1 //===- llvm/Analysis/LoopAccessAnalysis.h -----------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interface for the loop memory dependence framework that
10 // was originally developed for the Loop Vectorizer.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_ANALYSIS_LOOPACCESSANALYSIS_H
15 #define LLVM_ANALYSIS_LOOPACCESSANALYSIS_H
16 
17 #include "llvm/ADT/EquivalenceClasses.h"
18 #include "llvm/Analysis/LoopAnalysisManager.h"
19 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
20 #include "llvm/IR/DiagnosticInfo.h"
21 #include <optional>
22 
23 namespace llvm {
24 
25 class AAResults;
26 class DataLayout;
27 class Loop;
28 class LoopAccessInfo;
29 class raw_ostream;
30 class SCEV;
31 class SCEVUnionPredicate;
32 class Value;
33 
34 /// Collection of parameters shared beetween the Loop Vectorizer and the
35 /// Loop Access Analysis.
36 struct VectorizerParams {
37   /// Maximum SIMD width.
38   static const unsigned MaxVectorWidth;
39 
40   /// VF as overridden by the user.
41   static unsigned VectorizationFactor;
42   /// Interleave factor as overridden by the user.
43   static unsigned VectorizationInterleave;
44   /// True if force-vector-interleave was specified by the user.
45   static bool isInterleaveForced();
46 
47   /// \When performing memory disambiguation checks at runtime do not
48   /// make more than this number of comparisons.
49   static unsigned RuntimeMemoryCheckThreshold;
50 
51   // When creating runtime checks for nested loops, where possible try to
52   // write the checks in a form that allows them to be easily hoisted out of
53   // the outermost loop. For example, we can do this by expanding the range of
54   // addresses considered to include the entire nested loop so that they are
55   // loop invariant.
56   static bool HoistRuntimeChecks;
57 };
58 
59 /// Checks memory dependences among accesses to the same underlying
60 /// object to determine whether there vectorization is legal or not (and at
61 /// which vectorization factor).
62 ///
63 /// Note: This class will compute a conservative dependence for access to
64 /// different underlying pointers. Clients, such as the loop vectorizer, will
65 /// sometimes deal these potential dependencies by emitting runtime checks.
66 ///
67 /// We use the ScalarEvolution framework to symbolically evalutate access
68 /// functions pairs. Since we currently don't restructure the loop we can rely
69 /// on the program order of memory accesses to determine their safety.
70 /// At the moment we will only deem accesses as safe for:
71 ///  * A negative constant distance assuming program order.
72 ///
73 ///      Safe: tmp = a[i + 1];     OR     a[i + 1] = x;
74 ///            a[i] = tmp;                y = a[i];
75 ///
76 ///   The latter case is safe because later checks guarantuee that there can't
77 ///   be a cycle through a phi node (that is, we check that "x" and "y" is not
78 ///   the same variable: a header phi can only be an induction or a reduction, a
79 ///   reduction can't have a memory sink, an induction can't have a memory
80 ///   source). This is important and must not be violated (or we have to
81 ///   resort to checking for cycles through memory).
82 ///
83 ///  * A positive constant distance assuming program order that is bigger
84 ///    than the biggest memory access.
85 ///
86 ///     tmp = a[i]        OR              b[i] = x
87 ///     a[i+2] = tmp                      y = b[i+2];
88 ///
89 ///     Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively.
90 ///
91 ///  * Zero distances and all accesses have the same size.
92 ///
93 class MemoryDepChecker {
94 public:
95   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
96   typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList;
97   /// Set of potential dependent memory accesses.
98   typedef EquivalenceClasses<MemAccessInfo> DepCandidates;
99 
100   /// Type to keep track of the status of the dependence check. The order of
101   /// the elements is important and has to be from most permissive to least
102   /// permissive.
103   enum class VectorizationSafetyStatus {
104     // Can vectorize safely without RT checks. All dependences are known to be
105     // safe.
106     Safe,
107     // Can possibly vectorize with RT checks to overcome unknown dependencies.
108     PossiblySafeWithRtChecks,
109     // Cannot vectorize due to known unsafe dependencies.
110     Unsafe,
111   };
112 
113   /// Dependece between memory access instructions.
114   struct Dependence {
115     /// The type of the dependence.
116     enum DepType {
117       // No dependence.
118       NoDep,
119       // We couldn't determine the direction or the distance.
120       Unknown,
121       // At least one of the memory access instructions may access a loop
122       // varying object, e.g. the address of underlying object is loaded inside
123       // the loop, like A[B[i]]. We cannot determine direction or distance in
124       // those cases, and also are unable to generate any runtime checks.
125       IndirectUnsafe,
126 
127       // Lexically forward.
128       //
129       // FIXME: If we only have loop-independent forward dependences (e.g. a
130       // read and write of A[i]), LAA will locally deem the dependence "safe"
131       // without querying the MemoryDepChecker.  Therefore we can miss
132       // enumerating loop-independent forward dependences in
133       // getDependences.  Note that as soon as there are different
134       // indices used to access the same array, the MemoryDepChecker *is*
135       // queried and the dependence list is complete.
136       Forward,
137       // Forward, but if vectorized, is likely to prevent store-to-load
138       // forwarding.
139       ForwardButPreventsForwarding,
140       // Lexically backward.
141       Backward,
142       // Backward, but the distance allows a vectorization factor of dependent
143       // on MinDepDistBytes.
144       BackwardVectorizable,
145       // Same, but may prevent store-to-load forwarding.
146       BackwardVectorizableButPreventsForwarding
147     };
148 
149     /// String version of the types.
150     static const char *DepName[];
151 
152     /// Index of the source of the dependence in the InstMap vector.
153     unsigned Source;
154     /// Index of the destination of the dependence in the InstMap vector.
155     unsigned Destination;
156     /// The type of the dependence.
157     DepType Type;
158 
159     Dependence(unsigned Source, unsigned Destination, DepType Type)
160         : Source(Source), Destination(Destination), Type(Type) {}
161 
162     /// Return the source instruction of the dependence.
163     Instruction *getSource(const LoopAccessInfo &LAI) const;
164     /// Return the destination instruction of the dependence.
165     Instruction *getDestination(const LoopAccessInfo &LAI) const;
166 
167     /// Dependence types that don't prevent vectorization.
168     static VectorizationSafetyStatus isSafeForVectorization(DepType Type);
169 
170     /// Lexically forward dependence.
171     bool isForward() const;
172     /// Lexically backward dependence.
173     bool isBackward() const;
174 
175     /// May be a lexically backward dependence type (includes Unknown).
176     bool isPossiblyBackward() const;
177 
178     /// Print the dependence.  \p Instr is used to map the instruction
179     /// indices to instructions.
180     void print(raw_ostream &OS, unsigned Depth,
181                const SmallVectorImpl<Instruction *> &Instrs) const;
182   };
183 
184   MemoryDepChecker(PredicatedScalarEvolution &PSE, const Loop *L)
185       : PSE(PSE), InnermostLoop(L) {}
186 
187   /// Register the location (instructions are given increasing numbers)
188   /// of a write access.
189   void addAccess(StoreInst *SI);
190 
191   /// Register the location (instructions are given increasing numbers)
192   /// of a write access.
193   void addAccess(LoadInst *LI);
194 
195   /// Check whether the dependencies between the accesses are safe.
196   ///
197   /// Only checks sets with elements in \p CheckDeps.
198   bool areDepsSafe(DepCandidates &AccessSets, MemAccessInfoList &CheckDeps,
199                    const DenseMap<Value *, const SCEV *> &Strides,
200                    const DenseMap<Value *, SmallVector<const Value *, 16>>
201                        &UnderlyingObjects);
202 
203   /// No memory dependence was encountered that would inhibit
204   /// vectorization.
205   bool isSafeForVectorization() const {
206     return Status == VectorizationSafetyStatus::Safe;
207   }
208 
209   /// Return true if the number of elements that are safe to operate on
210   /// simultaneously is not bounded.
211   bool isSafeForAnyVectorWidth() const {
212     return MaxSafeVectorWidthInBits == UINT_MAX;
213   }
214 
215   /// Return the number of elements that are safe to operate on
216   /// simultaneously, multiplied by the size of the element in bits.
217   uint64_t getMaxSafeVectorWidthInBits() const {
218     return MaxSafeVectorWidthInBits;
219   }
220 
221   /// In same cases when the dependency check fails we can still
222   /// vectorize the loop with a dynamic array access check.
223   bool shouldRetryWithRuntimeCheck() const {
224     return FoundNonConstantDistanceDependence &&
225            Status == VectorizationSafetyStatus::PossiblySafeWithRtChecks;
226   }
227 
228   /// Returns the memory dependences.  If null is returned we exceeded
229   /// the MaxDependences threshold and this information is not
230   /// available.
231   const SmallVectorImpl<Dependence> *getDependences() const {
232     return RecordDependences ? &Dependences : nullptr;
233   }
234 
235   void clearDependences() { Dependences.clear(); }
236 
237   /// The vector of memory access instructions.  The indices are used as
238   /// instruction identifiers in the Dependence class.
239   const SmallVectorImpl<Instruction *> &getMemoryInstructions() const {
240     return InstMap;
241   }
242 
243   /// Generate a mapping between the memory instructions and their
244   /// indices according to program order.
245   DenseMap<Instruction *, unsigned> generateInstructionOrderMap() const {
246     DenseMap<Instruction *, unsigned> OrderMap;
247 
248     for (unsigned I = 0; I < InstMap.size(); ++I)
249       OrderMap[InstMap[I]] = I;
250 
251     return OrderMap;
252   }
253 
254   /// Find the set of instructions that read or write via \p Ptr.
255   SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr,
256                                                          bool isWrite) const;
257 
258   /// Return the program order indices for the access location (Ptr, IsWrite).
259   /// Returns an empty ArrayRef if there are no accesses for the location.
260   ArrayRef<unsigned> getOrderForAccess(Value *Ptr, bool IsWrite) const {
261     auto I = Accesses.find({Ptr, IsWrite});
262     if (I != Accesses.end())
263       return I->second;
264     return {};
265   }
266 
267   const Loop *getInnermostLoop() const { return InnermostLoop; }
268 
269 private:
270   /// A wrapper around ScalarEvolution, used to add runtime SCEV checks, and
271   /// applies dynamic knowledge to simplify SCEV expressions and convert them
272   /// to a more usable form. We need this in case assumptions about SCEV
273   /// expressions need to be made in order to avoid unknown dependences. For
274   /// example we might assume a unit stride for a pointer in order to prove
275   /// that a memory access is strided and doesn't wrap.
276   PredicatedScalarEvolution &PSE;
277   const Loop *InnermostLoop;
278 
279   /// Maps access locations (ptr, read/write) to program order.
280   DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses;
281 
282   /// Memory access instructions in program order.
283   SmallVector<Instruction *, 16> InstMap;
284 
285   /// The program order index to be used for the next instruction.
286   unsigned AccessIdx = 0;
287 
288   /// The smallest dependence distance in bytes in the loop. This may not be
289   /// the same as the maximum number of bytes that are safe to operate on
290   /// simultaneously.
291   uint64_t MinDepDistBytes = 0;
292 
293   /// Number of elements (from consecutive iterations) that are safe to
294   /// operate on simultaneously, multiplied by the size of the element in bits.
295   /// The size of the element is taken from the memory access that is most
296   /// restrictive.
297   uint64_t MaxSafeVectorWidthInBits = -1U;
298 
299   /// If we see a non-constant dependence distance we can still try to
300   /// vectorize this loop with runtime checks.
301   bool FoundNonConstantDistanceDependence = false;
302 
303   /// Result of the dependence checks, indicating whether the checked
304   /// dependences are safe for vectorization, require RT checks or are known to
305   /// be unsafe.
306   VectorizationSafetyStatus Status = VectorizationSafetyStatus::Safe;
307 
308   //// True if Dependences reflects the dependences in the
309   //// loop.  If false we exceeded MaxDependences and
310   //// Dependences is invalid.
311   bool RecordDependences = true;
312 
313   /// Memory dependences collected during the analysis.  Only valid if
314   /// RecordDependences is true.
315   SmallVector<Dependence, 8> Dependences;
316 
317   /// Check whether there is a plausible dependence between the two
318   /// accesses.
319   ///
320   /// Access \p A must happen before \p B in program order. The two indices
321   /// identify the index into the program order map.
322   ///
323   /// This function checks  whether there is a plausible dependence (or the
324   /// absence of such can't be proved) between the two accesses. If there is a
325   /// plausible dependence but the dependence distance is bigger than one
326   /// element access it records this distance in \p MinDepDistBytes (if this
327   /// distance is smaller than any other distance encountered so far).
328   /// Otherwise, this function returns true signaling a possible dependence.
329   Dependence::DepType
330   isDependent(const MemAccessInfo &A, unsigned AIdx, const MemAccessInfo &B,
331               unsigned BIdx, const DenseMap<Value *, const SCEV *> &Strides,
332               const DenseMap<Value *, SmallVector<const Value *, 16>>
333                   &UnderlyingObjects);
334 
335   /// Check whether the data dependence could prevent store-load
336   /// forwarding.
337   ///
338   /// \return false if we shouldn't vectorize at all or avoid larger
339   /// vectorization factors by limiting MinDepDistBytes.
340   bool couldPreventStoreLoadForward(uint64_t Distance, uint64_t TypeByteSize);
341 
342   /// Updates the current safety status with \p S. We can go from Safe to
343   /// either PossiblySafeWithRtChecks or Unsafe and from
344   /// PossiblySafeWithRtChecks to Unsafe.
345   void mergeInStatus(VectorizationSafetyStatus S);
346 };
347 
348 class RuntimePointerChecking;
349 /// A grouping of pointers. A single memcheck is required between
350 /// two groups.
351 struct RuntimeCheckingPtrGroup {
352   /// Create a new pointer checking group containing a single
353   /// pointer, with index \p Index in RtCheck.
354   RuntimeCheckingPtrGroup(unsigned Index, RuntimePointerChecking &RtCheck);
355 
356   /// Tries to add the pointer recorded in RtCheck at index
357   /// \p Index to this pointer checking group. We can only add a pointer
358   /// to a checking group if we will still be able to get
359   /// the upper and lower bounds of the check. Returns true in case
360   /// of success, false otherwise.
361   bool addPointer(unsigned Index, RuntimePointerChecking &RtCheck);
362   bool addPointer(unsigned Index, const SCEV *Start, const SCEV *End,
363                   unsigned AS, bool NeedsFreeze, ScalarEvolution &SE);
364 
365   /// The SCEV expression which represents the upper bound of all the
366   /// pointers in this group.
367   const SCEV *High;
368   /// The SCEV expression which represents the lower bound of all the
369   /// pointers in this group.
370   const SCEV *Low;
371   /// Indices of all the pointers that constitute this grouping.
372   SmallVector<unsigned, 2> Members;
373   /// Address space of the involved pointers.
374   unsigned AddressSpace;
375   /// Whether the pointer needs to be frozen after expansion, e.g. because it
376   /// may be poison outside the loop.
377   bool NeedsFreeze = false;
378 };
379 
380 /// A memcheck which made up of a pair of grouped pointers.
381 typedef std::pair<const RuntimeCheckingPtrGroup *,
382                   const RuntimeCheckingPtrGroup *>
383     RuntimePointerCheck;
384 
385 struct PointerDiffInfo {
386   const SCEV *SrcStart;
387   const SCEV *SinkStart;
388   unsigned AccessSize;
389   bool NeedsFreeze;
390 
391   PointerDiffInfo(const SCEV *SrcStart, const SCEV *SinkStart,
392                   unsigned AccessSize, bool NeedsFreeze)
393       : SrcStart(SrcStart), SinkStart(SinkStart), AccessSize(AccessSize),
394         NeedsFreeze(NeedsFreeze) {}
395 };
396 
397 /// Holds information about the memory runtime legality checks to verify
398 /// that a group of pointers do not overlap.
399 class RuntimePointerChecking {
400   friend struct RuntimeCheckingPtrGroup;
401 
402 public:
403   struct PointerInfo {
404     /// Holds the pointer value that we need to check.
405     TrackingVH<Value> PointerValue;
406     /// Holds the smallest byte address accessed by the pointer throughout all
407     /// iterations of the loop.
408     const SCEV *Start;
409     /// Holds the largest byte address accessed by the pointer throughout all
410     /// iterations of the loop, plus 1.
411     const SCEV *End;
412     /// Holds the information if this pointer is used for writing to memory.
413     bool IsWritePtr;
414     /// Holds the id of the set of pointers that could be dependent because of a
415     /// shared underlying object.
416     unsigned DependencySetId;
417     /// Holds the id of the disjoint alias set to which this pointer belongs.
418     unsigned AliasSetId;
419     /// SCEV for the access.
420     const SCEV *Expr;
421     /// True if the pointer expressions needs to be frozen after expansion.
422     bool NeedsFreeze;
423 
424     PointerInfo(Value *PointerValue, const SCEV *Start, const SCEV *End,
425                 bool IsWritePtr, unsigned DependencySetId, unsigned AliasSetId,
426                 const SCEV *Expr, bool NeedsFreeze)
427         : PointerValue(PointerValue), Start(Start), End(End),
428           IsWritePtr(IsWritePtr), DependencySetId(DependencySetId),
429           AliasSetId(AliasSetId), Expr(Expr), NeedsFreeze(NeedsFreeze) {}
430   };
431 
432   RuntimePointerChecking(MemoryDepChecker &DC, ScalarEvolution *SE)
433       : DC(DC), SE(SE) {}
434 
435   /// Reset the state of the pointer runtime information.
436   void reset() {
437     Need = false;
438     Pointers.clear();
439     Checks.clear();
440   }
441 
442   /// Insert a pointer and calculate the start and end SCEVs.
443   /// We need \p PSE in order to compute the SCEV expression of the pointer
444   /// according to the assumptions that we've made during the analysis.
445   /// The method might also version the pointer stride according to \p Strides,
446   /// and add new predicates to \p PSE.
447   void insert(Loop *Lp, Value *Ptr, const SCEV *PtrExpr, Type *AccessTy,
448               bool WritePtr, unsigned DepSetId, unsigned ASId,
449               PredicatedScalarEvolution &PSE, bool NeedsFreeze);
450 
451   /// No run-time memory checking is necessary.
452   bool empty() const { return Pointers.empty(); }
453 
454   /// Generate the checks and store it.  This also performs the grouping
455   /// of pointers to reduce the number of memchecks necessary.
456   void generateChecks(MemoryDepChecker::DepCandidates &DepCands,
457                       bool UseDependencies);
458 
459   /// Returns the checks that generateChecks created. They can be used to ensure
460   /// no read/write accesses overlap across all loop iterations.
461   const SmallVectorImpl<RuntimePointerCheck> &getChecks() const {
462     return Checks;
463   }
464 
465   // Returns an optional list of (pointer-difference expressions, access size)
466   // pairs that can be used to prove that there are no vectorization-preventing
467   // dependencies at runtime. There are is a vectorization-preventing dependency
468   // if any pointer-difference is <u VF * InterleaveCount * access size. Returns
469   // std::nullopt if pointer-difference checks cannot be used.
470   std::optional<ArrayRef<PointerDiffInfo>> getDiffChecks() const {
471     if (!CanUseDiffCheck)
472       return std::nullopt;
473     return {DiffChecks};
474   }
475 
476   /// Decide if we need to add a check between two groups of pointers,
477   /// according to needsChecking.
478   bool needsChecking(const RuntimeCheckingPtrGroup &M,
479                      const RuntimeCheckingPtrGroup &N) const;
480 
481   /// Returns the number of run-time checks required according to
482   /// needsChecking.
483   unsigned getNumberOfChecks() const { return Checks.size(); }
484 
485   /// Print the list run-time memory checks necessary.
486   void print(raw_ostream &OS, unsigned Depth = 0) const;
487 
488   /// Print \p Checks.
489   void printChecks(raw_ostream &OS,
490                    const SmallVectorImpl<RuntimePointerCheck> &Checks,
491                    unsigned Depth = 0) const;
492 
493   /// This flag indicates if we need to add the runtime check.
494   bool Need = false;
495 
496   /// Information about the pointers that may require checking.
497   SmallVector<PointerInfo, 2> Pointers;
498 
499   /// Holds a partitioning of pointers into "check groups".
500   SmallVector<RuntimeCheckingPtrGroup, 2> CheckingGroups;
501 
502   /// Check if pointers are in the same partition
503   ///
504   /// \p PtrToPartition contains the partition number for pointers (-1 if the
505   /// pointer belongs to multiple partitions).
506   static bool
507   arePointersInSamePartition(const SmallVectorImpl<int> &PtrToPartition,
508                              unsigned PtrIdx1, unsigned PtrIdx2);
509 
510   /// Decide whether we need to issue a run-time check for pointer at
511   /// index \p I and \p J to prove their independence.
512   bool needsChecking(unsigned I, unsigned J) const;
513 
514   /// Return PointerInfo for pointer at index \p PtrIdx.
515   const PointerInfo &getPointerInfo(unsigned PtrIdx) const {
516     return Pointers[PtrIdx];
517   }
518 
519   ScalarEvolution *getSE() const { return SE; }
520 
521 private:
522   /// Groups pointers such that a single memcheck is required
523   /// between two different groups. This will clear the CheckingGroups vector
524   /// and re-compute it. We will only group dependecies if \p UseDependencies
525   /// is true, otherwise we will create a separate group for each pointer.
526   void groupChecks(MemoryDepChecker::DepCandidates &DepCands,
527                    bool UseDependencies);
528 
529   /// Generate the checks and return them.
530   SmallVector<RuntimePointerCheck, 4> generateChecks();
531 
532   /// Try to create add a new (pointer-difference, access size) pair to
533   /// DiffCheck for checking groups \p CGI and \p CGJ. If pointer-difference
534   /// checks cannot be used for the groups, set CanUseDiffCheck to false.
535   void tryToCreateDiffCheck(const RuntimeCheckingPtrGroup &CGI,
536                             const RuntimeCheckingPtrGroup &CGJ);
537 
538   MemoryDepChecker &DC;
539 
540   /// Holds a pointer to the ScalarEvolution analysis.
541   ScalarEvolution *SE;
542 
543   /// Set of run-time checks required to establish independence of
544   /// otherwise may-aliasing pointers in the loop.
545   SmallVector<RuntimePointerCheck, 4> Checks;
546 
547   /// Flag indicating if pointer-difference checks can be used
548   bool CanUseDiffCheck = true;
549 
550   /// A list of (pointer-difference, access size) pairs that can be used to
551   /// prove that there are no vectorization-preventing dependencies.
552   SmallVector<PointerDiffInfo> DiffChecks;
553 };
554 
555 /// Drive the analysis of memory accesses in the loop
556 ///
557 /// This class is responsible for analyzing the memory accesses of a loop.  It
558 /// collects the accesses and then its main helper the AccessAnalysis class
559 /// finds and categorizes the dependences in buildDependenceSets.
560 ///
561 /// For memory dependences that can be analyzed at compile time, it determines
562 /// whether the dependence is part of cycle inhibiting vectorization.  This work
563 /// is delegated to the MemoryDepChecker class.
564 ///
565 /// For memory dependences that cannot be determined at compile time, it
566 /// generates run-time checks to prove independence.  This is done by
567 /// AccessAnalysis::canCheckPtrAtRT and the checks are maintained by the
568 /// RuntimePointerCheck class.
569 ///
570 /// If pointers can wrap or can't be expressed as affine AddRec expressions by
571 /// ScalarEvolution, we will generate run-time checks by emitting a
572 /// SCEVUnionPredicate.
573 ///
574 /// Checks for both memory dependences and the SCEV predicates contained in the
575 /// PSE must be emitted in order for the results of this analysis to be valid.
576 class LoopAccessInfo {
577 public:
578   LoopAccessInfo(Loop *L, ScalarEvolution *SE, const TargetLibraryInfo *TLI,
579                  AAResults *AA, DominatorTree *DT, LoopInfo *LI);
580 
581   /// Return true we can analyze the memory accesses in the loop and there are
582   /// no memory dependence cycles.
583   bool canVectorizeMemory() const { return CanVecMem; }
584 
585   /// Return true if there is a convergent operation in the loop. There may
586   /// still be reported runtime pointer checks that would be required, but it is
587   /// not legal to insert them.
588   bool hasConvergentOp() const { return HasConvergentOp; }
589 
590   const RuntimePointerChecking *getRuntimePointerChecking() const {
591     return PtrRtChecking.get();
592   }
593 
594   /// Number of memchecks required to prove independence of otherwise
595   /// may-alias pointers.
596   unsigned getNumRuntimePointerChecks() const {
597     return PtrRtChecking->getNumberOfChecks();
598   }
599 
600   /// Return true if the block BB needs to be predicated in order for the loop
601   /// to be vectorized.
602   static bool blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
603                                     DominatorTree *DT);
604 
605   /// Returns true if value \p V is loop invariant.
606   bool isInvariant(Value *V) const;
607 
608   unsigned getNumStores() const { return NumStores; }
609   unsigned getNumLoads() const { return NumLoads;}
610 
611   /// The diagnostics report generated for the analysis.  E.g. why we
612   /// couldn't analyze the loop.
613   const OptimizationRemarkAnalysis *getReport() const { return Report.get(); }
614 
615   /// the Memory Dependence Checker which can determine the
616   /// loop-independent and loop-carried dependences between memory accesses.
617   const MemoryDepChecker &getDepChecker() const { return *DepChecker; }
618 
619   /// Return the list of instructions that use \p Ptr to read or write
620   /// memory.
621   SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr,
622                                                          bool isWrite) const {
623     return DepChecker->getInstructionsForAccess(Ptr, isWrite);
624   }
625 
626   /// If an access has a symbolic strides, this maps the pointer value to
627   /// the stride symbol.
628   const DenseMap<Value *, const SCEV *> &getSymbolicStrides() const {
629     return SymbolicStrides;
630   }
631 
632   /// Print the information about the memory accesses in the loop.
633   void print(raw_ostream &OS, unsigned Depth = 0) const;
634 
635   /// If the loop has memory dependence involving an invariant address, i.e. two
636   /// stores or a store and a load, then return true, else return false.
637   bool hasDependenceInvolvingLoopInvariantAddress() const {
638     return HasDependenceInvolvingLoopInvariantAddress;
639   }
640 
641   /// Return the list of stores to invariant addresses.
642   ArrayRef<StoreInst *> getStoresToInvariantAddresses() const {
643     return StoresToInvariantAddresses;
644   }
645 
646   /// Used to add runtime SCEV checks. Simplifies SCEV expressions and converts
647   /// them to a more usable form.  All SCEV expressions during the analysis
648   /// should be re-written (and therefore simplified) according to PSE.
649   /// A user of LoopAccessAnalysis will need to emit the runtime checks
650   /// associated with this predicate.
651   const PredicatedScalarEvolution &getPSE() const { return *PSE; }
652 
653 private:
654   /// Analyze the loop.
655   void analyzeLoop(AAResults *AA, LoopInfo *LI,
656                    const TargetLibraryInfo *TLI, DominatorTree *DT);
657 
658   /// Check if the structure of the loop allows it to be analyzed by this
659   /// pass.
660   bool canAnalyzeLoop();
661 
662   /// Save the analysis remark.
663   ///
664   /// LAA does not directly emits the remarks.  Instead it stores it which the
665   /// client can retrieve and presents as its own analysis
666   /// (e.g. -Rpass-analysis=loop-vectorize).
667   OptimizationRemarkAnalysis &recordAnalysis(StringRef RemarkName,
668                                              Instruction *Instr = nullptr);
669 
670   /// Collect memory access with loop invariant strides.
671   ///
672   /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop
673   /// invariant.
674   void collectStridedAccess(Value *LoadOrStoreInst);
675 
676   // Emits the first unsafe memory dependence in a loop.
677   // Emits nothing if there are no unsafe dependences
678   // or if the dependences were not recorded.
679   void emitUnsafeDependenceRemark();
680 
681   std::unique_ptr<PredicatedScalarEvolution> PSE;
682 
683   /// We need to check that all of the pointers in this list are disjoint
684   /// at runtime. Using std::unique_ptr to make using move ctor simpler.
685   std::unique_ptr<RuntimePointerChecking> PtrRtChecking;
686 
687   /// the Memory Dependence Checker which can determine the
688   /// loop-independent and loop-carried dependences between memory accesses.
689   std::unique_ptr<MemoryDepChecker> DepChecker;
690 
691   Loop *TheLoop;
692 
693   unsigned NumLoads = 0;
694   unsigned NumStores = 0;
695 
696   /// Cache the result of analyzeLoop.
697   bool CanVecMem = false;
698   bool HasConvergentOp = false;
699 
700   /// Indicator that there are non vectorizable stores to a uniform address.
701   bool HasDependenceInvolvingLoopInvariantAddress = false;
702 
703   /// List of stores to invariant addresses.
704   SmallVector<StoreInst *> StoresToInvariantAddresses;
705 
706   /// The diagnostics report generated for the analysis.  E.g. why we
707   /// couldn't analyze the loop.
708   std::unique_ptr<OptimizationRemarkAnalysis> Report;
709 
710   /// If an access has a symbolic strides, this maps the pointer value to
711   /// the stride symbol.
712   DenseMap<Value *, const SCEV *> SymbolicStrides;
713 };
714 
715 /// Return the SCEV corresponding to a pointer with the symbolic stride
716 /// replaced with constant one, assuming the SCEV predicate associated with
717 /// \p PSE is true.
718 ///
719 /// If necessary this method will version the stride of the pointer according
720 /// to \p PtrToStride and therefore add further predicates to \p PSE.
721 ///
722 /// \p PtrToStride provides the mapping between the pointer value and its
723 /// stride as collected by LoopVectorizationLegality::collectStridedAccess.
724 const SCEV *
725 replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
726                           const DenseMap<Value *, const SCEV *> &PtrToStride,
727                           Value *Ptr);
728 
729 /// If the pointer has a constant stride return it in units of the access type
730 /// size.  Otherwise return std::nullopt.
731 ///
732 /// Ensure that it does not wrap in the address space, assuming the predicate
733 /// associated with \p PSE is true.
734 ///
735 /// If necessary this method will version the stride of the pointer according
736 /// to \p PtrToStride and therefore add further predicates to \p PSE.
737 /// The \p Assume parameter indicates if we are allowed to make additional
738 /// run-time assumptions.
739 ///
740 /// Note that the analysis results are defined if-and-only-if the original
741 /// memory access was defined.  If that access was dead, or UB, then the
742 /// result of this function is undefined.
743 std::optional<int64_t>
744 getPtrStride(PredicatedScalarEvolution &PSE, Type *AccessTy, Value *Ptr,
745              const Loop *Lp,
746              const DenseMap<Value *, const SCEV *> &StridesMap = DenseMap<Value *, const SCEV *>(),
747              bool Assume = false, bool ShouldCheckWrap = true);
748 
749 /// Returns the distance between the pointers \p PtrA and \p PtrB iff they are
750 /// compatible and it is possible to calculate the distance between them. This
751 /// is a simple API that does not depend on the analysis pass.
752 /// \param StrictCheck Ensure that the calculated distance matches the
753 /// type-based one after all the bitcasts removal in the provided pointers.
754 std::optional<int> getPointersDiff(Type *ElemTyA, Value *PtrA, Type *ElemTyB,
755                                    Value *PtrB, const DataLayout &DL,
756                                    ScalarEvolution &SE,
757                                    bool StrictCheck = false,
758                                    bool CheckType = true);
759 
760 /// Attempt to sort the pointers in \p VL and return the sorted indices
761 /// in \p SortedIndices, if reordering is required.
762 ///
763 /// Returns 'true' if sorting is legal, otherwise returns 'false'.
764 ///
765 /// For example, for a given \p VL of memory accesses in program order, a[i+4],
766 /// a[i+0], a[i+1] and a[i+7], this function will sort the \p VL and save the
767 /// sorted indices in \p SortedIndices as a[i+0], a[i+1], a[i+4], a[i+7] and
768 /// saves the mask for actual memory accesses in program order in
769 /// \p SortedIndices as <1,2,0,3>
770 bool sortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy, const DataLayout &DL,
771                      ScalarEvolution &SE,
772                      SmallVectorImpl<unsigned> &SortedIndices);
773 
774 /// Returns true if the memory operations \p A and \p B are consecutive.
775 /// This is a simple API that does not depend on the analysis pass.
776 bool isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
777                          ScalarEvolution &SE, bool CheckType = true);
778 
779 class LoopAccessInfoManager {
780   /// The cache.
781   DenseMap<Loop *, std::unique_ptr<LoopAccessInfo>> LoopAccessInfoMap;
782 
783   // The used analysis passes.
784   ScalarEvolution &SE;
785   AAResults &AA;
786   DominatorTree &DT;
787   LoopInfo &LI;
788   const TargetLibraryInfo *TLI = nullptr;
789 
790 public:
791   LoopAccessInfoManager(ScalarEvolution &SE, AAResults &AA, DominatorTree &DT,
792                         LoopInfo &LI, const TargetLibraryInfo *TLI)
793       : SE(SE), AA(AA), DT(DT), LI(LI), TLI(TLI) {}
794 
795   const LoopAccessInfo &getInfo(Loop &L);
796 
797   void clear() { LoopAccessInfoMap.clear(); }
798 
799   bool invalidate(Function &F, const PreservedAnalyses &PA,
800                   FunctionAnalysisManager::Invalidator &Inv);
801 };
802 
803 /// This analysis provides dependence information for the memory
804 /// accesses of a loop.
805 ///
806 /// It runs the analysis for a loop on demand.  This can be initiated by
807 /// querying the loop access info via AM.getResult<LoopAccessAnalysis>.
808 /// getResult return a LoopAccessInfo object.  See this class for the
809 /// specifics of what information is provided.
810 class LoopAccessAnalysis
811     : public AnalysisInfoMixin<LoopAccessAnalysis> {
812   friend AnalysisInfoMixin<LoopAccessAnalysis>;
813   static AnalysisKey Key;
814 
815 public:
816   typedef LoopAccessInfoManager Result;
817 
818   Result run(Function &F, FunctionAnalysisManager &AM);
819 };
820 
821 inline Instruction *MemoryDepChecker::Dependence::getSource(
822     const LoopAccessInfo &LAI) const {
823   return LAI.getDepChecker().getMemoryInstructions()[Source];
824 }
825 
826 inline Instruction *MemoryDepChecker::Dependence::getDestination(
827     const LoopAccessInfo &LAI) const {
828   return LAI.getDepChecker().getMemoryInstructions()[Destination];
829 }
830 
831 } // End llvm namespace
832 
833 #endif
834