1 //===- llvm/Analysis/LoopAccessAnalysis.h -----------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interface for the loop memory dependence framework that
10 // was originally developed for the Loop Vectorizer.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_ANALYSIS_LOOPACCESSANALYSIS_H
15 #define LLVM_ANALYSIS_LOOPACCESSANALYSIS_H
16 
17 #include "llvm/ADT/EquivalenceClasses.h"
18 #include "llvm/Analysis/LoopAnalysisManager.h"
19 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
20 #include "llvm/IR/DiagnosticInfo.h"
21 #include "llvm/Pass.h"
22 
23 namespace llvm {
24 
25 class AAResults;
26 class DataLayout;
27 class Loop;
28 class LoopAccessInfo;
29 class raw_ostream;
30 class SCEV;
31 class SCEVUnionPredicate;
32 class Value;
33 
34 /// Collection of parameters shared beetween the Loop Vectorizer and the
35 /// Loop Access Analysis.
36 struct VectorizerParams {
37   /// Maximum SIMD width.
38   static const unsigned MaxVectorWidth;
39 
40   /// VF as overridden by the user.
41   static unsigned VectorizationFactor;
42   /// Interleave factor as overridden by the user.
43   static unsigned VectorizationInterleave;
44   /// True if force-vector-interleave was specified by the user.
45   static bool isInterleaveForced();
46 
47   /// \When performing memory disambiguation checks at runtime do not
48   /// make more than this number of comparisons.
49   static unsigned RuntimeMemoryCheckThreshold;
50 };
51 
52 /// Checks memory dependences among accesses to the same underlying
53 /// object to determine whether there vectorization is legal or not (and at
54 /// which vectorization factor).
55 ///
56 /// Note: This class will compute a conservative dependence for access to
57 /// different underlying pointers. Clients, such as the loop vectorizer, will
58 /// sometimes deal these potential dependencies by emitting runtime checks.
59 ///
60 /// We use the ScalarEvolution framework to symbolically evalutate access
61 /// functions pairs. Since we currently don't restructure the loop we can rely
62 /// on the program order of memory accesses to determine their safety.
63 /// At the moment we will only deem accesses as safe for:
64 ///  * A negative constant distance assuming program order.
65 ///
66 ///      Safe: tmp = a[i + 1];     OR     a[i + 1] = x;
67 ///            a[i] = tmp;                y = a[i];
68 ///
69 ///   The latter case is safe because later checks guarantuee that there can't
70 ///   be a cycle through a phi node (that is, we check that "x" and "y" is not
71 ///   the same variable: a header phi can only be an induction or a reduction, a
72 ///   reduction can't have a memory sink, an induction can't have a memory
73 ///   source). This is important and must not be violated (or we have to
74 ///   resort to checking for cycles through memory).
75 ///
76 ///  * A positive constant distance assuming program order that is bigger
77 ///    than the biggest memory access.
78 ///
79 ///     tmp = a[i]        OR              b[i] = x
80 ///     a[i+2] = tmp                      y = b[i+2];
81 ///
82 ///     Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively.
83 ///
84 ///  * Zero distances and all accesses have the same size.
85 ///
86 class MemoryDepChecker {
87 public:
88   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
89   typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList;
90   /// Set of potential dependent memory accesses.
91   typedef EquivalenceClasses<MemAccessInfo> DepCandidates;
92 
93   /// Type to keep track of the status of the dependence check. The order of
94   /// the elements is important and has to be from most permissive to least
95   /// permissive.
96   enum class VectorizationSafetyStatus {
97     // Can vectorize safely without RT checks. All dependences are known to be
98     // safe.
99     Safe,
100     // Can possibly vectorize with RT checks to overcome unknown dependencies.
101     PossiblySafeWithRtChecks,
102     // Cannot vectorize due to known unsafe dependencies.
103     Unsafe,
104   };
105 
106   /// Dependece between memory access instructions.
107   struct Dependence {
108     /// The type of the dependence.
109     enum DepType {
110       // No dependence.
111       NoDep,
112       // We couldn't determine the direction or the distance.
113       Unknown,
114       // Lexically forward.
115       //
116       // FIXME: If we only have loop-independent forward dependences (e.g. a
117       // read and write of A[i]), LAA will locally deem the dependence "safe"
118       // without querying the MemoryDepChecker.  Therefore we can miss
119       // enumerating loop-independent forward dependences in
120       // getDependences.  Note that as soon as there are different
121       // indices used to access the same array, the MemoryDepChecker *is*
122       // queried and the dependence list is complete.
123       Forward,
124       // Forward, but if vectorized, is likely to prevent store-to-load
125       // forwarding.
126       ForwardButPreventsForwarding,
127       // Lexically backward.
128       Backward,
129       // Backward, but the distance allows a vectorization factor of
130       // MaxSafeDepDistBytes.
131       BackwardVectorizable,
132       // Same, but may prevent store-to-load forwarding.
133       BackwardVectorizableButPreventsForwarding
134     };
135 
136     /// String version of the types.
137     static const char *DepName[];
138 
139     /// Index of the source of the dependence in the InstMap vector.
140     unsigned Source;
141     /// Index of the destination of the dependence in the InstMap vector.
142     unsigned Destination;
143     /// The type of the dependence.
144     DepType Type;
145 
146     Dependence(unsigned Source, unsigned Destination, DepType Type)
147         : Source(Source), Destination(Destination), Type(Type) {}
148 
149     /// Return the source instruction of the dependence.
150     Instruction *getSource(const LoopAccessInfo &LAI) const;
151     /// Return the destination instruction of the dependence.
152     Instruction *getDestination(const LoopAccessInfo &LAI) const;
153 
154     /// Dependence types that don't prevent vectorization.
155     static VectorizationSafetyStatus isSafeForVectorization(DepType Type);
156 
157     /// Lexically forward dependence.
158     bool isForward() const;
159     /// Lexically backward dependence.
160     bool isBackward() const;
161 
162     /// May be a lexically backward dependence type (includes Unknown).
163     bool isPossiblyBackward() const;
164 
165     /// Print the dependence.  \p Instr is used to map the instruction
166     /// indices to instructions.
167     void print(raw_ostream &OS, unsigned Depth,
168                const SmallVectorImpl<Instruction *> &Instrs) const;
169   };
170 
171   MemoryDepChecker(PredicatedScalarEvolution &PSE, const Loop *L)
172       : PSE(PSE), InnermostLoop(L) {}
173 
174   /// Register the location (instructions are given increasing numbers)
175   /// of a write access.
176   void addAccess(StoreInst *SI);
177 
178   /// Register the location (instructions are given increasing numbers)
179   /// of a write access.
180   void addAccess(LoadInst *LI);
181 
182   /// Check whether the dependencies between the accesses are safe.
183   ///
184   /// Only checks sets with elements in \p CheckDeps.
185   bool areDepsSafe(DepCandidates &AccessSets, MemAccessInfoList &CheckDeps,
186                    const ValueToValueMap &Strides);
187 
188   /// No memory dependence was encountered that would inhibit
189   /// vectorization.
190   bool isSafeForVectorization() const {
191     return Status == VectorizationSafetyStatus::Safe;
192   }
193 
194   /// Return true if the number of elements that are safe to operate on
195   /// simultaneously is not bounded.
196   bool isSafeForAnyVectorWidth() const {
197     return MaxSafeVectorWidthInBits == UINT_MAX;
198   }
199 
200   /// The maximum number of bytes of a vector register we can vectorize
201   /// the accesses safely with.
202   uint64_t getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
203 
204   /// Return the number of elements that are safe to operate on
205   /// simultaneously, multiplied by the size of the element in bits.
206   uint64_t getMaxSafeVectorWidthInBits() const {
207     return MaxSafeVectorWidthInBits;
208   }
209 
210   /// In same cases when the dependency check fails we can still
211   /// vectorize the loop with a dynamic array access check.
212   bool shouldRetryWithRuntimeCheck() const {
213     return FoundNonConstantDistanceDependence &&
214            Status == VectorizationSafetyStatus::PossiblySafeWithRtChecks;
215   }
216 
217   /// Returns the memory dependences.  If null is returned we exceeded
218   /// the MaxDependences threshold and this information is not
219   /// available.
220   const SmallVectorImpl<Dependence> *getDependences() const {
221     return RecordDependences ? &Dependences : nullptr;
222   }
223 
224   void clearDependences() { Dependences.clear(); }
225 
226   /// The vector of memory access instructions.  The indices are used as
227   /// instruction identifiers in the Dependence class.
228   const SmallVectorImpl<Instruction *> &getMemoryInstructions() const {
229     return InstMap;
230   }
231 
232   /// Generate a mapping between the memory instructions and their
233   /// indices according to program order.
234   DenseMap<Instruction *, unsigned> generateInstructionOrderMap() const {
235     DenseMap<Instruction *, unsigned> OrderMap;
236 
237     for (unsigned I = 0; I < InstMap.size(); ++I)
238       OrderMap[InstMap[I]] = I;
239 
240     return OrderMap;
241   }
242 
243   /// Find the set of instructions that read or write via \p Ptr.
244   SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr,
245                                                          bool isWrite) const;
246 
247   /// Return the program order indices for the access location (Ptr, IsWrite).
248   /// Returns an empty ArrayRef if there are no accesses for the location.
249   ArrayRef<unsigned> getOrderForAccess(Value *Ptr, bool IsWrite) const {
250     auto I = Accesses.find({Ptr, IsWrite});
251     if (I != Accesses.end())
252       return I->second;
253     return {};
254   }
255 
256   const Loop *getInnermostLoop() const { return InnermostLoop; }
257 
258 private:
259   /// A wrapper around ScalarEvolution, used to add runtime SCEV checks, and
260   /// applies dynamic knowledge to simplify SCEV expressions and convert them
261   /// to a more usable form. We need this in case assumptions about SCEV
262   /// expressions need to be made in order to avoid unknown dependences. For
263   /// example we might assume a unit stride for a pointer in order to prove
264   /// that a memory access is strided and doesn't wrap.
265   PredicatedScalarEvolution &PSE;
266   const Loop *InnermostLoop;
267 
268   /// Maps access locations (ptr, read/write) to program order.
269   DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses;
270 
271   /// Memory access instructions in program order.
272   SmallVector<Instruction *, 16> InstMap;
273 
274   /// The program order index to be used for the next instruction.
275   unsigned AccessIdx = 0;
276 
277   // We can access this many bytes in parallel safely.
278   uint64_t MaxSafeDepDistBytes = 0;
279 
280   /// Number of elements (from consecutive iterations) that are safe to
281   /// operate on simultaneously, multiplied by the size of the element in bits.
282   /// The size of the element is taken from the memory access that is most
283   /// restrictive.
284   uint64_t MaxSafeVectorWidthInBits = -1U;
285 
286   /// If we see a non-constant dependence distance we can still try to
287   /// vectorize this loop with runtime checks.
288   bool FoundNonConstantDistanceDependence = false;
289 
290   /// Result of the dependence checks, indicating whether the checked
291   /// dependences are safe for vectorization, require RT checks or are known to
292   /// be unsafe.
293   VectorizationSafetyStatus Status = VectorizationSafetyStatus::Safe;
294 
295   //// True if Dependences reflects the dependences in the
296   //// loop.  If false we exceeded MaxDependences and
297   //// Dependences is invalid.
298   bool RecordDependences = true;
299 
300   /// Memory dependences collected during the analysis.  Only valid if
301   /// RecordDependences is true.
302   SmallVector<Dependence, 8> Dependences;
303 
304   /// Check whether there is a plausible dependence between the two
305   /// accesses.
306   ///
307   /// Access \p A must happen before \p B in program order. The two indices
308   /// identify the index into the program order map.
309   ///
310   /// This function checks  whether there is a plausible dependence (or the
311   /// absence of such can't be proved) between the two accesses. If there is a
312   /// plausible dependence but the dependence distance is bigger than one
313   /// element access it records this distance in \p MaxSafeDepDistBytes (if this
314   /// distance is smaller than any other distance encountered so far).
315   /// Otherwise, this function returns true signaling a possible dependence.
316   Dependence::DepType isDependent(const MemAccessInfo &A, unsigned AIdx,
317                                   const MemAccessInfo &B, unsigned BIdx,
318                                   const ValueToValueMap &Strides);
319 
320   /// Check whether the data dependence could prevent store-load
321   /// forwarding.
322   ///
323   /// \return false if we shouldn't vectorize at all or avoid larger
324   /// vectorization factors by limiting MaxSafeDepDistBytes.
325   bool couldPreventStoreLoadForward(uint64_t Distance, uint64_t TypeByteSize);
326 
327   /// Updates the current safety status with \p S. We can go from Safe to
328   /// either PossiblySafeWithRtChecks or Unsafe and from
329   /// PossiblySafeWithRtChecks to Unsafe.
330   void mergeInStatus(VectorizationSafetyStatus S);
331 };
332 
333 class RuntimePointerChecking;
334 /// A grouping of pointers. A single memcheck is required between
335 /// two groups.
336 struct RuntimeCheckingPtrGroup {
337   /// Create a new pointer checking group containing a single
338   /// pointer, with index \p Index in RtCheck.
339   RuntimeCheckingPtrGroup(unsigned Index, RuntimePointerChecking &RtCheck);
340 
341   /// Tries to add the pointer recorded in RtCheck at index
342   /// \p Index to this pointer checking group. We can only add a pointer
343   /// to a checking group if we will still be able to get
344   /// the upper and lower bounds of the check. Returns true in case
345   /// of success, false otherwise.
346   bool addPointer(unsigned Index, RuntimePointerChecking &RtCheck);
347   bool addPointer(unsigned Index, const SCEV *Start, const SCEV *End,
348                   unsigned AS, bool NeedsFreeze, ScalarEvolution &SE);
349 
350   /// The SCEV expression which represents the upper bound of all the
351   /// pointers in this group.
352   const SCEV *High;
353   /// The SCEV expression which represents the lower bound of all the
354   /// pointers in this group.
355   const SCEV *Low;
356   /// Indices of all the pointers that constitute this grouping.
357   SmallVector<unsigned, 2> Members;
358   /// Address space of the involved pointers.
359   unsigned AddressSpace;
360   /// Whether the pointer needs to be frozen after expansion, e.g. because it
361   /// may be poison outside the loop.
362   bool NeedsFreeze = false;
363 };
364 
365 /// A memcheck which made up of a pair of grouped pointers.
366 typedef std::pair<const RuntimeCheckingPtrGroup *,
367                   const RuntimeCheckingPtrGroup *>
368     RuntimePointerCheck;
369 
370 struct PointerDiffInfo {
371   const SCEV *SrcStart;
372   const SCEV *SinkStart;
373   unsigned AccessSize;
374   bool NeedsFreeze;
375 
376   PointerDiffInfo(const SCEV *SrcStart, const SCEV *SinkStart,
377                   unsigned AccessSize, bool NeedsFreeze)
378       : SrcStart(SrcStart), SinkStart(SinkStart), AccessSize(AccessSize),
379         NeedsFreeze(NeedsFreeze) {}
380 };
381 
382 /// Holds information about the memory runtime legality checks to verify
383 /// that a group of pointers do not overlap.
384 class RuntimePointerChecking {
385   friend struct RuntimeCheckingPtrGroup;
386 
387 public:
388   struct PointerInfo {
389     /// Holds the pointer value that we need to check.
390     TrackingVH<Value> PointerValue;
391     /// Holds the smallest byte address accessed by the pointer throughout all
392     /// iterations of the loop.
393     const SCEV *Start;
394     /// Holds the largest byte address accessed by the pointer throughout all
395     /// iterations of the loop, plus 1.
396     const SCEV *End;
397     /// Holds the information if this pointer is used for writing to memory.
398     bool IsWritePtr;
399     /// Holds the id of the set of pointers that could be dependent because of a
400     /// shared underlying object.
401     unsigned DependencySetId;
402     /// Holds the id of the disjoint alias set to which this pointer belongs.
403     unsigned AliasSetId;
404     /// SCEV for the access.
405     const SCEV *Expr;
406     /// True if the pointer expressions needs to be frozen after expansion.
407     bool NeedsFreeze;
408 
409     PointerInfo(Value *PointerValue, const SCEV *Start, const SCEV *End,
410                 bool IsWritePtr, unsigned DependencySetId, unsigned AliasSetId,
411                 const SCEV *Expr, bool NeedsFreeze)
412         : PointerValue(PointerValue), Start(Start), End(End),
413           IsWritePtr(IsWritePtr), DependencySetId(DependencySetId),
414           AliasSetId(AliasSetId), Expr(Expr), NeedsFreeze(NeedsFreeze) {}
415   };
416 
417   RuntimePointerChecking(MemoryDepChecker &DC, ScalarEvolution *SE)
418       : DC(DC), SE(SE) {}
419 
420   /// Reset the state of the pointer runtime information.
421   void reset() {
422     Need = false;
423     Pointers.clear();
424     Checks.clear();
425   }
426 
427   /// Insert a pointer and calculate the start and end SCEVs.
428   /// We need \p PSE in order to compute the SCEV expression of the pointer
429   /// according to the assumptions that we've made during the analysis.
430   /// The method might also version the pointer stride according to \p Strides,
431   /// and add new predicates to \p PSE.
432   void insert(Loop *Lp, Value *Ptr, const SCEV *PtrExpr, Type *AccessTy,
433               bool WritePtr, unsigned DepSetId, unsigned ASId,
434               PredicatedScalarEvolution &PSE, bool NeedsFreeze);
435 
436   /// No run-time memory checking is necessary.
437   bool empty() const { return Pointers.empty(); }
438 
439   /// Generate the checks and store it.  This also performs the grouping
440   /// of pointers to reduce the number of memchecks necessary.
441   void generateChecks(MemoryDepChecker::DepCandidates &DepCands,
442                       bool UseDependencies);
443 
444   /// Returns the checks that generateChecks created. They can be used to ensure
445   /// no read/write accesses overlap across all loop iterations.
446   const SmallVectorImpl<RuntimePointerCheck> &getChecks() const {
447     return Checks;
448   }
449 
450   // Returns an optional list of (pointer-difference expressions, access size)
451   // pairs that can be used to prove that there are no vectorization-preventing
452   // dependencies at runtime. There are is a vectorization-preventing dependency
453   // if any pointer-difference is <u VF * InterleaveCount * access size. Returns
454   // None if pointer-difference checks cannot be used.
455   Optional<ArrayRef<PointerDiffInfo>> getDiffChecks() const {
456     if (!CanUseDiffCheck)
457       return None;
458     return {DiffChecks};
459   }
460 
461   /// Decide if we need to add a check between two groups of pointers,
462   /// according to needsChecking.
463   bool needsChecking(const RuntimeCheckingPtrGroup &M,
464                      const RuntimeCheckingPtrGroup &N) const;
465 
466   /// Returns the number of run-time checks required according to
467   /// needsChecking.
468   unsigned getNumberOfChecks() const { return Checks.size(); }
469 
470   /// Print the list run-time memory checks necessary.
471   void print(raw_ostream &OS, unsigned Depth = 0) const;
472 
473   /// Print \p Checks.
474   void printChecks(raw_ostream &OS,
475                    const SmallVectorImpl<RuntimePointerCheck> &Checks,
476                    unsigned Depth = 0) const;
477 
478   /// This flag indicates if we need to add the runtime check.
479   bool Need = false;
480 
481   /// Information about the pointers that may require checking.
482   SmallVector<PointerInfo, 2> Pointers;
483 
484   /// Holds a partitioning of pointers into "check groups".
485   SmallVector<RuntimeCheckingPtrGroup, 2> CheckingGroups;
486 
487   /// Check if pointers are in the same partition
488   ///
489   /// \p PtrToPartition contains the partition number for pointers (-1 if the
490   /// pointer belongs to multiple partitions).
491   static bool
492   arePointersInSamePartition(const SmallVectorImpl<int> &PtrToPartition,
493                              unsigned PtrIdx1, unsigned PtrIdx2);
494 
495   /// Decide whether we need to issue a run-time check for pointer at
496   /// index \p I and \p J to prove their independence.
497   bool needsChecking(unsigned I, unsigned J) const;
498 
499   /// Return PointerInfo for pointer at index \p PtrIdx.
500   const PointerInfo &getPointerInfo(unsigned PtrIdx) const {
501     return Pointers[PtrIdx];
502   }
503 
504   ScalarEvolution *getSE() const { return SE; }
505 
506 private:
507   /// Groups pointers such that a single memcheck is required
508   /// between two different groups. This will clear the CheckingGroups vector
509   /// and re-compute it. We will only group dependecies if \p UseDependencies
510   /// is true, otherwise we will create a separate group for each pointer.
511   void groupChecks(MemoryDepChecker::DepCandidates &DepCands,
512                    bool UseDependencies);
513 
514   /// Generate the checks and return them.
515   SmallVector<RuntimePointerCheck, 4> generateChecks();
516 
517   /// Try to create add a new (pointer-difference, access size) pair to
518   /// DiffCheck for checking groups \p CGI and \p CGJ. If pointer-difference
519   /// checks cannot be used for the groups, set CanUseDiffCheck to false.
520   void tryToCreateDiffCheck(const RuntimeCheckingPtrGroup &CGI,
521                             const RuntimeCheckingPtrGroup &CGJ);
522 
523   MemoryDepChecker &DC;
524 
525   /// Holds a pointer to the ScalarEvolution analysis.
526   ScalarEvolution *SE;
527 
528   /// Set of run-time checks required to establish independence of
529   /// otherwise may-aliasing pointers in the loop.
530   SmallVector<RuntimePointerCheck, 4> Checks;
531 
532   /// Flag indicating if pointer-difference checks can be used
533   bool CanUseDiffCheck = true;
534 
535   /// A list of (pointer-difference, access size) pairs that can be used to
536   /// prove that there are no vectorization-preventing dependencies.
537   SmallVector<PointerDiffInfo> DiffChecks;
538 };
539 
540 /// Drive the analysis of memory accesses in the loop
541 ///
542 /// This class is responsible for analyzing the memory accesses of a loop.  It
543 /// collects the accesses and then its main helper the AccessAnalysis class
544 /// finds and categorizes the dependences in buildDependenceSets.
545 ///
546 /// For memory dependences that can be analyzed at compile time, it determines
547 /// whether the dependence is part of cycle inhibiting vectorization.  This work
548 /// is delegated to the MemoryDepChecker class.
549 ///
550 /// For memory dependences that cannot be determined at compile time, it
551 /// generates run-time checks to prove independence.  This is done by
552 /// AccessAnalysis::canCheckPtrAtRT and the checks are maintained by the
553 /// RuntimePointerCheck class.
554 ///
555 /// If pointers can wrap or can't be expressed as affine AddRec expressions by
556 /// ScalarEvolution, we will generate run-time checks by emitting a
557 /// SCEVUnionPredicate.
558 ///
559 /// Checks for both memory dependences and the SCEV predicates contained in the
560 /// PSE must be emitted in order for the results of this analysis to be valid.
561 class LoopAccessInfo {
562 public:
563   LoopAccessInfo(Loop *L, ScalarEvolution *SE, const TargetLibraryInfo *TLI,
564                  AAResults *AA, DominatorTree *DT, LoopInfo *LI);
565 
566   /// Return true we can analyze the memory accesses in the loop and there are
567   /// no memory dependence cycles.
568   bool canVectorizeMemory() const { return CanVecMem; }
569 
570   /// Return true if there is a convergent operation in the loop. There may
571   /// still be reported runtime pointer checks that would be required, but it is
572   /// not legal to insert them.
573   bool hasConvergentOp() const { return HasConvergentOp; }
574 
575   const RuntimePointerChecking *getRuntimePointerChecking() const {
576     return PtrRtChecking.get();
577   }
578 
579   /// Number of memchecks required to prove independence of otherwise
580   /// may-alias pointers.
581   unsigned getNumRuntimePointerChecks() const {
582     return PtrRtChecking->getNumberOfChecks();
583   }
584 
585   /// Return true if the block BB needs to be predicated in order for the loop
586   /// to be vectorized.
587   static bool blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
588                                     DominatorTree *DT);
589 
590   /// Returns true if the value V is uniform within the loop.
591   bool isUniform(Value *V) const;
592 
593   uint64_t getMaxSafeDepDistBytes() const { return MaxSafeDepDistBytes; }
594   unsigned getNumStores() const { return NumStores; }
595   unsigned getNumLoads() const { return NumLoads;}
596 
597   /// The diagnostics report generated for the analysis.  E.g. why we
598   /// couldn't analyze the loop.
599   const OptimizationRemarkAnalysis *getReport() const { return Report.get(); }
600 
601   /// the Memory Dependence Checker which can determine the
602   /// loop-independent and loop-carried dependences between memory accesses.
603   const MemoryDepChecker &getDepChecker() const { return *DepChecker; }
604 
605   /// Return the list of instructions that use \p Ptr to read or write
606   /// memory.
607   SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr,
608                                                          bool isWrite) const {
609     return DepChecker->getInstructionsForAccess(Ptr, isWrite);
610   }
611 
612   /// If an access has a symbolic strides, this maps the pointer value to
613   /// the stride symbol.
614   const ValueToValueMap &getSymbolicStrides() const { return SymbolicStrides; }
615 
616   /// Pointer has a symbolic stride.
617   bool hasStride(Value *V) const { return StrideSet.count(V); }
618 
619   /// Print the information about the memory accesses in the loop.
620   void print(raw_ostream &OS, unsigned Depth = 0) const;
621 
622   /// If the loop has memory dependence involving an invariant address, i.e. two
623   /// stores or a store and a load, then return true, else return false.
624   bool hasDependenceInvolvingLoopInvariantAddress() const {
625     return HasDependenceInvolvingLoopInvariantAddress;
626   }
627 
628   /// Return the list of stores to invariant addresses.
629   const ArrayRef<StoreInst *> getStoresToInvariantAddresses() const {
630     return StoresToInvariantAddresses;
631   }
632 
633   /// Used to add runtime SCEV checks. Simplifies SCEV expressions and converts
634   /// them to a more usable form.  All SCEV expressions during the analysis
635   /// should be re-written (and therefore simplified) according to PSE.
636   /// A user of LoopAccessAnalysis will need to emit the runtime checks
637   /// associated with this predicate.
638   const PredicatedScalarEvolution &getPSE() const { return *PSE; }
639 
640 private:
641   /// Analyze the loop.
642   void analyzeLoop(AAResults *AA, LoopInfo *LI,
643                    const TargetLibraryInfo *TLI, DominatorTree *DT);
644 
645   /// Check if the structure of the loop allows it to be analyzed by this
646   /// pass.
647   bool canAnalyzeLoop();
648 
649   /// Save the analysis remark.
650   ///
651   /// LAA does not directly emits the remarks.  Instead it stores it which the
652   /// client can retrieve and presents as its own analysis
653   /// (e.g. -Rpass-analysis=loop-vectorize).
654   OptimizationRemarkAnalysis &recordAnalysis(StringRef RemarkName,
655                                              Instruction *Instr = nullptr);
656 
657   /// Collect memory access with loop invariant strides.
658   ///
659   /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop
660   /// invariant.
661   void collectStridedAccess(Value *LoadOrStoreInst);
662 
663   // Emits the first unsafe memory dependence in a loop.
664   // Emits nothing if there are no unsafe dependences
665   // or if the dependences were not recorded.
666   void emitUnsafeDependenceRemark();
667 
668   std::unique_ptr<PredicatedScalarEvolution> PSE;
669 
670   /// We need to check that all of the pointers in this list are disjoint
671   /// at runtime. Using std::unique_ptr to make using move ctor simpler.
672   std::unique_ptr<RuntimePointerChecking> PtrRtChecking;
673 
674   /// the Memory Dependence Checker which can determine the
675   /// loop-independent and loop-carried dependences between memory accesses.
676   std::unique_ptr<MemoryDepChecker> DepChecker;
677 
678   Loop *TheLoop;
679 
680   unsigned NumLoads = 0;
681   unsigned NumStores = 0;
682 
683   uint64_t MaxSafeDepDistBytes = -1;
684 
685   /// Cache the result of analyzeLoop.
686   bool CanVecMem = false;
687   bool HasConvergentOp = false;
688 
689   /// Indicator that there are non vectorizable stores to a uniform address.
690   bool HasDependenceInvolvingLoopInvariantAddress = false;
691 
692   /// List of stores to invariant addresses.
693   SmallVector<StoreInst *> StoresToInvariantAddresses;
694 
695   /// The diagnostics report generated for the analysis.  E.g. why we
696   /// couldn't analyze the loop.
697   std::unique_ptr<OptimizationRemarkAnalysis> Report;
698 
699   /// If an access has a symbolic strides, this maps the pointer value to
700   /// the stride symbol.
701   ValueToValueMap SymbolicStrides;
702 
703   /// Set of symbolic strides values.
704   SmallPtrSet<Value *, 8> StrideSet;
705 };
706 
707 Value *stripIntegerCast(Value *V);
708 
709 /// Return the SCEV corresponding to a pointer with the symbolic stride
710 /// replaced with constant one, assuming the SCEV predicate associated with
711 /// \p PSE is true.
712 ///
713 /// If necessary this method will version the stride of the pointer according
714 /// to \p PtrToStride and therefore add further predicates to \p PSE.
715 ///
716 /// \p PtrToStride provides the mapping between the pointer value and its
717 /// stride as collected by LoopVectorizationLegality::collectStridedAccess.
718 const SCEV *replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
719                                       const ValueToValueMap &PtrToStride,
720                                       Value *Ptr);
721 
722 /// If the pointer has a constant stride return it in units of the access type
723 /// size.  Otherwise return zero.
724 ///
725 /// Ensure that it does not wrap in the address space, assuming the predicate
726 /// associated with \p PSE is true.
727 ///
728 /// If necessary this method will version the stride of the pointer according
729 /// to \p PtrToStride and therefore add further predicates to \p PSE.
730 /// The \p Assume parameter indicates if we are allowed to make additional
731 /// run-time assumptions.
732 int64_t getPtrStride(PredicatedScalarEvolution &PSE, Type *AccessTy, Value *Ptr,
733                      const Loop *Lp,
734                      const ValueToValueMap &StridesMap = ValueToValueMap(),
735                      bool Assume = false, bool ShouldCheckWrap = true);
736 
737 /// Returns the distance between the pointers \p PtrA and \p PtrB iff they are
738 /// compatible and it is possible to calculate the distance between them. This
739 /// is a simple API that does not depend on the analysis pass.
740 /// \param StrictCheck Ensure that the calculated distance matches the
741 /// type-based one after all the bitcasts removal in the provided pointers.
742 Optional<int> getPointersDiff(Type *ElemTyA, Value *PtrA, Type *ElemTyB,
743                               Value *PtrB, const DataLayout &DL,
744                               ScalarEvolution &SE, bool StrictCheck = false,
745                               bool CheckType = true);
746 
747 /// Attempt to sort the pointers in \p VL and return the sorted indices
748 /// in \p SortedIndices, if reordering is required.
749 ///
750 /// Returns 'true' if sorting is legal, otherwise returns 'false'.
751 ///
752 /// For example, for a given \p VL of memory accesses in program order, a[i+4],
753 /// a[i+0], a[i+1] and a[i+7], this function will sort the \p VL and save the
754 /// sorted indices in \p SortedIndices as a[i+0], a[i+1], a[i+4], a[i+7] and
755 /// saves the mask for actual memory accesses in program order in
756 /// \p SortedIndices as <1,2,0,3>
757 bool sortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy, const DataLayout &DL,
758                      ScalarEvolution &SE,
759                      SmallVectorImpl<unsigned> &SortedIndices);
760 
761 /// Returns true if the memory operations \p A and \p B are consecutive.
762 /// This is a simple API that does not depend on the analysis pass.
763 bool isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
764                          ScalarEvolution &SE, bool CheckType = true);
765 
766 /// This analysis provides dependence information for the memory accesses
767 /// of a loop.
768 ///
769 /// It runs the analysis for a loop on demand.  This can be initiated by
770 /// querying the loop access info via LAA::getInfo.  getInfo return a
771 /// LoopAccessInfo object.  See this class for the specifics of what information
772 /// is provided.
773 class LoopAccessLegacyAnalysis : public FunctionPass {
774 public:
775   static char ID;
776 
777   LoopAccessLegacyAnalysis();
778 
779   bool runOnFunction(Function &F) override;
780 
781   void getAnalysisUsage(AnalysisUsage &AU) const override;
782 
783   /// Query the result of the loop access information for the loop \p L.
784   ///
785   /// If there is no cached result available run the analysis.
786   const LoopAccessInfo &getInfo(Loop *L);
787 
788   void releaseMemory() override {
789     // Invalidate the cache when the pass is freed.
790     LoopAccessInfoMap.clear();
791   }
792 
793   /// Print the result of the analysis when invoked with -analyze.
794   void print(raw_ostream &OS, const Module *M = nullptr) const override;
795 
796 private:
797   /// The cache.
798   DenseMap<Loop *, std::unique_ptr<LoopAccessInfo>> LoopAccessInfoMap;
799 
800   // The used analysis passes.
801   ScalarEvolution *SE = nullptr;
802   const TargetLibraryInfo *TLI = nullptr;
803   AAResults *AA = nullptr;
804   DominatorTree *DT = nullptr;
805   LoopInfo *LI = nullptr;
806 };
807 
808 /// This analysis provides dependence information for the memory
809 /// accesses of a loop.
810 ///
811 /// It runs the analysis for a loop on demand.  This can be initiated by
812 /// querying the loop access info via AM.getResult<LoopAccessAnalysis>.
813 /// getResult return a LoopAccessInfo object.  See this class for the
814 /// specifics of what information is provided.
815 class LoopAccessAnalysis
816     : public AnalysisInfoMixin<LoopAccessAnalysis> {
817   friend AnalysisInfoMixin<LoopAccessAnalysis>;
818   static AnalysisKey Key;
819 
820 public:
821   typedef LoopAccessInfo Result;
822 
823   Result run(Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR);
824 };
825 
826 inline Instruction *MemoryDepChecker::Dependence::getSource(
827     const LoopAccessInfo &LAI) const {
828   return LAI.getDepChecker().getMemoryInstructions()[Source];
829 }
830 
831 inline Instruction *MemoryDepChecker::Dependence::getDestination(
832     const LoopAccessInfo &LAI) const {
833   return LAI.getDepChecker().getMemoryInstructions()[Destination];
834 }
835 
836 } // End llvm namespace
837 
838 #endif
839