionVar method, this field will be assigned the last met store.
276   StoreInst *IntermediateStore = nullptr;
277 
278 private:
279   // The starting value of the recurrence.
280   // It does not have to be zero!
281   TrackingVH<Value> StartValue;
282   // The instruction who's value is used outside the loop.
283   Instruction *LoopExitInstr = nullptr;
284   // The kind of the recurrence.
285   RecurKind Kind = RecurKind::None;
286   // The fast-math flags on the recurrent instructions.  We propagate these
287   // fast-math flags into the vectorized FP instructions we generate.
288   FastMathFlags FMF;
289   // First instance of non-reassociative floating-point in the PHI's use-chain.
290   Instruction *ExactFPMathInst = nullptr;
291   // The type of the recurrence.
292   Type *RecurrenceType = nullptr;
293   // True if all source operands of the recurrence are SExtInsts.
294   bool IsSigned = false;
295   // True if this recurrence can be treated as an in-order reduction.
296   // Currently only a non-reassociative FAdd can be considered in-order,
297   // if it is also the only FAdd in the PHI's use chain.
298   bool IsOrdered = false;
299   // Instructions used for type-promoting the recurrence.
300   SmallPtrSet<Instruction *, 8> CastInsts;
301   // The minimum width used by the recurrence.
302   unsigned MinWidthCastToRecurrenceType;
303 };
304 
305 /// A struct for saving information about induction variables.
306 class InductionDescriptor {
307 public:
308   /// This enum represents the kinds of inductions that we support.
309   enum InductionKind {
310     IK_NoInduction,  ///< Not an induction variable.
311     IK_IntInduction, ///< Integer induction variable. Step = C.
312     IK_PtrInduction, ///< Pointer induction var. Step = C.
313     IK_FpInduction   ///< Floating point induction variable.
314   };
315 
316 public:
317   /// Default constructor - creates an invalid induction.
318   InductionDescriptor() = default;
319 
320   Value *getStartValue() const { return StartValue; }
321   InductionKind getKind() const { return IK; }
322   const SCEV *getStep() const { return Step; }
323   BinaryOperator *getInductionBinOp() const { return InductionBinOp; }
324   ConstantInt *getConstIntStepValue() const;
325 
326   /// Returns true if \p Phi is an induction in the loop \p L. If \p Phi is an
327   /// induction, the induction descriptor \p D will contain the data describing
328   /// this induction. Since Induction Phis can only be present inside loop
329   /// headers, the function will assert if it is passed a Phi whose parent is
330   /// not the loop header. If by some other means the caller has a better SCEV
331   /// expression for \p Phi than the one returned by the ScalarEvolution
332   /// analysis, it can be passed through \p Expr. If the def-use chain
333   /// associated with the phi includes casts (that we know we can ignore
334   /// under proper runtime checks), they are passed through \p CastsToIgnore.
335   static bool
336   isInductionPHI(PHINode *Phi, const Loop *L, ScalarEvolution *SE,
337                  InductionDescriptor &D, const SCEV *Expr = nullptr,
338                  SmallVectorImpl<Instruction *> *CastsToIgnore = nullptr);
339 
340   /// Returns true if \p Phi is a floating point induction in the loop \p L.
341   /// If \p Phi is an induction, the induction descriptor \p D will contain
342   /// the data describing this induction.
343   static bool isFPInductionPHI(PHINode *Phi, const Loop *L, ScalarEvolution *SE,
344                                InductionDescriptor &D);
345 
346   /// Returns true if \p Phi is a loop \p L induction, in the context associated
347   /// with the run-time predicate of PSE. If \p Assume is true, this can add
348   /// further SCEV predicates to \p PSE in order to prove that \p Phi is an
349   /// induction.
350   /// If \p Phi is an induction, \p D will contain the data describing this
351   /// induction.
352   static bool isInductionPHI(PHINode *Phi, const Loop *L,
353                              PredicatedScalarEvolution &PSE,
354                              InductionDescriptor &D, bool Assume = false);
355 
356   /// Returns floating-point induction operator that does not allow
357   /// reassociation (transforming the induction requires an override of normal
358   /// floating-point rules).
359   Instruction *getExactFPMathInst() {
360     if (IK == IK_FpInduction && InductionBinOp &&
361         !InductionBinOp->hasAllowReassoc())
362       return InductionBinOp;
363     return nullptr;
364   }
365 
366   /// Returns binary opcode of the induction operator.
367   Instruction::BinaryOps getInductionOpcode() const {
368     return InductionBinOp ? InductionBinOp->getOpcode()
369                           : Instruction::BinaryOpsEnd;
370   }
371 
372   /// Returns a reference to the type cast instructions in the induction
373   /// update chain, that are redundant when guarded with a runtime
374   /// SCEV overflow check.
375   const SmallVectorImpl<Instruction *> &getCastInsts() const {
376     return RedundantCasts;
377   }
378 
379 private:
380   /// Private constructor - used by \c isInductionPHI.
381   InductionDescriptor(Value *Start, InductionKind K, const SCEV *Step,
382                       BinaryOperator *InductionBinOp = nullptr,
383                       SmallVectorImpl<Instruction *> *Casts = nullptr);
384 
385   /// Start value.
386   TrackingVH<Value> StartValue;
387   /// Induction kind.
388   InductionKind IK = IK_NoInduction;
389   /// Step value.
390   const SCEV *Step = nullptr;
391   // Instruction that advances induction variable.
392   BinaryOperator *InductionBinOp = nullptr;
393   // Instructions used for type-casts of the induction variable,
394   // that are redundant when guarded with a runtime SCEV overflow check.
395   SmallVector<Instruction *, 2> RedundantCasts;
396 };
397 
398 } // end namespace llvm
399 
400 #endif // LLVM_ANALYSIS_IVDESCRIPTORS_H
401