1 //===- Loads.h - Local load analysis --------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares simple local analyses for load instructions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_ANALYSIS_LOADS_H
14 #define LLVM_ANALYSIS_LOADS_H
15 
16 #include "llvm/IR/BasicBlock.h"
17 #include "llvm/Support/CommandLine.h"
18 
19 namespace llvm {
20 
21 class AAResults;
22 class DataLayout;
23 class DominatorTree;
24 class Instruction;
25 class LoadInst;
26 class Loop;
27 class MemoryLocation;
28 class ScalarEvolution;
29 class TargetLibraryInfo;
30 
31 /// Return true if this is always a dereferenceable pointer. If the context
32 /// instruction is specified perform context-sensitive analysis and return true
33 /// if the pointer is dereferenceable at the specified instruction.
34 bool isDereferenceablePointer(const Value *V, Type *Ty,
35                               const DataLayout &DL,
36                               const Instruction *CtxI = nullptr,
37                               const DominatorTree *DT = nullptr,
38                               const TargetLibraryInfo *TLI = nullptr);
39 
40 /// Returns true if V is always a dereferenceable pointer with alignment
41 /// greater or equal than requested. If the context instruction is specified
42 /// performs context-sensitive analysis and returns true if the pointer is
43 /// dereferenceable at the specified instruction.
44 bool isDereferenceableAndAlignedPointer(const Value *V, Type *Ty,
45                                         Align Alignment, const DataLayout &DL,
46                                         const Instruction *CtxI = nullptr,
47                                         const DominatorTree *DT = nullptr,
48                                         const TargetLibraryInfo *TLI = nullptr);
49 
50 /// Returns true if V is always dereferenceable for Size byte with alignment
51 /// greater or equal than requested. If the context instruction is specified
52 /// performs context-sensitive analysis and returns true if the pointer is
53 /// dereferenceable at the specified instruction.
54 bool isDereferenceableAndAlignedPointer(const Value *V, Align Alignment,
55                                         const APInt &Size, const DataLayout &DL,
56                                         const Instruction *CtxI = nullptr,
57                                         const DominatorTree *DT = nullptr,
58                                         const TargetLibraryInfo *TLI = nullptr);
59 
60 /// Return true if we know that executing a load from this value cannot trap.
61 ///
62 /// If DT and ScanFrom are specified this method performs context-sensitive
63 /// analysis and returns true if it is safe to load immediately before ScanFrom.
64 ///
65 /// If it is not obviously safe to load from the specified pointer, we do a
66 /// quick local scan of the basic block containing ScanFrom, to determine if
67 /// the address is already accessed.
68 bool isSafeToLoadUnconditionally(Value *V, Align Alignment, APInt &Size,
69                                  const DataLayout &DL,
70                                  Instruction *ScanFrom = nullptr,
71                                  const DominatorTree *DT = nullptr,
72                                  const TargetLibraryInfo *TLI = nullptr);
73 
74 /// Return true if we can prove that the given load (which is assumed to be
75 /// within the specified loop) would access only dereferenceable memory, and
76 /// be properly aligned on every iteration of the specified loop regardless of
77 /// its placement within the loop. (i.e. does not require predication beyond
78 /// that required by the header itself and could be hoisted into the header
79 /// if desired.)  This is more powerful than the variants above when the
80 /// address loaded from is analyzeable by SCEV.
81 bool isDereferenceableAndAlignedInLoop(LoadInst *LI, Loop *L,
82                                        ScalarEvolution &SE,
83                                        DominatorTree &DT);
84 
85 /// Return true if we know that executing a load from this value cannot trap.
86 ///
87 /// If DT and ScanFrom are specified this method performs context-sensitive
88 /// analysis and returns true if it is safe to load immediately before ScanFrom.
89 ///
90 /// If it is not obviously safe to load from the specified pointer, we do a
91 /// quick local scan of the basic block containing ScanFrom, to determine if
92 /// the address is already accessed.
93 bool isSafeToLoadUnconditionally(Value *V, Type *Ty, Align Alignment,
94                                  const DataLayout &DL,
95                                  Instruction *ScanFrom = nullptr,
96                                  const DominatorTree *DT = nullptr,
97                                  const TargetLibraryInfo *TLI = nullptr);
98 
99 /// The default number of maximum instructions to scan in the block, used by
100 /// FindAvailableLoadedValue().
101 extern cl::opt<unsigned> DefMaxInstsToScan;
102 
103 /// Scan backwards to see if we have the value of the given load available
104 /// locally within a small number of instructions.
105 ///
106 /// You can use this function to scan across multiple blocks: after you call
107 /// this function, if ScanFrom points at the beginning of the block, it's safe
108 /// to continue scanning the predecessors.
109 ///
110 /// Note that performing load CSE requires special care to make sure the
111 /// metadata is set appropriately.  In particular, aliasing metadata needs
112 /// to be merged.  (This doesn't matter for store-to-load forwarding because
113 /// the only relevant load gets deleted.)
114 ///
115 /// \param Load The load we want to replace.
116 /// \param ScanBB The basic block to scan.
117 /// \param [in,out] ScanFrom The location to start scanning from. When this
118 /// function returns, it points at the last instruction scanned.
119 /// \param MaxInstsToScan The maximum number of instructions to scan. If this
120 /// is zero, the whole block will be scanned.
121 /// \param AA Optional pointer to alias analysis, to make the scan more
122 /// precise.
123 /// \param [out] IsLoadCSE Whether the returned value is a load from the same
124 /// location in memory, as opposed to the value operand of a store.
125 ///
126 /// \returns The found value, or nullptr if no value is found.
127 Value *FindAvailableLoadedValue(LoadInst *Load,
128                                 BasicBlock *ScanBB,
129                                 BasicBlock::iterator &ScanFrom,
130                                 unsigned MaxInstsToScan = DefMaxInstsToScan,
131                                 AAResults *AA = nullptr,
132                                 bool *IsLoadCSE = nullptr,
133                                 unsigned *NumScanedInst = nullptr);
134 
135 /// This overload provides a more efficient implementation of
136 /// FindAvailableLoadedValue() for the case where we are not interested in
137 /// finding the closest clobbering instruction if no available load is found.
138 /// This overload cannot be used to scan across multiple blocks.
139 Value *FindAvailableLoadedValue(LoadInst *Load, AAResults &AA, bool *IsLoadCSE,
140                                 unsigned MaxInstsToScan = DefMaxInstsToScan);
141 
142 /// Scan backwards to see if we have the value of the given pointer available
143 /// locally within a small number of instructions.
144 ///
145 /// You can use this function to scan across multiple blocks: after you call
146 /// this function, if ScanFrom points at the beginning of the block, it's safe
147 /// to continue scanning the predecessors.
148 ///
149 /// \param Loc The location we want the load and store to originate from.
150 /// \param AccessTy The access type of the pointer.
151 /// \param AtLeastAtomic Are we looking for at-least an atomic load/store ? In
152 /// case it is false, we can return an atomic or non-atomic load or store. In
153 /// case it is true, we need to return an atomic load or store.
154 /// \param ScanBB The basic block to scan.
155 /// \param [in,out] ScanFrom The location to start scanning from. When this
156 /// function returns, it points at the last instruction scanned.
157 /// \param MaxInstsToScan The maximum number of instructions to scan. If this
158 /// is zero, the whole block will be scanned.
159 /// \param AA Optional pointer to alias analysis, to make the scan more
160 /// precise.
161 /// \param [out] IsLoadCSE Whether the returned value is a load from the same
162 /// location in memory, as opposed to the value operand of a store.
163 ///
164 /// \returns The found value, or nullptr if no value is found.
165 Value *findAvailablePtrLoadStore(const MemoryLocation &Loc, Type *AccessTy,
166                                  bool AtLeastAtomic, BasicBlock *ScanBB,
167                                  BasicBlock::iterator &ScanFrom,
168                                  unsigned MaxInstsToScan, AAResults *AA,
169                                  bool *IsLoadCSE, unsigned *NumScanedInst);
170 
171 /// Returns true if a pointer value \p A can be replace with another pointer
172 /// value \B if they are deemed equal through some means (e.g. information from
173 /// conditions).
174 /// NOTE: the current implementations is incomplete and unsound. It does not
175 /// reject all invalid cases yet, but will be made stricter in the future. In
176 /// particular this means returning true means unknown if replacement is safe.
177 bool canReplacePointersIfEqual(Value *A, Value *B, const DataLayout &DL,
178                                Instruction *CtxI);
179 }
180 
181 #endif
182