1 //===- LazyCallGraph.h - Analysis of a Module's call graph ------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// Implements a lazy call graph analysis and related passes for the new pass
11 /// manager.
12 ///
13 /// NB: This is *not* a traditional call graph! It is a graph which models both
14 /// the current calls and potential calls. As a consequence there are many
15 /// edges in this call graph that do not correspond to a 'call' or 'invoke'
16 /// instruction.
17 ///
18 /// The primary use cases of this graph analysis is to facilitate iterating
19 /// across the functions of a module in ways that ensure all callees are
20 /// visited prior to a caller (given any SCC constraints), or vice versa. As
21 /// such is it particularly well suited to organizing CGSCC optimizations such
22 /// as inlining, outlining, argument promotion, etc. That is its primary use
23 /// case and motivates the design. It may not be appropriate for other
24 /// purposes. The use graph of functions or some other conservative analysis of
25 /// call instructions may be interesting for optimizations and subsequent
26 /// analyses which don't work in the context of an overly specified
27 /// potential-call-edge graph.
28 ///
29 /// To understand the specific rules and nature of this call graph analysis,
30 /// see the documentation of the \c LazyCallGraph below.
31 ///
32 //===----------------------------------------------------------------------===//
33 
34 #ifndef LLVM_ANALYSIS_LAZYCALLGRAPH_H
35 #define LLVM_ANALYSIS_LAZYCALLGRAPH_H
36 
37 #include "llvm/ADT/ArrayRef.h"
38 #include "llvm/ADT/DenseMap.h"
39 #include "llvm/ADT/Optional.h"
40 #include "llvm/ADT/PointerIntPair.h"
41 #include "llvm/ADT/STLExtras.h"
42 #include "llvm/ADT/SetVector.h"
43 #include "llvm/ADT/SmallPtrSet.h"
44 #include "llvm/ADT/SmallVector.h"
45 #include "llvm/ADT/StringRef.h"
46 #include "llvm/ADT/iterator.h"
47 #include "llvm/ADT/iterator_range.h"
48 #include "llvm/Analysis/TargetLibraryInfo.h"
49 #include "llvm/IR/Constant.h"
50 #include "llvm/IR/Constants.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/PassManager.h"
53 #include "llvm/Support/Allocator.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include <cassert>
57 #include <iterator>
58 #include <string>
59 #include <utility>
60 
61 namespace llvm {
62 
63 template <class GraphType> struct GraphTraits;
64 class Module;
65 class Value;
66 
67 /// A lazily constructed view of the call graph of a module.
68 ///
69 /// With the edges of this graph, the motivating constraint that we are
70 /// attempting to maintain is that function-local optimization, CGSCC-local
71 /// optimizations, and optimizations transforming a pair of functions connected
72 /// by an edge in the graph, do not invalidate a bottom-up traversal of the SCC
73 /// DAG. That is, no optimizations will delete, remove, or add an edge such
74 /// that functions already visited in a bottom-up order of the SCC DAG are no
75 /// longer valid to have visited, or such that functions not yet visited in
76 /// a bottom-up order of the SCC DAG are not required to have already been
77 /// visited.
78 ///
79 /// Within this constraint, the desire is to minimize the merge points of the
80 /// SCC DAG. The greater the fanout of the SCC DAG and the fewer merge points
81 /// in the SCC DAG, the more independence there is in optimizing within it.
82 /// There is a strong desire to enable parallelization of optimizations over
83 /// the call graph, and both limited fanout and merge points will (artificially
84 /// in some cases) limit the scaling of such an effort.
85 ///
86 /// To this end, graph represents both direct and any potential resolution to
87 /// an indirect call edge. Another way to think about it is that it represents
88 /// both the direct call edges and any direct call edges that might be formed
89 /// through static optimizations. Specifically, it considers taking the address
90 /// of a function to be an edge in the call graph because this might be
91 /// forwarded to become a direct call by some subsequent function-local
92 /// optimization. The result is that the graph closely follows the use-def
93 /// edges for functions. Walking "up" the graph can be done by looking at all
94 /// of the uses of a function.
95 ///
96 /// The roots of the call graph are the external functions and functions
97 /// escaped into global variables. Those functions can be called from outside
98 /// of the module or via unknowable means in the IR -- we may not be able to
99 /// form even a potential call edge from a function body which may dynamically
100 /// load the function and call it.
101 ///
102 /// This analysis still requires updates to remain valid after optimizations
103 /// which could potentially change the set of potential callees. The
104 /// constraints it operates under only make the traversal order remain valid.
105 ///
106 /// The entire analysis must be re-computed if full interprocedural
107 /// optimizations run at any point. For example, globalopt completely
108 /// invalidates the information in this analysis.
109 ///
110 /// FIXME: This class is named LazyCallGraph in a lame attempt to distinguish
111 /// it from the existing CallGraph. At some point, it is expected that this
112 /// will be the only call graph and it will be renamed accordingly.
113 class LazyCallGraph {
114 public:
115   class Node;
116   class EdgeSequence;
117   class SCC;
118   class RefSCC;
119 
120   /// A class used to represent edges in the call graph.
121   ///
122   /// The lazy call graph models both *call* edges and *reference* edges. Call
123   /// edges are much what you would expect, and exist when there is a 'call' or
124   /// 'invoke' instruction of some function. Reference edges are also tracked
125   /// along side these, and exist whenever any instruction (transitively
126   /// through its operands) references a function. All call edges are
127   /// inherently reference edges, and so the reference graph forms a superset
128   /// of the formal call graph.
129   ///
130   /// All of these forms of edges are fundamentally represented as outgoing
131   /// edges. The edges are stored in the source node and point at the target
132   /// node. This allows the edge structure itself to be a very compact data
133   /// structure: essentially a tagged pointer.
134   class Edge {
135   public:
136     /// The kind of edge in the graph.
137     enum Kind : bool { Ref = false, Call = true };
138 
139     Edge();
140     explicit Edge(Node &N, Kind K);
141 
142     /// Test whether the edge is null.
143     ///
144     /// This happens when an edge has been deleted. We leave the edge objects
145     /// around but clear them.
146     explicit operator bool() const;
147 
148     /// Returnss the \c Kind of the edge.
149     Kind getKind() const;
150 
151     /// Test whether the edge represents a direct call to a function.
152     ///
153     /// This requires that the edge is not null.
154     bool isCall() const;
155 
156     /// Get the call graph node referenced by this edge.
157     ///
158     /// This requires that the edge is not null.
159     Node &getNode() const;
160 
161     /// Get the function referenced by this edge.
162     ///
163     /// This requires that the edge is not null.
164     Function &getFunction() const;
165 
166   private:
167     friend class LazyCallGraph::EdgeSequence;
168     friend class LazyCallGraph::RefSCC;
169 
170     PointerIntPair<Node *, 1, Kind> Value;
171 
172     void setKind(Kind K) { Value.setInt(K); }
173   };
174 
175   /// The edge sequence object.
176   ///
177   /// This typically exists entirely within the node but is exposed as
178   /// a separate type because a node doesn't initially have edges. An explicit
179   /// population step is required to produce this sequence at first and it is
180   /// then cached in the node. It is also used to represent edges entering the
181   /// graph from outside the module to model the graph's roots.
182   ///
183   /// The sequence itself both iterable and indexable. The indexes remain
184   /// stable even as the sequence mutates (including removal).
185   class EdgeSequence {
186     friend class LazyCallGraph;
187     friend class LazyCallGraph::Node;
188     friend class LazyCallGraph::RefSCC;
189 
190     using VectorT = SmallVector<Edge, 4>;
191     using VectorImplT = SmallVectorImpl<Edge>;
192 
193   public:
194     /// An iterator used for the edges to both entry nodes and child nodes.
195     class iterator
196         : public iterator_adaptor_base<iterator, VectorImplT::iterator,
197                                        std::forward_iterator_tag> {
198       friend class LazyCallGraph;
199       friend class LazyCallGraph::Node;
200 
201       VectorImplT::iterator E;
202 
203       // Build the iterator for a specific position in the edge list.
204       iterator(VectorImplT::iterator BaseI, VectorImplT::iterator E)
205           : iterator_adaptor_base(BaseI), E(E) {
206         while (I != E && !*I)
207           ++I;
208       }
209 
210     public:
211       iterator() = default;
212 
213       using iterator_adaptor_base::operator++;
214       iterator &operator++() {
215         do {
216           ++I;
217         } while (I != E && !*I);
218         return *this;
219       }
220     };
221 
222     /// An iterator over specifically call edges.
223     ///
224     /// This has the same iteration properties as the \c iterator, but
225     /// restricts itself to edges which represent actual calls.
226     class call_iterator
227         : public iterator_adaptor_base<call_iterator, VectorImplT::iterator,
228                                        std::forward_iterator_tag> {
229       friend class LazyCallGraph;
230       friend class LazyCallGraph::Node;
231 
232       VectorImplT::iterator E;
233 
234       /// Advance the iterator to the next valid, call edge.
235       void advanceToNextEdge() {
236         while (I != E && (!*I || !I->isCall()))
237           ++I;
238       }
239 
240       // Build the iterator for a specific position in the edge list.
241       call_iterator(VectorImplT::iterator BaseI, VectorImplT::iterator E)
242           : iterator_adaptor_base(BaseI), E(E) {
243         advanceToNextEdge();
244       }
245 
246     public:
247       call_iterator() = default;
248 
249       using iterator_adaptor_base::operator++;
250       call_iterator &operator++() {
251         ++I;
252         advanceToNextEdge();
253         return *this;
254       }
255     };
256 
257     iterator begin() { return iterator(Edges.begin(), Edges.end()); }
258     iterator end() { return iterator(Edges.end(), Edges.end()); }
259 
260     Edge &operator[](Node &N) {
261       assert(EdgeIndexMap.find(&N) != EdgeIndexMap.end() && "No such edge!");
262       auto &E = Edges[EdgeIndexMap.find(&N)->second];
263       assert(E && "Dead or null edge!");
264       return E;
265     }
266 
267     Edge *lookup(Node &N) {
268       auto EI = EdgeIndexMap.find(&N);
269       if (EI == EdgeIndexMap.end())
270         return nullptr;
271       auto &E = Edges[EI->second];
272       return E ? &E : nullptr;
273     }
274 
275     call_iterator call_begin() {
276       return call_iterator(Edges.begin(), Edges.end());
277     }
278     call_iterator call_end() { return call_iterator(Edges.end(), Edges.end()); }
279 
280     iterator_range<call_iterator> calls() {
281       return make_range(call_begin(), call_end());
282     }
283 
284     bool empty() {
285       for (auto &E : Edges)
286         if (E)
287           return false;
288 
289       return true;
290     }
291 
292   private:
293     VectorT Edges;
294     DenseMap<Node *, int> EdgeIndexMap;
295 
296     EdgeSequence() = default;
297 
298     /// Internal helper to insert an edge to a node.
299     void insertEdgeInternal(Node &ChildN, Edge::Kind EK);
300 
301     /// Internal helper to change an edge kind.
302     void setEdgeKind(Node &ChildN, Edge::Kind EK);
303 
304     /// Internal helper to remove the edge to the given function.
305     bool removeEdgeInternal(Node &ChildN);
306   };
307 
308   /// A node in the call graph.
309   ///
310   /// This represents a single node. It's primary roles are to cache the list of
311   /// callees, de-duplicate and provide fast testing of whether a function is
312   /// a callee, and facilitate iteration of child nodes in the graph.
313   ///
314   /// The node works much like an optional in order to lazily populate the
315   /// edges of each node. Until populated, there are no edges. Once populated,
316   /// you can access the edges by dereferencing the node or using the `->`
317   /// operator as if the node was an `Optional<EdgeSequence>`.
318   class Node {
319     friend class LazyCallGraph;
320     friend class LazyCallGraph::RefSCC;
321 
322   public:
323     LazyCallGraph &getGraph() const { return *G; }
324 
325     Function &getFunction() const { return *F; }
326 
327     StringRef getName() const { return F->getName(); }
328 
329     /// Equality is defined as address equality.
330     bool operator==(const Node &N) const { return this == &N; }
331     bool operator!=(const Node &N) const { return !operator==(N); }
332 
333     /// Tests whether the node has been populated with edges.
334     bool isPopulated() const { return Edges.hasValue(); }
335 
336     /// Tests whether this is actually a dead node and no longer valid.
337     ///
338     /// Users rarely interact with nodes in this state and other methods are
339     /// invalid. This is used to model a node in an edge list where the
340     /// function has been completely removed.
341     bool isDead() const {
342       assert(!G == !F &&
343              "Both graph and function pointers should be null or non-null.");
344       return !G;
345     }
346 
347     // We allow accessing the edges by dereferencing or using the arrow
348     // operator, essentially wrapping the internal optional.
349     EdgeSequence &operator*() const {
350       // Rip const off because the node itself isn't changing here.
351       return const_cast<EdgeSequence &>(*Edges);
352     }
353     EdgeSequence *operator->() const { return &**this; }
354 
355     /// Populate the edges of this node if necessary.
356     ///
357     /// The first time this is called it will populate the edges for this node
358     /// in the graph. It does this by scanning the underlying function, so once
359     /// this is done, any changes to that function must be explicitly reflected
360     /// in updates to the graph.
361     ///
362     /// \returns the populated \c EdgeSequence to simplify walking it.
363     ///
364     /// This will not update or re-scan anything if called repeatedly. Instead,
365     /// the edge sequence is cached and returned immediately on subsequent
366     /// calls.
367     EdgeSequence &populate() {
368       if (Edges)
369         return *Edges;
370 
371       return populateSlow();
372     }
373 
374   private:
375     LazyCallGraph *G;
376     Function *F;
377 
378     // We provide for the DFS numbering and Tarjan walk lowlink numbers to be
379     // stored directly within the node. These are both '-1' when nodes are part
380     // of an SCC (or RefSCC), or '0' when not yet reached in a DFS walk.
381     int DFSNumber = 0;
382     int LowLink = 0;
383 
384     Optional<EdgeSequence> Edges;
385 
386     /// Basic constructor implements the scanning of F into Edges and
387     /// EdgeIndexMap.
388     Node(LazyCallGraph &G, Function &F) : G(&G), F(&F) {}
389 
390     /// Implementation of the scan when populating.
391     EdgeSequence &populateSlow();
392 
393     /// Internal helper to directly replace the function with a new one.
394     ///
395     /// This is used to facilitate tranfsormations which need to replace the
396     /// formal Function object but directly move the body and users from one to
397     /// the other.
398     void replaceFunction(Function &NewF);
399 
400     void clear() { Edges.reset(); }
401 
402     /// Print the name of this node's function.
403     friend raw_ostream &operator<<(raw_ostream &OS, const Node &N) {
404       return OS << N.F->getName();
405     }
406 
407     /// Dump the name of this node's function to stderr.
408     void dump() const;
409   };
410 
411   /// An SCC of the call graph.
412   ///
413   /// This represents a Strongly Connected Component of the direct call graph
414   /// -- ignoring indirect calls and function references. It stores this as
415   /// a collection of call graph nodes. While the order of nodes in the SCC is
416   /// stable, it is not any particular order.
417   ///
418   /// The SCCs are nested within a \c RefSCC, see below for details about that
419   /// outer structure. SCCs do not support mutation of the call graph, that
420   /// must be done through the containing \c RefSCC in order to fully reason
421   /// about the ordering and connections of the graph.
422   class LLVM_EXTERNAL_VISIBILITY SCC {
423     friend class LazyCallGraph;
424     friend class LazyCallGraph::Node;
425 
426     RefSCC *OuterRefSCC;
427     SmallVector<Node *, 1> Nodes;
428 
429     template <typename NodeRangeT>
430     SCC(RefSCC &OuterRefSCC, NodeRangeT &&Nodes)
431         : OuterRefSCC(&OuterRefSCC), Nodes(std::forward<NodeRangeT>(Nodes)) {}
432 
433     void clear() {
434       OuterRefSCC = nullptr;
435       Nodes.clear();
436     }
437 
438     /// Print a short descrtiption useful for debugging or logging.
439     ///
440     /// We print the function names in the SCC wrapped in '()'s and skipping
441     /// the middle functions if there are a large number.
442     //
443     // Note: this is defined inline to dodge issues with GCC's interpretation
444     // of enclosing namespaces for friend function declarations.
445     friend raw_ostream &operator<<(raw_ostream &OS, const SCC &C) {
446       OS << '(';
447       int i = 0;
448       for (LazyCallGraph::Node &N : C) {
449         if (i > 0)
450           OS << ", ";
451         // Elide the inner elements if there are too many.
452         if (i > 8) {
453           OS << "..., " << *C.Nodes.back();
454           break;
455         }
456         OS << N;
457         ++i;
458       }
459       OS << ')';
460       return OS;
461     }
462 
463     /// Dump a short description of this SCC to stderr.
464     void dump() const;
465 
466 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS)
467     /// Verify invariants about the SCC.
468     ///
469     /// This will attempt to validate all of the basic invariants within an
470     /// SCC, but not that it is a strongly connected componet per-se. Primarily
471     /// useful while building and updating the graph to check that basic
472     /// properties are in place rather than having inexplicable crashes later.
473     void verify();
474 #endif
475 
476   public:
477     using iterator = pointee_iterator<SmallVectorImpl<Node *>::const_iterator>;
478 
479     iterator begin() const { return Nodes.begin(); }
480     iterator end() const { return Nodes.end(); }
481 
482     int size() const { return Nodes.size(); }
483 
484     RefSCC &getOuterRefSCC() const { return *OuterRefSCC; }
485 
486     /// Test if this SCC is a parent of \a C.
487     ///
488     /// Note that this is linear in the number of edges departing the current
489     /// SCC.
490     bool isParentOf(const SCC &C) const;
491 
492     /// Test if this SCC is an ancestor of \a C.
493     ///
494     /// Note that in the worst case this is linear in the number of edges
495     /// departing the current SCC and every SCC in the entire graph reachable
496     /// from this SCC. Thus this very well may walk every edge in the entire
497     /// call graph! Do not call this in a tight loop!
498     bool isAncestorOf(const SCC &C) const;
499 
500     /// Test if this SCC is a child of \a C.
501     ///
502     /// See the comments for \c isParentOf for detailed notes about the
503     /// complexity of this routine.
504     bool isChildOf(const SCC &C) const { return C.isParentOf(*this); }
505 
506     /// Test if this SCC is a descendant of \a C.
507     ///
508     /// See the comments for \c isParentOf for detailed notes about the
509     /// complexity of this routine.
510     bool isDescendantOf(const SCC &C) const { return C.isAncestorOf(*this); }
511 
512     /// Provide a short name by printing this SCC to a std::string.
513     ///
514     /// This copes with the fact that we don't have a name per-se for an SCC
515     /// while still making the use of this in debugging and logging useful.
516     std::string getName() const {
517       std::string Name;
518       raw_string_ostream OS(Name);
519       OS << *this;
520       OS.flush();
521       return Name;
522     }
523   };
524 
525   /// A RefSCC of the call graph.
526   ///
527   /// This models a Strongly Connected Component of function reference edges in
528   /// the call graph. As opposed to actual SCCs, these can be used to scope
529   /// subgraphs of the module which are independent from other subgraphs of the
530   /// module because they do not reference it in any way. This is also the unit
531   /// where we do mutation of the graph in order to restrict mutations to those
532   /// which don't violate this independence.
533   ///
534   /// A RefSCC contains a DAG of actual SCCs. All the nodes within the RefSCC
535   /// are necessarily within some actual SCC that nests within it. Since
536   /// a direct call *is* a reference, there will always be at least one RefSCC
537   /// around any SCC.
538   class RefSCC {
539     friend class LazyCallGraph;
540     friend class LazyCallGraph::Node;
541 
542     LazyCallGraph *G;
543 
544     /// A postorder list of the inner SCCs.
545     SmallVector<SCC *, 4> SCCs;
546 
547     /// A map from SCC to index in the postorder list.
548     SmallDenseMap<SCC *, int, 4> SCCIndices;
549 
550     /// Fast-path constructor. RefSCCs should instead be constructed by calling
551     /// formRefSCCFast on the graph itself.
552     RefSCC(LazyCallGraph &G);
553 
554     void clear() {
555       SCCs.clear();
556       SCCIndices.clear();
557     }
558 
559     /// Print a short description useful for debugging or logging.
560     ///
561     /// We print the SCCs wrapped in '[]'s and skipping the middle SCCs if
562     /// there are a large number.
563     //
564     // Note: this is defined inline to dodge issues with GCC's interpretation
565     // of enclosing namespaces for friend function declarations.
566     friend raw_ostream &operator<<(raw_ostream &OS, const RefSCC &RC) {
567       OS << '[';
568       int i = 0;
569       for (LazyCallGraph::SCC &C : RC) {
570         if (i > 0)
571           OS << ", ";
572         // Elide the inner elements if there are too many.
573         if (i > 4) {
574           OS << "..., " << *RC.SCCs.back();
575           break;
576         }
577         OS << C;
578         ++i;
579       }
580       OS << ']';
581       return OS;
582     }
583 
584     /// Dump a short description of this RefSCC to stderr.
585     void dump() const;
586 
587 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS)
588     /// Verify invariants about the RefSCC and all its SCCs.
589     ///
590     /// This will attempt to validate all of the invariants *within* the
591     /// RefSCC, but not that it is a strongly connected component of the larger
592     /// graph. This makes it useful even when partially through an update.
593     ///
594     /// Invariants checked:
595     /// - SCCs and their indices match.
596     /// - The SCCs list is in fact in post-order.
597     void verify();
598 #endif
599 
600   public:
601     using iterator = pointee_iterator<SmallVectorImpl<SCC *>::const_iterator>;
602     using range = iterator_range<iterator>;
603     using parent_iterator =
604         pointee_iterator<SmallPtrSetImpl<RefSCC *>::const_iterator>;
605 
606     iterator begin() const { return SCCs.begin(); }
607     iterator end() const { return SCCs.end(); }
608 
609     ssize_t size() const { return SCCs.size(); }
610 
611     SCC &operator[](int Idx) { return *SCCs[Idx]; }
612 
613     iterator find(SCC &C) const {
614       return SCCs.begin() + SCCIndices.find(&C)->second;
615     }
616 
617     /// Test if this RefSCC is a parent of \a RC.
618     ///
619     /// CAUTION: This method walks every edge in the \c RefSCC, it can be very
620     /// expensive.
621     bool isParentOf(const RefSCC &RC) const;
622 
623     /// Test if this RefSCC is an ancestor of \a RC.
624     ///
625     /// CAUTION: This method walks the directed graph of edges as far as
626     /// necessary to find a possible path to the argument. In the worst case
627     /// this may walk the entire graph and can be extremely expensive.
628     bool isAncestorOf(const RefSCC &RC) const;
629 
630     /// Test if this RefSCC is a child of \a RC.
631     ///
632     /// CAUTION: This method walks every edge in the argument \c RefSCC, it can
633     /// be very expensive.
634     bool isChildOf(const RefSCC &RC) const { return RC.isParentOf(*this); }
635 
636     /// Test if this RefSCC is a descendant of \a RC.
637     ///
638     /// CAUTION: This method walks the directed graph of edges as far as
639     /// necessary to find a possible path from the argument. In the worst case
640     /// this may walk the entire graph and can be extremely expensive.
641     bool isDescendantOf(const RefSCC &RC) const {
642       return RC.isAncestorOf(*this);
643     }
644 
645     /// Provide a short name by printing this RefSCC to a std::string.
646     ///
647     /// This copes with the fact that we don't have a name per-se for an RefSCC
648     /// while still making the use of this in debugging and logging useful.
649     std::string getName() const {
650       std::string Name;
651       raw_string_ostream OS(Name);
652       OS << *this;
653       OS.flush();
654       return Name;
655     }
656 
657     ///@{
658     /// \name Mutation API
659     ///
660     /// These methods provide the core API for updating the call graph in the
661     /// presence of (potentially still in-flight) DFS-found RefSCCs and SCCs.
662     ///
663     /// Note that these methods sometimes have complex runtimes, so be careful
664     /// how you call them.
665 
666     /// Make an existing internal ref edge into a call edge.
667     ///
668     /// This may form a larger cycle and thus collapse SCCs into TargetN's SCC.
669     /// If that happens, the optional callback \p MergedCB will be invoked (if
670     /// provided) on the SCCs being merged away prior to actually performing
671     /// the merge. Note that this will never include the target SCC as that
672     /// will be the SCC functions are merged into to resolve the cycle. Once
673     /// this function returns, these merged SCCs are not in a valid state but
674     /// the pointers will remain valid until destruction of the parent graph
675     /// instance for the purpose of clearing cached information. This function
676     /// also returns 'true' if a cycle was formed and some SCCs merged away as
677     /// a convenience.
678     ///
679     /// After this operation, both SourceN's SCC and TargetN's SCC may move
680     /// position within this RefSCC's postorder list. Any SCCs merged are
681     /// merged into the TargetN's SCC in order to preserve reachability analyses
682     /// which took place on that SCC.
683     bool switchInternalEdgeToCall(
684         Node &SourceN, Node &TargetN,
685         function_ref<void(ArrayRef<SCC *> MergedSCCs)> MergeCB = {});
686 
687     /// Make an existing internal call edge between separate SCCs into a ref
688     /// edge.
689     ///
690     /// If SourceN and TargetN in separate SCCs within this RefSCC, changing
691     /// the call edge between them to a ref edge is a trivial operation that
692     /// does not require any structural changes to the call graph.
693     void switchTrivialInternalEdgeToRef(Node &SourceN, Node &TargetN);
694 
695     /// Make an existing internal call edge within a single SCC into a ref
696     /// edge.
697     ///
698     /// Since SourceN and TargetN are part of a single SCC, this SCC may be
699     /// split up due to breaking a cycle in the call edges that formed it. If
700     /// that happens, then this routine will insert new SCCs into the postorder
701     /// list *before* the SCC of TargetN (previously the SCC of both). This
702     /// preserves postorder as the TargetN can reach all of the other nodes by
703     /// definition of previously being in a single SCC formed by the cycle from
704     /// SourceN to TargetN.
705     ///
706     /// The newly added SCCs are added *immediately* and contiguously
707     /// prior to the TargetN SCC and return the range covering the new SCCs in
708     /// the RefSCC's postorder sequence. You can directly iterate the returned
709     /// range to observe all of the new SCCs in postorder.
710     ///
711     /// Note that if SourceN and TargetN are in separate SCCs, the simpler
712     /// routine `switchTrivialInternalEdgeToRef` should be used instead.
713     iterator_range<iterator> switchInternalEdgeToRef(Node &SourceN,
714                                                      Node &TargetN);
715 
716     /// Make an existing outgoing ref edge into a call edge.
717     ///
718     /// Note that this is trivial as there are no cyclic impacts and there
719     /// remains a reference edge.
720     void switchOutgoingEdgeToCall(Node &SourceN, Node &TargetN);
721 
722     /// Make an existing outgoing call edge into a ref edge.
723     ///
724     /// This is trivial as there are no cyclic impacts and there remains
725     /// a reference edge.
726     void switchOutgoingEdgeToRef(Node &SourceN, Node &TargetN);
727 
728     /// Insert a ref edge from one node in this RefSCC to another in this
729     /// RefSCC.
730     ///
731     /// This is always a trivial operation as it doesn't change any part of the
732     /// graph structure besides connecting the two nodes.
733     ///
734     /// Note that we don't support directly inserting internal *call* edges
735     /// because that could change the graph structure and requires returning
736     /// information about what became invalid. As a consequence, the pattern
737     /// should be to first insert the necessary ref edge, and then to switch it
738     /// to a call edge if needed and handle any invalidation that results. See
739     /// the \c switchInternalEdgeToCall routine for details.
740     void insertInternalRefEdge(Node &SourceN, Node &TargetN);
741 
742     /// Insert an edge whose parent is in this RefSCC and child is in some
743     /// child RefSCC.
744     ///
745     /// There must be an existing path from the \p SourceN to the \p TargetN.
746     /// This operation is inexpensive and does not change the set of SCCs and
747     /// RefSCCs in the graph.
748     void insertOutgoingEdge(Node &SourceN, Node &TargetN, Edge::Kind EK);
749 
750     /// Insert an edge whose source is in a descendant RefSCC and target is in
751     /// this RefSCC.
752     ///
753     /// There must be an existing path from the target to the source in this
754     /// case.
755     ///
756     /// NB! This is has the potential to be a very expensive function. It
757     /// inherently forms a cycle in the prior RefSCC DAG and we have to merge
758     /// RefSCCs to resolve that cycle. But finding all of the RefSCCs which
759     /// participate in the cycle can in the worst case require traversing every
760     /// RefSCC in the graph. Every attempt is made to avoid that, but passes
761     /// must still exercise caution calling this routine repeatedly.
762     ///
763     /// Also note that this can only insert ref edges. In order to insert
764     /// a call edge, first insert a ref edge and then switch it to a call edge.
765     /// These are intentionally kept as separate interfaces because each step
766     /// of the operation invalidates a different set of data structures.
767     ///
768     /// This returns all the RefSCCs which were merged into the this RefSCC
769     /// (the target's). This allows callers to invalidate any cached
770     /// information.
771     ///
772     /// FIXME: We could possibly optimize this quite a bit for cases where the
773     /// caller and callee are very nearby in the graph. See comments in the
774     /// implementation for details, but that use case might impact users.
775     SmallVector<RefSCC *, 1> insertIncomingRefEdge(Node &SourceN,
776                                                    Node &TargetN);
777 
778     /// Remove an edge whose source is in this RefSCC and target is *not*.
779     ///
780     /// This removes an inter-RefSCC edge. All inter-RefSCC edges originating
781     /// from this SCC have been fully explored by any in-flight DFS graph
782     /// formation, so this is always safe to call once you have the source
783     /// RefSCC.
784     ///
785     /// This operation does not change the cyclic structure of the graph and so
786     /// is very inexpensive. It may change the connectivity graph of the SCCs
787     /// though, so be careful calling this while iterating over them.
788     void removeOutgoingEdge(Node &SourceN, Node &TargetN);
789 
790     /// Remove a list of ref edges which are entirely within this RefSCC.
791     ///
792     /// Both the \a SourceN and all of the \a TargetNs must be within this
793     /// RefSCC. Removing these edges may break cycles that form this RefSCC and
794     /// thus this operation may change the RefSCC graph significantly. In
795     /// particular, this operation will re-form new RefSCCs based on the
796     /// remaining connectivity of the graph. The following invariants are
797     /// guaranteed to hold after calling this method:
798     ///
799     /// 1) If a ref-cycle remains after removal, it leaves this RefSCC intact
800     ///    and in the graph. No new RefSCCs are built.
801     /// 2) Otherwise, this RefSCC will be dead after this call and no longer in
802     ///    the graph or the postorder traversal of the call graph. Any iterator
803     ///    pointing at this RefSCC will become invalid.
804     /// 3) All newly formed RefSCCs will be returned and the order of the
805     ///    RefSCCs returned will be a valid postorder traversal of the new
806     ///    RefSCCs.
807     /// 4) No RefSCC other than this RefSCC has its member set changed (this is
808     ///    inherent in the definition of removing such an edge).
809     ///
810     /// These invariants are very important to ensure that we can build
811     /// optimization pipelines on top of the CGSCC pass manager which
812     /// intelligently update the RefSCC graph without invalidating other parts
813     /// of the RefSCC graph.
814     ///
815     /// Note that we provide no routine to remove a *call* edge. Instead, you
816     /// must first switch it to a ref edge using \c switchInternalEdgeToRef.
817     /// This split API is intentional as each of these two steps can invalidate
818     /// a different aspect of the graph structure and needs to have the
819     /// invalidation handled independently.
820     ///
821     /// The runtime complexity of this method is, in the worst case, O(V+E)
822     /// where V is the number of nodes in this RefSCC and E is the number of
823     /// edges leaving the nodes in this RefSCC. Note that E includes both edges
824     /// within this RefSCC and edges from this RefSCC to child RefSCCs. Some
825     /// effort has been made to minimize the overhead of common cases such as
826     /// self-edges and edge removals which result in a spanning tree with no
827     /// more cycles.
828     SmallVector<RefSCC *, 1> removeInternalRefEdge(Node &SourceN,
829                                                    ArrayRef<Node *> TargetNs);
830 
831     /// A convenience wrapper around the above to handle trivial cases of
832     /// inserting a new call edge.
833     ///
834     /// This is trivial whenever the target is in the same SCC as the source or
835     /// the edge is an outgoing edge to some descendant SCC. In these cases
836     /// there is no change to the cyclic structure of SCCs or RefSCCs.
837     ///
838     /// To further make calling this convenient, it also handles inserting
839     /// already existing edges.
840     void insertTrivialCallEdge(Node &SourceN, Node &TargetN);
841 
842     /// A convenience wrapper around the above to handle trivial cases of
843     /// inserting a new ref edge.
844     ///
845     /// This is trivial whenever the target is in the same RefSCC as the source
846     /// or the edge is an outgoing edge to some descendant RefSCC. In these
847     /// cases there is no change to the cyclic structure of the RefSCCs.
848     ///
849     /// To further make calling this convenient, it also handles inserting
850     /// already existing edges.
851     void insertTrivialRefEdge(Node &SourceN, Node &TargetN);
852 
853     /// Directly replace a node's function with a new function.
854     ///
855     /// This should be used when moving the body and users of a function to
856     /// a new formal function object but not otherwise changing the call graph
857     /// structure in any way.
858     ///
859     /// It requires that the old function in the provided node have zero uses
860     /// and the new function must have calls and references to it establishing
861     /// an equivalent graph.
862     void replaceNodeFunction(Node &N, Function &NewF);
863 
864     ///@}
865   };
866 
867   /// A post-order depth-first RefSCC iterator over the call graph.
868   ///
869   /// This iterator walks the cached post-order sequence of RefSCCs. However,
870   /// it trades stability for flexibility. It is restricted to a forward
871   /// iterator but will survive mutations which insert new RefSCCs and continue
872   /// to point to the same RefSCC even if it moves in the post-order sequence.
873   class postorder_ref_scc_iterator
874       : public iterator_facade_base<postorder_ref_scc_iterator,
875                                     std::forward_iterator_tag, RefSCC> {
876     friend class LazyCallGraph;
877     friend class LazyCallGraph::Node;
878 
879     /// Nonce type to select the constructor for the end iterator.
880     struct IsAtEndT {};
881 
882     LazyCallGraph *G;
883     RefSCC *RC = nullptr;
884 
885     /// Build the begin iterator for a node.
886     postorder_ref_scc_iterator(LazyCallGraph &G) : G(&G), RC(getRC(G, 0)) {}
887 
888     /// Build the end iterator for a node. This is selected purely by overload.
889     postorder_ref_scc_iterator(LazyCallGraph &G, IsAtEndT /*Nonce*/) : G(&G) {}
890 
891     /// Get the post-order RefSCC at the given index of the postorder walk,
892     /// populating it if necessary.
893     static RefSCC *getRC(LazyCallGraph &G, int Index) {
894       if (Index == (int)G.PostOrderRefSCCs.size())
895         // We're at the end.
896         return nullptr;
897 
898       return G.PostOrderRefSCCs[Index];
899     }
900 
901   public:
902     bool operator==(const postorder_ref_scc_iterator &Arg) const {
903       return G == Arg.G && RC == Arg.RC;
904     }
905 
906     reference operator*() const { return *RC; }
907 
908     using iterator_facade_base::operator++;
909     postorder_ref_scc_iterator &operator++() {
910       assert(RC && "Cannot increment the end iterator!");
911       RC = getRC(*G, G->RefSCCIndices.find(RC)->second + 1);
912       return *this;
913     }
914   };
915 
916   /// Construct a graph for the given module.
917   ///
918   /// This sets up the graph and computes all of the entry points of the graph.
919   /// No function definitions are scanned until their nodes in the graph are
920   /// requested during traversal.
921   LazyCallGraph(Module &M,
922                 function_ref<TargetLibraryInfo &(Function &)> GetTLI);
923 
924   LazyCallGraph(LazyCallGraph &&G);
925   LazyCallGraph &operator=(LazyCallGraph &&RHS);
926 
927   bool invalidate(Module &, const PreservedAnalyses &PA,
928                   ModuleAnalysisManager::Invalidator &);
929 
930   EdgeSequence::iterator begin() { return EntryEdges.begin(); }
931   EdgeSequence::iterator end() { return EntryEdges.end(); }
932 
933   void buildRefSCCs();
934 
935   postorder_ref_scc_iterator postorder_ref_scc_begin() {
936     if (!EntryEdges.empty())
937       assert(!PostOrderRefSCCs.empty() &&
938              "Must form RefSCCs before iterating them!");
939     return postorder_ref_scc_iterator(*this);
940   }
941   postorder_ref_scc_iterator postorder_ref_scc_end() {
942     if (!EntryEdges.empty())
943       assert(!PostOrderRefSCCs.empty() &&
944              "Must form RefSCCs before iterating them!");
945     return postorder_ref_scc_iterator(*this,
946                                       postorder_ref_scc_iterator::IsAtEndT());
947   }
948 
949   iterator_range<postorder_ref_scc_iterator> postorder_ref_sccs() {
950     return make_range(postorder_ref_scc_begin(), postorder_ref_scc_end());
951   }
952 
953   /// Lookup a function in the graph which has already been scanned and added.
954   Node *lookup(const Function &F) const { return NodeMap.lookup(&F); }
955 
956   /// Lookup a function's SCC in the graph.
957   ///
958   /// \returns null if the function hasn't been assigned an SCC via the RefSCC
959   /// iterator walk.
960   SCC *lookupSCC(Node &N) const { return SCCMap.lookup(&N); }
961 
962   /// Lookup a function's RefSCC in the graph.
963   ///
964   /// \returns null if the function hasn't been assigned a RefSCC via the
965   /// RefSCC iterator walk.
966   RefSCC *lookupRefSCC(Node &N) const {
967     if (SCC *C = lookupSCC(N))
968       return &C->getOuterRefSCC();
969 
970     return nullptr;
971   }
972 
973   /// Get a graph node for a given function, scanning it to populate the graph
974   /// data as necessary.
975   Node &get(Function &F) {
976     Node *&N = NodeMap[&F];
977     if (N)
978       return *N;
979 
980     return insertInto(F, N);
981   }
982 
983   /// Get the sequence of known and defined library functions.
984   ///
985   /// These functions, because they are known to LLVM, can have calls
986   /// introduced out of thin air from arbitrary IR.
987   ArrayRef<Function *> getLibFunctions() const {
988     return LibFunctions.getArrayRef();
989   }
990 
991   /// Test whether a function is a known and defined library function tracked by
992   /// the call graph.
993   ///
994   /// Because these functions are known to LLVM they are specially modeled in
995   /// the call graph and even when all IR-level references have been removed
996   /// remain active and reachable.
997   bool isLibFunction(Function &F) const { return LibFunctions.count(&F); }
998 
999   ///@{
1000   /// \name Pre-SCC Mutation API
1001   ///
1002   /// These methods are only valid to call prior to forming any SCCs for this
1003   /// call graph. They can be used to update the core node-graph during
1004   /// a node-based inorder traversal that precedes any SCC-based traversal.
1005   ///
1006   /// Once you begin manipulating a call graph's SCCs, most mutation of the
1007   /// graph must be performed via a RefSCC method. There are some exceptions
1008   /// below.
1009 
1010   /// Update the call graph after inserting a new edge.
1011   void insertEdge(Node &SourceN, Node &TargetN, Edge::Kind EK);
1012 
1013   /// Update the call graph after inserting a new edge.
1014   void insertEdge(Function &Source, Function &Target, Edge::Kind EK) {
1015     return insertEdge(get(Source), get(Target), EK);
1016   }
1017 
1018   /// Update the call graph after deleting an edge.
1019   void removeEdge(Node &SourceN, Node &TargetN);
1020 
1021   /// Update the call graph after deleting an edge.
1022   void removeEdge(Function &Source, Function &Target) {
1023     return removeEdge(get(Source), get(Target));
1024   }
1025 
1026   ///@}
1027 
1028   ///@{
1029   /// \name General Mutation API
1030   ///
1031   /// There are a very limited set of mutations allowed on the graph as a whole
1032   /// once SCCs have started to be formed. These routines have strict contracts
1033   /// but may be called at any point.
1034 
1035   /// Remove a dead function from the call graph (typically to delete it).
1036   ///
1037   /// Note that the function must have an empty use list, and the call graph
1038   /// must be up-to-date prior to calling this. That means it is by itself in
1039   /// a maximal SCC which is by itself in a maximal RefSCC, etc. No structural
1040   /// changes result from calling this routine other than potentially removing
1041   /// entry points into the call graph.
1042   ///
1043   /// If SCC formation has begun, this function must not be part of the current
1044   /// DFS in order to call this safely. Typically, the function will have been
1045   /// fully visited by the DFS prior to calling this routine.
1046   void removeDeadFunction(Function &F);
1047 
1048   /// Add a new function split/outlined from an existing function.
1049   ///
1050   /// The new function may only reference other functions that the original
1051   /// function did.
1052   ///
1053   /// The original function must reference (either directly or indirectly) the
1054   /// new function.
1055   ///
1056   /// The new function may also reference the original function.
1057   /// It may end up in a parent SCC in the case that the original function's
1058   /// edge to the new function is a ref edge, and the edge back is a call edge.
1059   void addSplitFunction(Function &OriginalFunction, Function &NewFunction);
1060 
1061   /// Add new ref-recursive functions split/outlined from an existing function.
1062   ///
1063   /// The new functions may only reference other functions that the original
1064   /// function did. The new functions may reference (not call) the original
1065   /// function.
1066   ///
1067   /// The original function must reference (not call) all new functions.
1068   /// All new functions must reference (not call) each other.
1069   void addSplitRefRecursiveFunctions(Function &OriginalFunction,
1070                                      ArrayRef<Function *> NewFunctions);
1071 
1072   ///@}
1073 
1074   ///@{
1075   /// \name Static helpers for code doing updates to the call graph.
1076   ///
1077   /// These helpers are used to implement parts of the call graph but are also
1078   /// useful to code doing updates or otherwise wanting to walk the IR in the
1079   /// same patterns as when we build the call graph.
1080 
1081   /// Recursively visits the defined functions whose address is reachable from
1082   /// every constant in the \p Worklist.
1083   ///
1084   /// Doesn't recurse through any constants already in the \p Visited set, and
1085   /// updates that set with every constant visited.
1086   ///
1087   /// For each defined function, calls \p Callback with that function.
1088   template <typename CallbackT>
1089   static void visitReferences(SmallVectorImpl<Constant *> &Worklist,
1090                               SmallPtrSetImpl<Constant *> &Visited,
1091                               CallbackT Callback) {
1092     while (!Worklist.empty()) {
1093       Constant *C = Worklist.pop_back_val();
1094 
1095       if (Function *F = dyn_cast<Function>(C)) {
1096         if (!F->isDeclaration())
1097           Callback(*F);
1098         continue;
1099       }
1100 
1101       // blockaddresses are weird and don't participate in the call graph anyway,
1102       // skip them.
1103       if (isa<BlockAddress>(C))
1104         continue;
1105 
1106       for (Value *Op : C->operand_values())
1107         if (Visited.insert(cast<Constant>(Op)).second)
1108           Worklist.push_back(cast<Constant>(Op));
1109     }
1110   }
1111 
1112   ///@}
1113 
1114 private:
1115   using node_stack_iterator = SmallVectorImpl<Node *>::reverse_iterator;
1116   using node_stack_range = iterator_range<node_stack_iterator>;
1117 
1118   /// Allocator that holds all the call graph nodes.
1119   SpecificBumpPtrAllocator<Node> BPA;
1120 
1121   /// Maps function->node for fast lookup.
1122   DenseMap<const Function *, Node *> NodeMap;
1123 
1124   /// The entry edges into the graph.
1125   ///
1126   /// These edges are from "external" sources. Put another way, they
1127   /// escape at the module scope.
1128   EdgeSequence EntryEdges;
1129 
1130   /// Allocator that holds all the call graph SCCs.
1131   SpecificBumpPtrAllocator<SCC> SCCBPA;
1132 
1133   /// Maps Function -> SCC for fast lookup.
1134   DenseMap<Node *, SCC *> SCCMap;
1135 
1136   /// Allocator that holds all the call graph RefSCCs.
1137   SpecificBumpPtrAllocator<RefSCC> RefSCCBPA;
1138 
1139   /// The post-order sequence of RefSCCs.
1140   ///
1141   /// This list is lazily formed the first time we walk the graph.
1142   SmallVector<RefSCC *, 16> PostOrderRefSCCs;
1143 
1144   /// A map from RefSCC to the index for it in the postorder sequence of
1145   /// RefSCCs.
1146   DenseMap<RefSCC *, int> RefSCCIndices;
1147 
1148   /// Defined functions that are also known library functions which the
1149   /// optimizer can reason about and therefore might introduce calls to out of
1150   /// thin air.
1151   SmallSetVector<Function *, 4> LibFunctions;
1152 
1153   /// Helper to insert a new function, with an already looked-up entry in
1154   /// the NodeMap.
1155   Node &insertInto(Function &F, Node *&MappedN);
1156 
1157   /// Helper to initialize a new node created outside of creating SCCs and add
1158   /// it to the NodeMap if necessary. For example, useful when a function is
1159   /// split.
1160   Node &initNode(Function &F);
1161 
1162   /// Helper to update pointers back to the graph object during moves.
1163   void updateGraphPtrs();
1164 
1165   /// Allocates an SCC and constructs it using the graph allocator.
1166   ///
1167   /// The arguments are forwarded to the constructor.
1168   template <typename... Ts> SCC *createSCC(Ts &&... Args) {
1169     return new (SCCBPA.Allocate()) SCC(std::forward<Ts>(Args)...);
1170   }
1171 
1172   /// Allocates a RefSCC and constructs it using the graph allocator.
1173   ///
1174   /// The arguments are forwarded to the constructor.
1175   template <typename... Ts> RefSCC *createRefSCC(Ts &&... Args) {
1176     return new (RefSCCBPA.Allocate()) RefSCC(std::forward<Ts>(Args)...);
1177   }
1178 
1179   /// Common logic for building SCCs from a sequence of roots.
1180   ///
1181   /// This is a very generic implementation of the depth-first walk and SCC
1182   /// formation algorithm. It uses a generic sequence of roots and generic
1183   /// callbacks for each step. This is designed to be used to implement both
1184   /// the RefSCC formation and SCC formation with shared logic.
1185   ///
1186   /// Currently this is a relatively naive implementation of Tarjan's DFS
1187   /// algorithm to form the SCCs.
1188   ///
1189   /// FIXME: We should consider newer variants such as Nuutila.
1190   template <typename RootsT, typename GetBeginT, typename GetEndT,
1191             typename GetNodeT, typename FormSCCCallbackT>
1192   static void buildGenericSCCs(RootsT &&Roots, GetBeginT &&GetBegin,
1193                                GetEndT &&GetEnd, GetNodeT &&GetNode,
1194                                FormSCCCallbackT &&FormSCC);
1195 
1196   /// Build the SCCs for a RefSCC out of a list of nodes.
1197   void buildSCCs(RefSCC &RC, node_stack_range Nodes);
1198 
1199   /// Get the index of a RefSCC within the postorder traversal.
1200   ///
1201   /// Requires that this RefSCC is a valid one in the (perhaps partial)
1202   /// postorder traversed part of the graph.
1203   int getRefSCCIndex(RefSCC &RC) {
1204     auto IndexIt = RefSCCIndices.find(&RC);
1205     assert(IndexIt != RefSCCIndices.end() && "RefSCC doesn't have an index!");
1206     assert(PostOrderRefSCCs[IndexIt->second] == &RC &&
1207            "Index does not point back at RC!");
1208     return IndexIt->second;
1209   }
1210 };
1211 
1212 inline LazyCallGraph::Edge::Edge() : Value() {}
1213 inline LazyCallGraph::Edge::Edge(Node &N, Kind K) : Value(&N, K) {}
1214 
1215 inline LazyCallGraph::Edge::operator bool() const {
1216   return Value.getPointer() && !Value.getPointer()->isDead();
1217 }
1218 
1219 inline LazyCallGraph::Edge::Kind LazyCallGraph::Edge::getKind() const {
1220   assert(*this && "Queried a null edge!");
1221   return Value.getInt();
1222 }
1223 
1224 inline bool LazyCallGraph::Edge::isCall() const {
1225   assert(*this && "Queried a null edge!");
1226   return getKind() == Call;
1227 }
1228 
1229 inline LazyCallGraph::Node &LazyCallGraph::Edge::getNode() const {
1230   assert(*this && "Queried a null edge!");
1231   return *Value.getPointer();
1232 }
1233 
1234 inline Function &LazyCallGraph::Edge::getFunction() const {
1235   assert(*this && "Queried a null edge!");
1236   return getNode().getFunction();
1237 }
1238 
1239 // Provide GraphTraits specializations for call graphs.
1240 template <> struct GraphTraits<LazyCallGraph::Node *> {
1241   using NodeRef = LazyCallGraph::Node *;
1242   using ChildIteratorType = LazyCallGraph::EdgeSequence::iterator;
1243 
1244   static NodeRef getEntryNode(NodeRef N) { return N; }
1245   static ChildIteratorType child_begin(NodeRef N) { return (*N)->begin(); }
1246   static ChildIteratorType child_end(NodeRef N) { return (*N)->end(); }
1247 };
1248 template <> struct GraphTraits<LazyCallGraph *> {
1249   using NodeRef = LazyCallGraph::Node *;
1250   using ChildIteratorType = LazyCallGraph::EdgeSequence::iterator;
1251 
1252   static NodeRef getEntryNode(NodeRef N) { return N; }
1253   static ChildIteratorType child_begin(NodeRef N) { return (*N)->begin(); }
1254   static ChildIteratorType child_end(NodeRef N) { return (*N)->end(); }
1255 };
1256 
1257 /// An analysis pass which computes the call graph for a module.
1258 class LazyCallGraphAnalysis : public AnalysisInfoMixin<LazyCallGraphAnalysis> {
1259   friend AnalysisInfoMixin<LazyCallGraphAnalysis>;
1260 
1261   static AnalysisKey Key;
1262 
1263 public:
1264   /// Inform generic clients of the result type.
1265   using Result = LazyCallGraph;
1266 
1267   /// Compute the \c LazyCallGraph for the module \c M.
1268   ///
1269   /// This just builds the set of entry points to the call graph. The rest is
1270   /// built lazily as it is walked.
1271   LazyCallGraph run(Module &M, ModuleAnalysisManager &AM) {
1272     FunctionAnalysisManager &FAM =
1273         AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1274     auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
1275       return FAM.getResult<TargetLibraryAnalysis>(F);
1276     };
1277     return LazyCallGraph(M, GetTLI);
1278   }
1279 };
1280 
1281 /// A pass which prints the call graph to a \c raw_ostream.
1282 ///
1283 /// This is primarily useful for testing the analysis.
1284 class LazyCallGraphPrinterPass
1285     : public PassInfoMixin<LazyCallGraphPrinterPass> {
1286   raw_ostream &OS;
1287 
1288 public:
1289   explicit LazyCallGraphPrinterPass(raw_ostream &OS);
1290 
1291   PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
1292 };
1293 
1294 /// A pass which prints the call graph as a DOT file to a \c raw_ostream.
1295 ///
1296 /// This is primarily useful for visualization purposes.
1297 class LazyCallGraphDOTPrinterPass
1298     : public PassInfoMixin<LazyCallGraphDOTPrinterPass> {
1299   raw_ostream &OS;
1300 
1301 public:
1302   explicit LazyCallGraphDOTPrinterPass(raw_ostream &OS);
1303 
1304   PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
1305 };
1306 
1307 } // end namespace llvm
1308 
1309 #endif // LLVM_ANALYSIS_LAZYCALLGRAPH_H
1310