1 //===- LazyCallGraph.h - Analysis of a Module's call graph ------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// Implements a lazy call graph analysis and related passes for the new pass
11 /// manager.
12 ///
13 /// NB: This is *not* a traditional call graph! It is a graph which models both
14 /// the current calls and potential calls. As a consequence there are many
15 /// edges in this call graph that do not correspond to a 'call' or 'invoke'
16 /// instruction.
17 ///
18 /// The primary use cases of this graph analysis is to facilitate iterating
19 /// across the functions of a module in ways that ensure all callees are
20 /// visited prior to a caller (given any SCC constraints), or vice versa. As
21 /// such is it particularly well suited to organizing CGSCC optimizations such
22 /// as inlining, outlining, argument promotion, etc. That is its primary use
23 /// case and motivates the design. It may not be appropriate for other
24 /// purposes. The use graph of functions or some other conservative analysis of
25 /// call instructions may be interesting for optimizations and subsequent
26 /// analyses which don't work in the context of an overly specified
27 /// potential-call-edge graph.
28 ///
29 /// To understand the specific rules and nature of this call graph analysis,
30 /// see the documentation of the \c LazyCallGraph below.
31 ///
32 //===----------------------------------------------------------------------===//
33 
34 #ifndef LLVM_ANALYSIS_LAZYCALLGRAPH_H
35 #define LLVM_ANALYSIS_LAZYCALLGRAPH_H
36 
37 #include "llvm/ADT/ArrayRef.h"
38 #include "llvm/ADT/DenseMap.h"
39 #include "llvm/ADT/PointerIntPair.h"
40 #include "llvm/ADT/SetVector.h"
41 #include "llvm/ADT/SmallVector.h"
42 #include "llvm/ADT/StringRef.h"
43 #include "llvm/ADT/iterator.h"
44 #include "llvm/ADT/iterator_range.h"
45 #include "llvm/Analysis/TargetLibraryInfo.h"
46 #include "llvm/IR/PassManager.h"
47 #include "llvm/Support/Allocator.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include <cassert>
50 #include <iterator>
51 #include <optional>
52 #include <string>
53 #include <utility>
54 
55 namespace llvm {
56 
57 class Constant;
58 class Function;
59 template <class GraphType> struct GraphTraits;
60 class Module;
61 class TargetLibraryInfo;
62 class Value;
63 
64 /// A lazily constructed view of the call graph of a module.
65 ///
66 /// With the edges of this graph, the motivating constraint that we are
67 /// attempting to maintain is that function-local optimization, CGSCC-local
68 /// optimizations, and optimizations transforming a pair of functions connected
69 /// by an edge in the graph, do not invalidate a bottom-up traversal of the SCC
70 /// DAG. That is, no optimizations will delete, remove, or add an edge such
71 /// that functions already visited in a bottom-up order of the SCC DAG are no
72 /// longer valid to have visited, or such that functions not yet visited in
73 /// a bottom-up order of the SCC DAG are not required to have already been
74 /// visited.
75 ///
76 /// Within this constraint, the desire is to minimize the merge points of the
77 /// SCC DAG. The greater the fanout of the SCC DAG and the fewer merge points
78 /// in the SCC DAG, the more independence there is in optimizing within it.
79 /// There is a strong desire to enable parallelization of optimizations over
80 /// the call graph, and both limited fanout and merge points will (artificially
81 /// in some cases) limit the scaling of such an effort.
82 ///
83 /// To this end, graph represents both direct and any potential resolution to
84 /// an indirect call edge. Another way to think about it is that it represents
85 /// both the direct call edges and any direct call edges that might be formed
86 /// through static optimizations. Specifically, it considers taking the address
87 /// of a function to be an edge in the call graph because this might be
88 /// forwarded to become a direct call by some subsequent function-local
89 /// optimization. The result is that the graph closely follows the use-def
90 /// edges for functions. Walking "up" the graph can be done by looking at all
91 /// of the uses of a function.
92 ///
93 /// The roots of the call graph are the external functions and functions
94 /// escaped into global variables. Those functions can be called from outside
95 /// of the module or via unknowable means in the IR -- we may not be able to
96 /// form even a potential call edge from a function body which may dynamically
97 /// load the function and call it.
98 ///
99 /// This analysis still requires updates to remain valid after optimizations
100 /// which could potentially change the set of potential callees. The
101 /// constraints it operates under only make the traversal order remain valid.
102 ///
103 /// The entire analysis must be re-computed if full interprocedural
104 /// optimizations run at any point. For example, globalopt completely
105 /// invalidates the information in this analysis.
106 ///
107 /// FIXME: This class is named LazyCallGraph in a lame attempt to distinguish
108 /// it from the existing CallGraph. At some point, it is expected that this
109 /// will be the only call graph and it will be renamed accordingly.
110 class LazyCallGraph {
111 public:
112   class Node;
113   class EdgeSequence;
114   class SCC;
115   class RefSCC;
116 
117   /// A class used to represent edges in the call graph.
118   ///
119   /// The lazy call graph models both *call* edges and *reference* edges. Call
120   /// edges are much what you would expect, and exist when there is a 'call' or
121   /// 'invoke' instruction of some function. Reference edges are also tracked
122   /// along side these, and exist whenever any instruction (transitively
123   /// through its operands) references a function. All call edges are
124   /// inherently reference edges, and so the reference graph forms a superset
125   /// of the formal call graph.
126   ///
127   /// All of these forms of edges are fundamentally represented as outgoing
128   /// edges. The edges are stored in the source node and point at the target
129   /// node. This allows the edge structure itself to be a very compact data
130   /// structure: essentially a tagged pointer.
131   class Edge {
132   public:
133     /// The kind of edge in the graph.
134     enum Kind : bool { Ref = false, Call = true };
135 
136     Edge();
137     explicit Edge(Node &N, Kind K);
138 
139     /// Test whether the edge is null.
140     ///
141     /// This happens when an edge has been deleted. We leave the edge objects
142     /// around but clear them.
143     explicit operator bool() const;
144 
145     /// Returns the \c Kind of the edge.
146     Kind getKind() const;
147 
148     /// Test whether the edge represents a direct call to a function.
149     ///
150     /// This requires that the edge is not null.
151     bool isCall() const;
152 
153     /// Get the call graph node referenced by this edge.
154     ///
155     /// This requires that the edge is not null.
156     Node &getNode() const;
157 
158     /// Get the function referenced by this edge.
159     ///
160     /// This requires that the edge is not null.
161     Function &getFunction() const;
162 
163   private:
164     friend class LazyCallGraph::EdgeSequence;
165     friend class LazyCallGraph::RefSCC;
166 
167     PointerIntPair<Node *, 1, Kind> Value;
168 
169     void setKind(Kind K) { Value.setInt(K); }
170   };
171 
172   /// The edge sequence object.
173   ///
174   /// This typically exists entirely within the node but is exposed as
175   /// a separate type because a node doesn't initially have edges. An explicit
176   /// population step is required to produce this sequence at first and it is
177   /// then cached in the node. It is also used to represent edges entering the
178   /// graph from outside the module to model the graph's roots.
179   ///
180   /// The sequence itself both iterable and indexable. The indexes remain
181   /// stable even as the sequence mutates (including removal).
182   class EdgeSequence {
183     friend class LazyCallGraph;
184     friend class LazyCallGraph::Node;
185     friend class LazyCallGraph::RefSCC;
186 
187     using VectorT = SmallVector<Edge, 4>;
188     using VectorImplT = SmallVectorImpl<Edge>;
189 
190   public:
191     /// An iterator used for the edges to both entry nodes and child nodes.
192     class iterator
193         : public iterator_adaptor_base<iterator, VectorImplT::iterator,
194                                        std::forward_iterator_tag> {
195       friend class LazyCallGraph;
196       friend class LazyCallGraph::Node;
197 
198       VectorImplT::iterator E;
199 
200       // Build the iterator for a specific position in the edge list.
201       iterator(VectorImplT::iterator BaseI, VectorImplT::iterator E)
202           : iterator_adaptor_base(BaseI), E(E) {
203         while (I != E && !*I)
204           ++I;
205       }
206 
207     public:
208       iterator() = default;
209 
210       using iterator_adaptor_base::operator++;
211       iterator &operator++() {
212         do {
213           ++I;
214         } while (I != E && !*I);
215         return *this;
216       }
217     };
218 
219     /// An iterator over specifically call edges.
220     ///
221     /// This has the same iteration properties as the \c iterator, but
222     /// restricts itself to edges which represent actual calls.
223     class call_iterator
224         : public iterator_adaptor_base<call_iterator, VectorImplT::iterator,
225                                        std::forward_iterator_tag> {
226       friend class LazyCallGraph;
227       friend class LazyCallGraph::Node;
228 
229       VectorImplT::iterator E;
230 
231       /// Advance the iterator to the next valid, call edge.
232       void advanceToNextEdge() {
233         while (I != E && (!*I || !I->isCall()))
234           ++I;
235       }
236 
237       // Build the iterator for a specific position in the edge list.
238       call_iterator(VectorImplT::iterator BaseI, VectorImplT::iterator E)
239           : iterator_adaptor_base(BaseI), E(E) {
240         advanceToNextEdge();
241       }
242 
243     public:
244       call_iterator() = default;
245 
246       using iterator_adaptor_base::operator++;
247       call_iterator &operator++() {
248         ++I;
249         advanceToNextEdge();
250         return *this;
251       }
252     };
253 
254     iterator begin() { return iterator(Edges.begin(), Edges.end()); }
255     iterator end() { return iterator(Edges.end(), Edges.end()); }
256 
257     Edge &operator[](Node &N) {
258       assert(EdgeIndexMap.contains(&N) && "No such edge!");
259       auto &E = Edges[EdgeIndexMap.find(&N)->second];
260       assert(E && "Dead or null edge!");
261       return E;
262     }
263 
264     Edge *lookup(Node &N) {
265       auto EI = EdgeIndexMap.find(&N);
266       if (EI == EdgeIndexMap.end())
267         return nullptr;
268       auto &E = Edges[EI->second];
269       return E ? &E : nullptr;
270     }
271 
272     call_iterator call_begin() {
273       return call_iterator(Edges.begin(), Edges.end());
274     }
275     call_iterator call_end() { return call_iterator(Edges.end(), Edges.end()); }
276 
277     iterator_range<call_iterator> calls() {
278       return make_range(call_begin(), call_end());
279     }
280 
281     bool empty() {
282       for (auto &E : Edges)
283         if (E)
284           return false;
285 
286       return true;
287     }
288 
289   private:
290     VectorT Edges;
291     DenseMap<Node *, int> EdgeIndexMap;
292 
293     EdgeSequence() = default;
294 
295     /// Internal helper to insert an edge to a node.
296     void insertEdgeInternal(Node &ChildN, Edge::Kind EK);
297 
298     /// Internal helper to change an edge kind.
299     void setEdgeKind(Node &ChildN, Edge::Kind EK);
300 
301     /// Internal helper to remove the edge to the given function.
302     bool removeEdgeInternal(Node &ChildN);
303   };
304 
305   /// A node in the call graph.
306   ///
307   /// This represents a single node. Its primary roles are to cache the list of
308   /// callees, de-duplicate and provide fast testing of whether a function is a
309   /// callee, and facilitate iteration of child nodes in the graph.
310   ///
311   /// The node works much like an optional in order to lazily populate the
312   /// edges of each node. Until populated, there are no edges. Once populated,
313   /// you can access the edges by dereferencing the node or using the `->`
314   /// operator as if the node was an `std::optional<EdgeSequence>`.
315   class Node {
316     friend class LazyCallGraph;
317     friend class LazyCallGraph::RefSCC;
318 
319   public:
320     LazyCallGraph &getGraph() const { return *G; }
321 
322     Function &getFunction() const { return *F; }
323 
324     StringRef getName() const { return F->getName(); }
325 
326     /// Equality is defined as address equality.
327     bool operator==(const Node &N) const { return this == &N; }
328     bool operator!=(const Node &N) const { return !operator==(N); }
329 
330     /// Tests whether the node has been populated with edges.
331     bool isPopulated() const { return Edges.has_value(); }
332 
333     /// Tests whether this is actually a dead node and no longer valid.
334     ///
335     /// Users rarely interact with nodes in this state and other methods are
336     /// invalid. This is used to model a node in an edge list where the
337     /// function has been completely removed.
338     bool isDead() const {
339       assert(!G == !F &&
340              "Both graph and function pointers should be null or non-null.");
341       return !G;
342     }
343 
344     // We allow accessing the edges by dereferencing or using the arrow
345     // operator, essentially wrapping the internal optional.
346     EdgeSequence &operator*() const {
347       // Rip const off because the node itself isn't changing here.
348       return const_cast<EdgeSequence &>(*Edges);
349     }
350     EdgeSequence *operator->() const { return &**this; }
351 
352     /// Populate the edges of this node if necessary.
353     ///
354     /// The first time this is called it will populate the edges for this node
355     /// in the graph. It does this by scanning the underlying function, so once
356     /// this is done, any changes to that function must be explicitly reflected
357     /// in updates to the graph.
358     ///
359     /// \returns the populated \c EdgeSequence to simplify walking it.
360     ///
361     /// This will not update or re-scan anything if called repeatedly. Instead,
362     /// the edge sequence is cached and returned immediately on subsequent
363     /// calls.
364     EdgeSequence &populate() {
365       if (Edges)
366         return *Edges;
367 
368       return populateSlow();
369     }
370 
371   private:
372     LazyCallGraph *G;
373     Function *F;
374 
375     // We provide for the DFS numbering and Tarjan walk lowlink numbers to be
376     // stored directly within the node. These are both '-1' when nodes are part
377     // of an SCC (or RefSCC), or '0' when not yet reached in a DFS walk.
378     int DFSNumber = 0;
379     int LowLink = 0;
380 
381     std::optional<EdgeSequence> Edges;
382 
383     /// Basic constructor implements the scanning of F into Edges and
384     /// EdgeIndexMap.
385     Node(LazyCallGraph &G, Function &F) : G(&G), F(&F) {}
386 
387     /// Implementation of the scan when populating.
388     EdgeSequence &populateSlow();
389 
390     /// Internal helper to directly replace the function with a new one.
391     ///
392     /// This is used to facilitate transformations which need to replace the
393     /// formal Function object but directly move the body and users from one to
394     /// the other.
395     void replaceFunction(Function &NewF);
396 
397     void clear() { Edges.reset(); }
398 
399     /// Print the name of this node's function.
400     friend raw_ostream &operator<<(raw_ostream &OS, const Node &N) {
401       return OS << N.F->getName();
402     }
403 
404     /// Dump the name of this node's function to stderr.
405     void dump() const;
406   };
407 
408   /// An SCC of the call graph.
409   ///
410   /// This represents a Strongly Connected Component of the direct call graph
411   /// -- ignoring indirect calls and function references. It stores this as
412   /// a collection of call graph nodes. While the order of nodes in the SCC is
413   /// stable, it is not any particular order.
414   ///
415   /// The SCCs are nested within a \c RefSCC, see below for details about that
416   /// outer structure. SCCs do not support mutation of the call graph, that
417   /// must be done through the containing \c RefSCC in order to fully reason
418   /// about the ordering and connections of the graph.
419   class LLVM_EXTERNAL_VISIBILITY SCC {
420     friend class LazyCallGraph;
421     friend class LazyCallGraph::Node;
422 
423     RefSCC *OuterRefSCC;
424     SmallVector<Node *, 1> Nodes;
425 
426     template <typename NodeRangeT>
427     SCC(RefSCC &OuterRefSCC, NodeRangeT &&Nodes)
428         : OuterRefSCC(&OuterRefSCC), Nodes(std::forward<NodeRangeT>(Nodes)) {}
429 
430     void clear() {
431       OuterRefSCC = nullptr;
432       Nodes.clear();
433     }
434 
435     /// Print a short description useful for debugging or logging.
436     ///
437     /// We print the function names in the SCC wrapped in '()'s and skipping
438     /// the middle functions if there are a large number.
439     //
440     // Note: this is defined inline to dodge issues with GCC's interpretation
441     // of enclosing namespaces for friend function declarations.
442     friend raw_ostream &operator<<(raw_ostream &OS, const SCC &C) {
443       OS << '(';
444       int I = 0;
445       for (LazyCallGraph::Node &N : C) {
446         if (I > 0)
447           OS << ", ";
448         // Elide the inner elements if there are too many.
449         if (I > 8) {
450           OS << "..., " << *C.Nodes.back();
451           break;
452         }
453         OS << N;
454         ++I;
455       }
456       OS << ')';
457       return OS;
458     }
459 
460     /// Dump a short description of this SCC to stderr.
461     void dump() const;
462 
463 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS)
464     /// Verify invariants about the SCC.
465     ///
466     /// This will attempt to validate all of the basic invariants within an
467     /// SCC, but not that it is a strongly connected component per se.
468     /// Primarily useful while building and updating the graph to check that
469     /// basic properties are in place rather than having inexplicable crashes
470     /// later.
471     void verify();
472 #endif
473 
474   public:
475     using iterator = pointee_iterator<SmallVectorImpl<Node *>::const_iterator>;
476 
477     iterator begin() const { return Nodes.begin(); }
478     iterator end() const { return Nodes.end(); }
479 
480     int size() const { return Nodes.size(); }
481 
482     RefSCC &getOuterRefSCC() const { return *OuterRefSCC; }
483 
484     /// Test if this SCC is a parent of \a C.
485     ///
486     /// Note that this is linear in the number of edges departing the current
487     /// SCC.
488     bool isParentOf(const SCC &C) const;
489 
490     /// Test if this SCC is an ancestor of \a C.
491     ///
492     /// Note that in the worst case this is linear in the number of edges
493     /// departing the current SCC and every SCC in the entire graph reachable
494     /// from this SCC. Thus this very well may walk every edge in the entire
495     /// call graph! Do not call this in a tight loop!
496     bool isAncestorOf(const SCC &C) const;
497 
498     /// Test if this SCC is a child of \a C.
499     ///
500     /// See the comments for \c isParentOf for detailed notes about the
501     /// complexity of this routine.
502     bool isChildOf(const SCC &C) const { return C.isParentOf(*this); }
503 
504     /// Test if this SCC is a descendant of \a C.
505     ///
506     /// See the comments for \c isParentOf for detailed notes about the
507     /// complexity of this routine.
508     bool isDescendantOf(const SCC &C) const { return C.isAncestorOf(*this); }
509 
510     /// Provide a short name by printing this SCC to a std::string.
511     ///
512     /// This copes with the fact that we don't have a name per se for an SCC
513     /// while still making the use of this in debugging and logging useful.
514     std::string getName() const {
515       std::string Name;
516       raw_string_ostream OS(Name);
517       OS << *this;
518       OS.flush();
519       return Name;
520     }
521   };
522 
523   /// A RefSCC of the call graph.
524   ///
525   /// This models a Strongly Connected Component of function reference edges in
526   /// the call graph. As opposed to actual SCCs, these can be used to scope
527   /// subgraphs of the module which are independent from other subgraphs of the
528   /// module because they do not reference it in any way. This is also the unit
529   /// where we do mutation of the graph in order to restrict mutations to those
530   /// which don't violate this independence.
531   ///
532   /// A RefSCC contains a DAG of actual SCCs. All the nodes within the RefSCC
533   /// are necessarily within some actual SCC that nests within it. Since
534   /// a direct call *is* a reference, there will always be at least one RefSCC
535   /// around any SCC.
536   ///
537   /// Spurious ref edges, meaning ref edges that still exist in the call graph
538   /// even though the corresponding IR reference no longer exists, are allowed.
539   /// This is mostly to support argument promotion, which can modify a caller to
540   /// no longer pass a function. The only place that needs to specially handle
541   /// this is deleting a dead function/node, otherwise the dead ref edges are
542   /// automatically removed when visiting the function/node no longer containing
543   /// the ref edge.
544   class RefSCC {
545     friend class LazyCallGraph;
546     friend class LazyCallGraph::Node;
547 
548     LazyCallGraph *G;
549 
550     /// A postorder list of the inner SCCs.
551     SmallVector<SCC *, 4> SCCs;
552 
553     /// A map from SCC to index in the postorder list.
554     SmallDenseMap<SCC *, int, 4> SCCIndices;
555 
556     /// Fast-path constructor. RefSCCs should instead be constructed by calling
557     /// formRefSCCFast on the graph itself.
558     RefSCC(LazyCallGraph &G);
559 
560     void clear() {
561       SCCs.clear();
562       SCCIndices.clear();
563     }
564 
565     /// Print a short description useful for debugging or logging.
566     ///
567     /// We print the SCCs wrapped in '[]'s and skipping the middle SCCs if
568     /// there are a large number.
569     //
570     // Note: this is defined inline to dodge issues with GCC's interpretation
571     // of enclosing namespaces for friend function declarations.
572     friend raw_ostream &operator<<(raw_ostream &OS, const RefSCC &RC) {
573       OS << '[';
574       int I = 0;
575       for (LazyCallGraph::SCC &C : RC) {
576         if (I > 0)
577           OS << ", ";
578         // Elide the inner elements if there are too many.
579         if (I > 4) {
580           OS << "..., " << *RC.SCCs.back();
581           break;
582         }
583         OS << C;
584         ++I;
585       }
586       OS << ']';
587       return OS;
588     }
589 
590     /// Dump a short description of this RefSCC to stderr.
591     void dump() const;
592 
593 #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS)
594     /// Verify invariants about the RefSCC and all its SCCs.
595     ///
596     /// This will attempt to validate all of the invariants *within* the
597     /// RefSCC, but not that it is a strongly connected component of the larger
598     /// graph. This makes it useful even when partially through an update.
599     ///
600     /// Invariants checked:
601     /// - SCCs and their indices match.
602     /// - The SCCs list is in fact in post-order.
603     void verify();
604 #endif
605 
606   public:
607     using iterator = pointee_iterator<SmallVectorImpl<SCC *>::const_iterator>;
608     using range = iterator_range<iterator>;
609     using parent_iterator =
610         pointee_iterator<SmallPtrSetImpl<RefSCC *>::const_iterator>;
611 
612     iterator begin() const { return SCCs.begin(); }
613     iterator end() const { return SCCs.end(); }
614 
615     ssize_t size() const { return SCCs.size(); }
616 
617     SCC &operator[](int Idx) { return *SCCs[Idx]; }
618 
619     iterator find(SCC &C) const {
620       return SCCs.begin() + SCCIndices.find(&C)->second;
621     }
622 
623     /// Test if this RefSCC is a parent of \a RC.
624     ///
625     /// CAUTION: This method walks every edge in the \c RefSCC, it can be very
626     /// expensive.
627     bool isParentOf(const RefSCC &RC) const;
628 
629     /// Test if this RefSCC is an ancestor of \a RC.
630     ///
631     /// CAUTION: This method walks the directed graph of edges as far as
632     /// necessary to find a possible path to the argument. In the worst case
633     /// this may walk the entire graph and can be extremely expensive.
634     bool isAncestorOf(const RefSCC &RC) const;
635 
636     /// Test if this RefSCC is a child of \a RC.
637     ///
638     /// CAUTION: This method walks every edge in the argument \c RefSCC, it can
639     /// be very expensive.
640     bool isChildOf(const RefSCC &RC) const { return RC.isParentOf(*this); }
641 
642     /// Test if this RefSCC is a descendant of \a RC.
643     ///
644     /// CAUTION: This method walks the directed graph of edges as far as
645     /// necessary to find a possible path from the argument. In the worst case
646     /// this may walk the entire graph and can be extremely expensive.
647     bool isDescendantOf(const RefSCC &RC) const {
648       return RC.isAncestorOf(*this);
649     }
650 
651     /// Provide a short name by printing this RefSCC to a std::string.
652     ///
653     /// This copes with the fact that we don't have a name per se for an RefSCC
654     /// while still making the use of this in debugging and logging useful.
655     std::string getName() const {
656       std::string Name;
657       raw_string_ostream OS(Name);
658       OS << *this;
659       OS.flush();
660       return Name;
661     }
662 
663     ///@{
664     /// \name Mutation API
665     ///
666     /// These methods provide the core API for updating the call graph in the
667     /// presence of (potentially still in-flight) DFS-found RefSCCs and SCCs.
668     ///
669     /// Note that these methods sometimes have complex runtimes, so be careful
670     /// how you call them.
671 
672     /// Make an existing internal ref edge into a call edge.
673     ///
674     /// This may form a larger cycle and thus collapse SCCs into TargetN's SCC.
675     /// If that happens, the optional callback \p MergedCB will be invoked (if
676     /// provided) on the SCCs being merged away prior to actually performing
677     /// the merge. Note that this will never include the target SCC as that
678     /// will be the SCC functions are merged into to resolve the cycle. Once
679     /// this function returns, these merged SCCs are not in a valid state but
680     /// the pointers will remain valid until destruction of the parent graph
681     /// instance for the purpose of clearing cached information. This function
682     /// also returns 'true' if a cycle was formed and some SCCs merged away as
683     /// a convenience.
684     ///
685     /// After this operation, both SourceN's SCC and TargetN's SCC may move
686     /// position within this RefSCC's postorder list. Any SCCs merged are
687     /// merged into the TargetN's SCC in order to preserve reachability analyses
688     /// which took place on that SCC.
689     bool switchInternalEdgeToCall(
690         Node &SourceN, Node &TargetN,
691         function_ref<void(ArrayRef<SCC *> MergedSCCs)> MergeCB = {});
692 
693     /// Make an existing internal call edge between separate SCCs into a ref
694     /// edge.
695     ///
696     /// If SourceN and TargetN in separate SCCs within this RefSCC, changing
697     /// the call edge between them to a ref edge is a trivial operation that
698     /// does not require any structural changes to the call graph.
699     void switchTrivialInternalEdgeToRef(Node &SourceN, Node &TargetN);
700 
701     /// Make an existing internal call edge within a single SCC into a ref
702     /// edge.
703     ///
704     /// Since SourceN and TargetN are part of a single SCC, this SCC may be
705     /// split up due to breaking a cycle in the call edges that formed it. If
706     /// that happens, then this routine will insert new SCCs into the postorder
707     /// list *before* the SCC of TargetN (previously the SCC of both). This
708     /// preserves postorder as the TargetN can reach all of the other nodes by
709     /// definition of previously being in a single SCC formed by the cycle from
710     /// SourceN to TargetN.
711     ///
712     /// The newly added SCCs are added *immediately* and contiguously
713     /// prior to the TargetN SCC and return the range covering the new SCCs in
714     /// the RefSCC's postorder sequence. You can directly iterate the returned
715     /// range to observe all of the new SCCs in postorder.
716     ///
717     /// Note that if SourceN and TargetN are in separate SCCs, the simpler
718     /// routine `switchTrivialInternalEdgeToRef` should be used instead.
719     iterator_range<iterator> switchInternalEdgeToRef(Node &SourceN,
720                                                      Node &TargetN);
721 
722     /// Make an existing outgoing ref edge into a call edge.
723     ///
724     /// Note that this is trivial as there are no cyclic impacts and there
725     /// remains a reference edge.
726     void switchOutgoingEdgeToCall(Node &SourceN, Node &TargetN);
727 
728     /// Make an existing outgoing call edge into a ref edge.
729     ///
730     /// This is trivial as there are no cyclic impacts and there remains
731     /// a reference edge.
732     void switchOutgoingEdgeToRef(Node &SourceN, Node &TargetN);
733 
734     /// Insert a ref edge from one node in this RefSCC to another in this
735     /// RefSCC.
736     ///
737     /// This is always a trivial operation as it doesn't change any part of the
738     /// graph structure besides connecting the two nodes.
739     ///
740     /// Note that we don't support directly inserting internal *call* edges
741     /// because that could change the graph structure and requires returning
742     /// information about what became invalid. As a consequence, the pattern
743     /// should be to first insert the necessary ref edge, and then to switch it
744     /// to a call edge if needed and handle any invalidation that results. See
745     /// the \c switchInternalEdgeToCall routine for details.
746     void insertInternalRefEdge(Node &SourceN, Node &TargetN);
747 
748     /// Insert an edge whose parent is in this RefSCC and child is in some
749     /// child RefSCC.
750     ///
751     /// There must be an existing path from the \p SourceN to the \p TargetN.
752     /// This operation is inexpensive and does not change the set of SCCs and
753     /// RefSCCs in the graph.
754     void insertOutgoingEdge(Node &SourceN, Node &TargetN, Edge::Kind EK);
755 
756     /// Insert an edge whose source is in a descendant RefSCC and target is in
757     /// this RefSCC.
758     ///
759     /// There must be an existing path from the target to the source in this
760     /// case.
761     ///
762     /// NB! This is has the potential to be a very expensive function. It
763     /// inherently forms a cycle in the prior RefSCC DAG and we have to merge
764     /// RefSCCs to resolve that cycle. But finding all of the RefSCCs which
765     /// participate in the cycle can in the worst case require traversing every
766     /// RefSCC in the graph. Every attempt is made to avoid that, but passes
767     /// must still exercise caution calling this routine repeatedly.
768     ///
769     /// Also note that this can only insert ref edges. In order to insert
770     /// a call edge, first insert a ref edge and then switch it to a call edge.
771     /// These are intentionally kept as separate interfaces because each step
772     /// of the operation invalidates a different set of data structures.
773     ///
774     /// This returns all the RefSCCs which were merged into the this RefSCC
775     /// (the target's). This allows callers to invalidate any cached
776     /// information.
777     ///
778     /// FIXME: We could possibly optimize this quite a bit for cases where the
779     /// caller and callee are very nearby in the graph. See comments in the
780     /// implementation for details, but that use case might impact users.
781     SmallVector<RefSCC *, 1> insertIncomingRefEdge(Node &SourceN,
782                                                    Node &TargetN);
783 
784     /// Remove an edge whose source is in this RefSCC and target is *not*.
785     ///
786     /// This removes an inter-RefSCC edge. All inter-RefSCC edges originating
787     /// from this SCC have been fully explored by any in-flight DFS graph
788     /// formation, so this is always safe to call once you have the source
789     /// RefSCC.
790     ///
791     /// This operation does not change the cyclic structure of the graph and so
792     /// is very inexpensive. It may change the connectivity graph of the SCCs
793     /// though, so be careful calling this while iterating over them.
794     void removeOutgoingEdge(Node &SourceN, Node &TargetN);
795 
796     /// Remove a list of ref edges which are entirely within this RefSCC.
797     ///
798     /// Both the \a SourceN and all of the \a TargetNs must be within this
799     /// RefSCC. Removing these edges may break cycles that form this RefSCC and
800     /// thus this operation may change the RefSCC graph significantly. In
801     /// particular, this operation will re-form new RefSCCs based on the
802     /// remaining connectivity of the graph. The following invariants are
803     /// guaranteed to hold after calling this method:
804     ///
805     /// 1) If a ref-cycle remains after removal, it leaves this RefSCC intact
806     ///    and in the graph. No new RefSCCs are built.
807     /// 2) Otherwise, this RefSCC will be dead after this call and no longer in
808     ///    the graph or the postorder traversal of the call graph. Any iterator
809     ///    pointing at this RefSCC will become invalid.
810     /// 3) All newly formed RefSCCs will be returned and the order of the
811     ///    RefSCCs returned will be a valid postorder traversal of the new
812     ///    RefSCCs.
813     /// 4) No RefSCC other than this RefSCC has its member set changed (this is
814     ///    inherent in the definition of removing such an edge).
815     ///
816     /// These invariants are very important to ensure that we can build
817     /// optimization pipelines on top of the CGSCC pass manager which
818     /// intelligently update the RefSCC graph without invalidating other parts
819     /// of the RefSCC graph.
820     ///
821     /// Note that we provide no routine to remove a *call* edge. Instead, you
822     /// must first switch it to a ref edge using \c switchInternalEdgeToRef.
823     /// This split API is intentional as each of these two steps can invalidate
824     /// a different aspect of the graph structure and needs to have the
825     /// invalidation handled independently.
826     ///
827     /// The runtime complexity of this method is, in the worst case, O(V+E)
828     /// where V is the number of nodes in this RefSCC and E is the number of
829     /// edges leaving the nodes in this RefSCC. Note that E includes both edges
830     /// within this RefSCC and edges from this RefSCC to child RefSCCs. Some
831     /// effort has been made to minimize the overhead of common cases such as
832     /// self-edges and edge removals which result in a spanning tree with no
833     /// more cycles.
834     [[nodiscard]] SmallVector<RefSCC *, 1>
835     removeInternalRefEdge(Node &SourceN, ArrayRef<Node *> TargetNs);
836 
837     /// A convenience wrapper around the above to handle trivial cases of
838     /// inserting a new call edge.
839     ///
840     /// This is trivial whenever the target is in the same SCC as the source or
841     /// the edge is an outgoing edge to some descendant SCC. In these cases
842     /// there is no change to the cyclic structure of SCCs or RefSCCs.
843     ///
844     /// To further make calling this convenient, it also handles inserting
845     /// already existing edges.
846     void insertTrivialCallEdge(Node &SourceN, Node &TargetN);
847 
848     /// A convenience wrapper around the above to handle trivial cases of
849     /// inserting a new ref edge.
850     ///
851     /// This is trivial whenever the target is in the same RefSCC as the source
852     /// or the edge is an outgoing edge to some descendant RefSCC. In these
853     /// cases there is no change to the cyclic structure of the RefSCCs.
854     ///
855     /// To further make calling this convenient, it also handles inserting
856     /// already existing edges.
857     void insertTrivialRefEdge(Node &SourceN, Node &TargetN);
858 
859     /// Directly replace a node's function with a new function.
860     ///
861     /// This should be used when moving the body and users of a function to
862     /// a new formal function object but not otherwise changing the call graph
863     /// structure in any way.
864     ///
865     /// It requires that the old function in the provided node have zero uses
866     /// and the new function must have calls and references to it establishing
867     /// an equivalent graph.
868     void replaceNodeFunction(Node &N, Function &NewF);
869 
870     ///@}
871   };
872 
873   /// A post-order depth-first RefSCC iterator over the call graph.
874   ///
875   /// This iterator walks the cached post-order sequence of RefSCCs. However,
876   /// it trades stability for flexibility. It is restricted to a forward
877   /// iterator but will survive mutations which insert new RefSCCs and continue
878   /// to point to the same RefSCC even if it moves in the post-order sequence.
879   class postorder_ref_scc_iterator
880       : public iterator_facade_base<postorder_ref_scc_iterator,
881                                     std::forward_iterator_tag, RefSCC> {
882     friend class LazyCallGraph;
883     friend class LazyCallGraph::Node;
884 
885     /// Nonce type to select the constructor for the end iterator.
886     struct IsAtEndT {};
887 
888     LazyCallGraph *G;
889     RefSCC *RC = nullptr;
890 
891     /// Build the begin iterator for a node.
892     postorder_ref_scc_iterator(LazyCallGraph &G) : G(&G), RC(getRC(G, 0)) {
893       incrementUntilNonEmptyRefSCC();
894     }
895 
896     /// Build the end iterator for a node. This is selected purely by overload.
897     postorder_ref_scc_iterator(LazyCallGraph &G, IsAtEndT /*Nonce*/) : G(&G) {}
898 
899     /// Get the post-order RefSCC at the given index of the postorder walk,
900     /// populating it if necessary.
901     static RefSCC *getRC(LazyCallGraph &G, int Index) {
902       if (Index == (int)G.PostOrderRefSCCs.size())
903         // We're at the end.
904         return nullptr;
905 
906       return G.PostOrderRefSCCs[Index];
907     }
908 
909     // Keep incrementing until RC is non-empty (or null).
910     void incrementUntilNonEmptyRefSCC() {
911       while (RC && RC->size() == 0)
912         increment();
913     }
914 
915     void increment() {
916       assert(RC && "Cannot increment the end iterator!");
917       RC = getRC(*G, G->RefSCCIndices.find(RC)->second + 1);
918     }
919 
920   public:
921     bool operator==(const postorder_ref_scc_iterator &Arg) const {
922       return G == Arg.G && RC == Arg.RC;
923     }
924 
925     reference operator*() const { return *RC; }
926 
927     using iterator_facade_base::operator++;
928     postorder_ref_scc_iterator &operator++() {
929       increment();
930       incrementUntilNonEmptyRefSCC();
931       return *this;
932     }
933   };
934 
935   /// Construct a graph for the given module.
936   ///
937   /// This sets up the graph and computes all of the entry points of the graph.
938   /// No function definitions are scanned until their nodes in the graph are
939   /// requested during traversal.
940   LazyCallGraph(Module &M,
941                 function_ref<TargetLibraryInfo &(Function &)> GetTLI);
942 
943   LazyCallGraph(LazyCallGraph &&G);
944   LazyCallGraph &operator=(LazyCallGraph &&RHS);
945 
946   bool invalidate(Module &, const PreservedAnalyses &PA,
947                   ModuleAnalysisManager::Invalidator &);
948 
949   EdgeSequence::iterator begin() { return EntryEdges.begin(); }
950   EdgeSequence::iterator end() { return EntryEdges.end(); }
951 
952   void buildRefSCCs();
953 
954   postorder_ref_scc_iterator postorder_ref_scc_begin() {
955     if (!EntryEdges.empty())
956       assert(!PostOrderRefSCCs.empty() &&
957              "Must form RefSCCs before iterating them!");
958     return postorder_ref_scc_iterator(*this);
959   }
960   postorder_ref_scc_iterator postorder_ref_scc_end() {
961     if (!EntryEdges.empty())
962       assert(!PostOrderRefSCCs.empty() &&
963              "Must form RefSCCs before iterating them!");
964     return postorder_ref_scc_iterator(*this,
965                                       postorder_ref_scc_iterator::IsAtEndT());
966   }
967 
968   iterator_range<postorder_ref_scc_iterator> postorder_ref_sccs() {
969     return make_range(postorder_ref_scc_begin(), postorder_ref_scc_end());
970   }
971 
972   /// Lookup a function in the graph which has already been scanned and added.
973   Node *lookup(const Function &F) const { return NodeMap.lookup(&F); }
974 
975   /// Lookup a function's SCC in the graph.
976   ///
977   /// \returns null if the function hasn't been assigned an SCC via the RefSCC
978   /// iterator walk.
979   SCC *lookupSCC(Node &N) const { return SCCMap.lookup(&N); }
980 
981   /// Lookup a function's RefSCC in the graph.
982   ///
983   /// \returns null if the function hasn't been assigned a RefSCC via the
984   /// RefSCC iterator walk.
985   RefSCC *lookupRefSCC(Node &N) const {
986     if (SCC *C = lookupSCC(N))
987       return &C->getOuterRefSCC();
988 
989     return nullptr;
990   }
991 
992   /// Get a graph node for a given function, scanning it to populate the graph
993   /// data as necessary.
994   Node &get(Function &F) {
995     Node *&N = NodeMap[&F];
996     if (N)
997       return *N;
998 
999     return insertInto(F, N);
1000   }
1001 
1002   /// Get the sequence of known and defined library functions.
1003   ///
1004   /// These functions, because they are known to LLVM, can have calls
1005   /// introduced out of thin air from arbitrary IR.
1006   ArrayRef<Function *> getLibFunctions() const {
1007     return LibFunctions.getArrayRef();
1008   }
1009 
1010   /// Test whether a function is a known and defined library function tracked by
1011   /// the call graph.
1012   ///
1013   /// Because these functions are known to LLVM they are specially modeled in
1014   /// the call graph and even when all IR-level references have been removed
1015   /// remain active and reachable.
1016   bool isLibFunction(Function &F) const { return LibFunctions.count(&F); }
1017 
1018   ///@{
1019   /// \name Pre-SCC Mutation API
1020   ///
1021   /// These methods are only valid to call prior to forming any SCCs for this
1022   /// call graph. They can be used to update the core node-graph during
1023   /// a node-based inorder traversal that precedes any SCC-based traversal.
1024   ///
1025   /// Once you begin manipulating a call graph's SCCs, most mutation of the
1026   /// graph must be performed via a RefSCC method. There are some exceptions
1027   /// below.
1028 
1029   /// Update the call graph after inserting a new edge.
1030   void insertEdge(Node &SourceN, Node &TargetN, Edge::Kind EK);
1031 
1032   /// Update the call graph after inserting a new edge.
1033   void insertEdge(Function &Source, Function &Target, Edge::Kind EK) {
1034     return insertEdge(get(Source), get(Target), EK);
1035   }
1036 
1037   /// Update the call graph after deleting an edge.
1038   void removeEdge(Node &SourceN, Node &TargetN);
1039 
1040   /// Update the call graph after deleting an edge.
1041   void removeEdge(Function &Source, Function &Target) {
1042     return removeEdge(get(Source), get(Target));
1043   }
1044 
1045   ///@}
1046 
1047   ///@{
1048   /// \name General Mutation API
1049   ///
1050   /// There are a very limited set of mutations allowed on the graph as a whole
1051   /// once SCCs have started to be formed. These routines have strict contracts
1052   /// but may be called at any point.
1053 
1054   /// Remove a dead function from the call graph (typically to delete it).
1055   ///
1056   /// Note that the function must have an empty use list, and the call graph
1057   /// must be up-to-date prior to calling this. That means it is by itself in
1058   /// a maximal SCC which is by itself in a maximal RefSCC, etc. No structural
1059   /// changes result from calling this routine other than potentially removing
1060   /// entry points into the call graph.
1061   ///
1062   /// If SCC formation has begun, this function must not be part of the current
1063   /// DFS in order to call this safely. Typically, the function will have been
1064   /// fully visited by the DFS prior to calling this routine.
1065   void removeDeadFunction(Function &F);
1066 
1067   /// Add a new function split/outlined from an existing function.
1068   ///
1069   /// The new function may only reference other functions that the original
1070   /// function did.
1071   ///
1072   /// The original function must reference (either directly or indirectly) the
1073   /// new function.
1074   ///
1075   /// The new function may also reference the original function.
1076   /// It may end up in a parent SCC in the case that the original function's
1077   /// edge to the new function is a ref edge, and the edge back is a call edge.
1078   void addSplitFunction(Function &OriginalFunction, Function &NewFunction);
1079 
1080   /// Add new ref-recursive functions split/outlined from an existing function.
1081   ///
1082   /// The new functions may only reference other functions that the original
1083   /// function did. The new functions may reference (not call) the original
1084   /// function.
1085   ///
1086   /// The original function must reference (not call) all new functions.
1087   /// All new functions must reference (not call) each other.
1088   void addSplitRefRecursiveFunctions(Function &OriginalFunction,
1089                                      ArrayRef<Function *> NewFunctions);
1090 
1091   ///@}
1092 
1093   ///@{
1094   /// \name Static helpers for code doing updates to the call graph.
1095   ///
1096   /// These helpers are used to implement parts of the call graph but are also
1097   /// useful to code doing updates or otherwise wanting to walk the IR in the
1098   /// same patterns as when we build the call graph.
1099 
1100   /// Recursively visits the defined functions whose address is reachable from
1101   /// every constant in the \p Worklist.
1102   ///
1103   /// Doesn't recurse through any constants already in the \p Visited set, and
1104   /// updates that set with every constant visited.
1105   ///
1106   /// For each defined function, calls \p Callback with that function.
1107   static void visitReferences(SmallVectorImpl<Constant *> &Worklist,
1108                               SmallPtrSetImpl<Constant *> &Visited,
1109                               function_ref<void(Function &)> Callback);
1110 
1111   ///@}
1112 
1113 private:
1114   using node_stack_iterator = SmallVectorImpl<Node *>::reverse_iterator;
1115   using node_stack_range = iterator_range<node_stack_iterator>;
1116 
1117   /// Allocator that holds all the call graph nodes.
1118   SpecificBumpPtrAllocator<Node> BPA;
1119 
1120   /// Maps function->node for fast lookup.
1121   DenseMap<const Function *, Node *> NodeMap;
1122 
1123   /// The entry edges into the graph.
1124   ///
1125   /// These edges are from "external" sources. Put another way, they
1126   /// escape at the module scope.
1127   EdgeSequence EntryEdges;
1128 
1129   /// Allocator that holds all the call graph SCCs.
1130   SpecificBumpPtrAllocator<SCC> SCCBPA;
1131 
1132   /// Maps Function -> SCC for fast lookup.
1133   DenseMap<Node *, SCC *> SCCMap;
1134 
1135   /// Allocator that holds all the call graph RefSCCs.
1136   SpecificBumpPtrAllocator<RefSCC> RefSCCBPA;
1137 
1138   /// The post-order sequence of RefSCCs.
1139   ///
1140   /// This list is lazily formed the first time we walk the graph.
1141   SmallVector<RefSCC *, 16> PostOrderRefSCCs;
1142 
1143   /// A map from RefSCC to the index for it in the postorder sequence of
1144   /// RefSCCs.
1145   DenseMap<RefSCC *, int> RefSCCIndices;
1146 
1147   /// Defined functions that are also known library functions which the
1148   /// optimizer can reason about and therefore might introduce calls to out of
1149   /// thin air.
1150   SmallSetVector<Function *, 4> LibFunctions;
1151 
1152   /// Helper to insert a new function, with an already looked-up entry in
1153   /// the NodeMap.
1154   Node &insertInto(Function &F, Node *&MappedN);
1155 
1156   /// Helper to initialize a new node created outside of creating SCCs and add
1157   /// it to the NodeMap if necessary. For example, useful when a function is
1158   /// split.
1159   Node &initNode(Function &F);
1160 
1161   /// Helper to update pointers back to the graph object during moves.
1162   void updateGraphPtrs();
1163 
1164   /// Allocates an SCC and constructs it using the graph allocator.
1165   ///
1166   /// The arguments are forwarded to the constructor.
1167   template <typename... Ts> SCC *createSCC(Ts &&...Args) {
1168     return new (SCCBPA.Allocate()) SCC(std::forward<Ts>(Args)...);
1169   }
1170 
1171   /// Allocates a RefSCC and constructs it using the graph allocator.
1172   ///
1173   /// The arguments are forwarded to the constructor.
1174   template <typename... Ts> RefSCC *createRefSCC(Ts &&...Args) {
1175     return new (RefSCCBPA.Allocate()) RefSCC(std::forward<Ts>(Args)...);
1176   }
1177 
1178   /// Common logic for building SCCs from a sequence of roots.
1179   ///
1180   /// This is a very generic implementation of the depth-first walk and SCC
1181   /// formation algorithm. It uses a generic sequence of roots and generic
1182   /// callbacks for each step. This is designed to be used to implement both
1183   /// the RefSCC formation and SCC formation with shared logic.
1184   ///
1185   /// Currently this is a relatively naive implementation of Tarjan's DFS
1186   /// algorithm to form the SCCs.
1187   ///
1188   /// FIXME: We should consider newer variants such as Nuutila.
1189   template <typename RootsT, typename GetBeginT, typename GetEndT,
1190             typename GetNodeT, typename FormSCCCallbackT>
1191   static void buildGenericSCCs(RootsT &&Roots, GetBeginT &&GetBegin,
1192                                GetEndT &&GetEnd, GetNodeT &&GetNode,
1193                                FormSCCCallbackT &&FormSCC);
1194 
1195   /// Build the SCCs for a RefSCC out of a list of nodes.
1196   void buildSCCs(RefSCC &RC, node_stack_range Nodes);
1197 
1198   /// Get the index of a RefSCC within the postorder traversal.
1199   ///
1200   /// Requires that this RefSCC is a valid one in the (perhaps partial)
1201   /// postorder traversed part of the graph.
1202   int getRefSCCIndex(RefSCC &RC) {
1203     auto IndexIt = RefSCCIndices.find(&RC);
1204     assert(IndexIt != RefSCCIndices.end() && "RefSCC doesn't have an index!");
1205     assert(PostOrderRefSCCs[IndexIt->second] == &RC &&
1206            "Index does not point back at RC!");
1207     return IndexIt->second;
1208   }
1209 };
1210 
1211 inline LazyCallGraph::Edge::Edge() = default;
1212 inline LazyCallGraph::Edge::Edge(Node &N, Kind K) : Value(&N, K) {}
1213 
1214 inline LazyCallGraph::Edge::operator bool() const {
1215   return Value.getPointer() && !Value.getPointer()->isDead();
1216 }
1217 
1218 inline LazyCallGraph::Edge::Kind LazyCallGraph::Edge::getKind() const {
1219   assert(*this && "Queried a null edge!");
1220   return Value.getInt();
1221 }
1222 
1223 inline bool LazyCallGraph::Edge::isCall() const {
1224   assert(*this && "Queried a null edge!");
1225   return getKind() == Call;
1226 }
1227 
1228 inline LazyCallGraph::Node &LazyCallGraph::Edge::getNode() const {
1229   assert(*this && "Queried a null edge!");
1230   return *Value.getPointer();
1231 }
1232 
1233 inline Function &LazyCallGraph::Edge::getFunction() const {
1234   assert(*this && "Queried a null edge!");
1235   return getNode().getFunction();
1236 }
1237 
1238 // Provide GraphTraits specializations for call graphs.
1239 template <> struct GraphTraits<LazyCallGraph::Node *> {
1240   using NodeRef = LazyCallGraph::Node *;
1241   using ChildIteratorType = LazyCallGraph::EdgeSequence::iterator;
1242 
1243   static NodeRef getEntryNode(NodeRef N) { return N; }
1244   static ChildIteratorType child_begin(NodeRef N) { return (*N)->begin(); }
1245   static ChildIteratorType child_end(NodeRef N) { return (*N)->end(); }
1246 };
1247 template <> struct GraphTraits<LazyCallGraph *> {
1248   using NodeRef = LazyCallGraph::Node *;
1249   using ChildIteratorType = LazyCallGraph::EdgeSequence::iterator;
1250 
1251   static NodeRef getEntryNode(NodeRef N) { return N; }
1252   static ChildIteratorType child_begin(NodeRef N) { return (*N)->begin(); }
1253   static ChildIteratorType child_end(NodeRef N) { return (*N)->end(); }
1254 };
1255 
1256 /// An analysis pass which computes the call graph for a module.
1257 class LazyCallGraphAnalysis : public AnalysisInfoMixin<LazyCallGraphAnalysis> {
1258   friend AnalysisInfoMixin<LazyCallGraphAnalysis>;
1259 
1260   static AnalysisKey Key;
1261 
1262 public:
1263   /// Inform generic clients of the result type.
1264   using Result = LazyCallGraph;
1265 
1266   /// Compute the \c LazyCallGraph for the module \c M.
1267   ///
1268   /// This just builds the set of entry points to the call graph. The rest is
1269   /// built lazily as it is walked.
1270   LazyCallGraph run(Module &M, ModuleAnalysisManager &AM) {
1271     FunctionAnalysisManager &FAM =
1272         AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1273     auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
1274       return FAM.getResult<TargetLibraryAnalysis>(F);
1275     };
1276     return LazyCallGraph(M, GetTLI);
1277   }
1278 };
1279 
1280 /// A pass which prints the call graph to a \c raw_ostream.
1281 ///
1282 /// This is primarily useful for testing the analysis.
1283 class LazyCallGraphPrinterPass
1284     : public PassInfoMixin<LazyCallGraphPrinterPass> {
1285   raw_ostream &OS;
1286 
1287 public:
1288   explicit LazyCallGraphPrinterPass(raw_ostream &OS);
1289 
1290   PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
1291 };
1292 
1293 /// A pass which prints the call graph as a DOT file to a \c raw_ostream.
1294 ///
1295 /// This is primarily useful for visualization purposes.
1296 class LazyCallGraphDOTPrinterPass
1297     : public PassInfoMixin<LazyCallGraphDOTPrinterPass> {
1298   raw_ostream &OS;
1299 
1300 public:
1301   explicit LazyCallGraphDOTPrinterPass(raw_ostream &OS);
1302 
1303   PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
1304 };
1305 
1306 } // end namespace llvm
1307 
1308 #endif // LLVM_ANALYSIS_LAZYCALLGRAPH_H
1309