1 //===- llvm/Analysis/LoopAccessAnalysis.h -----------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interface for the loop memory dependence framework that
10 // was originally developed for the Loop Vectorizer.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_ANALYSIS_LOOPACCESSANALYSIS_H
15 #define LLVM_ANALYSIS_LOOPACCESSANALYSIS_H
16 
17 #include "llvm/ADT/EquivalenceClasses.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/AliasSetTracker.h"
22 #include "llvm/Analysis/LoopAnalysisManager.h"
23 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
24 #include "llvm/IR/DiagnosticInfo.h"
25 #include "llvm/IR/ValueHandle.h"
26 #include "llvm/Pass.h"
27 #include "llvm/Support/raw_ostream.h"
28 
29 namespace llvm {
30 
31 class Value;
32 class DataLayout;
33 class ScalarEvolution;
34 class Loop;
35 class SCEV;
36 class SCEVUnionPredicate;
37 class LoopAccessInfo;
38 class OptimizationRemarkEmitter;
39 
40 /// Collection of parameters shared beetween the Loop Vectorizer and the
41 /// Loop Access Analysis.
42 struct VectorizerParams {
43   /// Maximum SIMD width.
44   static const unsigned MaxVectorWidth;
45 
46   /// VF as overridden by the user.
47   static unsigned VectorizationFactor;
48   /// Interleave factor as overridden by the user.
49   static unsigned VectorizationInterleave;
50   /// True if force-vector-interleave was specified by the user.
51   static bool isInterleaveForced();
52 
53   /// \When performing memory disambiguation checks at runtime do not
54   /// make more than this number of comparisons.
55   static unsigned RuntimeMemoryCheckThreshold;
56 };
57 
58 /// Checks memory dependences among accesses to the same underlying
59 /// object to determine whether there vectorization is legal or not (and at
60 /// which vectorization factor).
61 ///
62 /// Note: This class will compute a conservative dependence for access to
63 /// different underlying pointers. Clients, such as the loop vectorizer, will
64 /// sometimes deal these potential dependencies by emitting runtime checks.
65 ///
66 /// We use the ScalarEvolution framework to symbolically evalutate access
67 /// functions pairs. Since we currently don't restructure the loop we can rely
68 /// on the program order of memory accesses to determine their safety.
69 /// At the moment we will only deem accesses as safe for:
70 ///  * A negative constant distance assuming program order.
71 ///
72 ///      Safe: tmp = a[i + 1];     OR     a[i + 1] = x;
73 ///            a[i] = tmp;                y = a[i];
74 ///
75 ///   The latter case is safe because later checks guarantuee that there can't
76 ///   be a cycle through a phi node (that is, we check that "x" and "y" is not
77 ///   the same variable: a header phi can only be an induction or a reduction, a
78 ///   reduction can't have a memory sink, an induction can't have a memory
79 ///   source). This is important and must not be violated (or we have to
80 ///   resort to checking for cycles through memory).
81 ///
82 ///  * A positive constant distance assuming program order that is bigger
83 ///    than the biggest memory access.
84 ///
85 ///     tmp = a[i]        OR              b[i] = x
86 ///     a[i+2] = tmp                      y = b[i+2];
87 ///
88 ///     Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively.
89 ///
90 ///  * Zero distances and all accesses have the same size.
91 ///
92 class MemoryDepChecker {
93 public:
94   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
95   typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList;
96   /// Set of potential dependent memory accesses.
97   typedef EquivalenceClasses<MemAccessInfo> DepCandidates;
98 
99   /// Type to keep track of the status of the dependence check. The order of
100   /// the elements is important and has to be from most permissive to least
101   /// permissive.
102   enum class VectorizationSafetyStatus {
103     // Can vectorize safely without RT checks. All dependences are known to be
104     // safe.
105     Safe,
106     // Can possibly vectorize with RT checks to overcome unknown dependencies.
107     PossiblySafeWithRtChecks,
108     // Cannot vectorize due to known unsafe dependencies.
109     Unsafe,
110   };
111 
112   /// Dependece between memory access instructions.
113   struct Dependence {
114     /// The type of the dependence.
115     enum DepType {
116       // No dependence.
117       NoDep,
118       // We couldn't determine the direction or the distance.
119       Unknown,
120       // Lexically forward.
121       //
122       // FIXME: If we only have loop-independent forward dependences (e.g. a
123       // read and write of A[i]), LAA will locally deem the dependence "safe"
124       // without querying the MemoryDepChecker.  Therefore we can miss
125       // enumerating loop-independent forward dependences in
126       // getDependences.  Note that as soon as there are different
127       // indices used to access the same array, the MemoryDepChecker *is*
128       // queried and the dependence list is complete.
129       Forward,
130       // Forward, but if vectorized, is likely to prevent store-to-load
131       // forwarding.
132       ForwardButPreventsForwarding,
133       // Lexically backward.
134       Backward,
135       // Backward, but the distance allows a vectorization factor of
136       // MaxSafeDepDistBytes.
137       BackwardVectorizable,
138       // Same, but may prevent store-to-load forwarding.
139       BackwardVectorizableButPreventsForwarding
140     };
141 
142     /// String version of the types.
143     static const char *DepName[];
144 
145     /// Index of the source of the dependence in the InstMap vector.
146     unsigned Source;
147     /// Index of the destination of the dependence in the InstMap vector.
148     unsigned Destination;
149     /// The type of the dependence.
150     DepType Type;
151 
152     Dependence(unsigned Source, unsigned Destination, DepType Type)
153         : Source(Source), Destination(Destination), Type(Type) {}
154 
155     /// Return the source instruction of the dependence.
156     Instruction *getSource(const LoopAccessInfo &LAI) const;
157     /// Return the destination instruction of the dependence.
158     Instruction *getDestination(const LoopAccessInfo &LAI) const;
159 
160     /// Dependence types that don't prevent vectorization.
161     static VectorizationSafetyStatus isSafeForVectorization(DepType Type);
162 
163     /// Lexically forward dependence.
164     bool isForward() const;
165     /// Lexically backward dependence.
166     bool isBackward() const;
167 
168     /// May be a lexically backward dependence type (includes Unknown).
169     bool isPossiblyBackward() const;
170 
171     /// Print the dependence.  \p Instr is used to map the instruction
172     /// indices to instructions.
173     void print(raw_ostream &OS, unsigned Depth,
174                const SmallVectorImpl<Instruction *> &Instrs) const;
175   };
176 
177   MemoryDepChecker(PredicatedScalarEvolution &PSE, const Loop *L)
178       : PSE(PSE), InnermostLoop(L), AccessIdx(0), MaxSafeDepDistBytes(0),
179         MaxSafeRegisterWidth(-1U), FoundNonConstantDistanceDependence(false),
180         Status(VectorizationSafetyStatus::Safe), RecordDependences(true) {}
181 
182   /// Register the location (instructions are given increasing numbers)
183   /// of a write access.
184   void addAccess(StoreInst *SI) {
185     Value *Ptr = SI->getPointerOperand();
186     Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
187     InstMap.push_back(SI);
188     ++AccessIdx;
189   }
190 
191   /// Register the location (instructions are given increasing numbers)
192   /// of a write access.
193   void addAccess(LoadInst *LI) {
194     Value *Ptr = LI->getPointerOperand();
195     Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
196     InstMap.push_back(LI);
197     ++AccessIdx;
198   }
199 
200   /// Check whether the dependencies between the accesses are safe.
201   ///
202   /// Only checks sets with elements in \p CheckDeps.
203   bool areDepsSafe(DepCandidates &AccessSets, MemAccessInfoList &CheckDeps,
204                    const ValueToValueMap &Strides);
205 
206   /// No memory dependence was encountered that would inhibit
207   /// vectorization.
208   bool isSafeForVectorization() const {
209     return Status == VectorizationSafetyStatus::Safe;
210   }
211 
212   /// The maximum number of bytes of a vector register we can vectorize
213   /// the accesses safely with.
214   uint64_t getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
215 
216   /// Return the number of elements that are safe to operate on
217   /// simultaneously, multiplied by the size of the element in bits.
218   uint64_t getMaxSafeRegisterWidth() const { return MaxSafeRegisterWidth; }
219 
220   /// In same cases when the dependency check fails we can still
221   /// vectorize the loop with a dynamic array access check.
222   bool shouldRetryWithRuntimeCheck() const {
223     return FoundNonConstantDistanceDependence &&
224            Status == VectorizationSafetyStatus::PossiblySafeWithRtChecks;
225   }
226 
227   /// Returns the memory dependences.  If null is returned we exceeded
228   /// the MaxDependences threshold and this information is not
229   /// available.
230   const SmallVectorImpl<Dependence> *getDependences() const {
231     return RecordDependences ? &Dependences : nullptr;
232   }
233 
234   void clearDependences() { Dependences.clear(); }
235 
236   /// The vector of memory access instructions.  The indices are used as
237   /// instruction identifiers in the Dependence class.
238   const SmallVectorImpl<Instruction *> &getMemoryInstructions() const {
239     return InstMap;
240   }
241 
242   /// Generate a mapping between the memory instructions and their
243   /// indices according to program order.
244   DenseMap<Instruction *, unsigned> generateInstructionOrderMap() const {
245     DenseMap<Instruction *, unsigned> OrderMap;
246 
247     for (unsigned I = 0; I < InstMap.size(); ++I)
248       OrderMap[InstMap[I]] = I;
249 
250     return OrderMap;
251   }
252 
253   /// Find the set of instructions that read or write via \p Ptr.
254   SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr,
255                                                          bool isWrite) const;
256 
257 private:
258   /// A wrapper around ScalarEvolution, used to add runtime SCEV checks, and
259   /// applies dynamic knowledge to simplify SCEV expressions and convert them
260   /// to a more usable form. We need this in case assumptions about SCEV
261   /// expressions need to be made in order to avoid unknown dependences. For
262   /// example we might assume a unit stride for a pointer in order to prove
263   /// that a memory access is strided and doesn't wrap.
264   PredicatedScalarEvolution &PSE;
265   const Loop *InnermostLoop;
266 
267   /// Maps access locations (ptr, read/write) to program order.
268   DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses;
269 
270   /// Memory access instructions in program order.
271   SmallVector<Instruction *, 16> InstMap;
272 
273   /// The program order index to be used for the next instruction.
274   unsigned AccessIdx;
275 
276   // We can access this many bytes in parallel safely.
277   uint64_t MaxSafeDepDistBytes;
278 
279   /// Number of elements (from consecutive iterations) that are safe to
280   /// operate on simultaneously, multiplied by the size of the element in bits.
281   /// The size of the element is taken from the memory access that is most
282   /// restrictive.
283   uint64_t MaxSafeRegisterWidth;
284 
285   /// If we see a non-constant dependence distance we can still try to
286   /// vectorize this loop with runtime checks.
287   bool FoundNonConstantDistanceDependence;
288 
289   /// Result of the dependence checks, indicating whether the checked
290   /// dependences are safe for vectorization, require RT checks or are known to
291   /// be unsafe.
292   VectorizationSafetyStatus Status;
293 
294   //// True if Dependences reflects the dependences in the
295   //// loop.  If false we exceeded MaxDependences and
296   //// Dependences is invalid.
297   bool RecordDependences;
298 
299   /// Memory dependences collected during the analysis.  Only valid if
300   /// RecordDependences is true.
301   SmallVector<Dependence, 8> Dependences;
302 
303   /// Check whether there is a plausible dependence between the two
304   /// accesses.
305   ///
306   /// Access \p A must happen before \p B in program order. The two indices
307   /// identify the index into the program order map.
308   ///
309   /// This function checks  whether there is a plausible dependence (or the
310   /// absence of such can't be proved) between the two accesses. If there is a
311   /// plausible dependence but the dependence distance is bigger than one
312   /// element access it records this distance in \p MaxSafeDepDistBytes (if this
313   /// distance is smaller than any other distance encountered so far).
314   /// Otherwise, this function returns true signaling a possible dependence.
315   Dependence::DepType isDependent(const MemAccessInfo &A, unsigned AIdx,
316                                   const MemAccessInfo &B, unsigned BIdx,
317                                   const ValueToValueMap &Strides);
318 
319   /// Check whether the data dependence could prevent store-load
320   /// forwarding.
321   ///
322   /// \return false if we shouldn't vectorize at all or avoid larger
323   /// vectorization factors by limiting MaxSafeDepDistBytes.
324   bool couldPreventStoreLoadForward(uint64_t Distance, uint64_t TypeByteSize);
325 
326   /// Updates the current safety status with \p S. We can go from Safe to
327   /// either PossiblySafeWithRtChecks or Unsafe and from
328   /// PossiblySafeWithRtChecks to Unsafe.
329   void mergeInStatus(VectorizationSafetyStatus S);
330 };
331 
332 /// Holds information about the memory runtime legality checks to verify
333 /// that a group of pointers do not overlap.
334 class RuntimePointerChecking {
335 public:
336   struct PointerInfo {
337     /// Holds the pointer value that we need to check.
338     TrackingVH<Value> PointerValue;
339     /// Holds the smallest byte address accessed by the pointer throughout all
340     /// iterations of the loop.
341     const SCEV *Start;
342     /// Holds the largest byte address accessed by the pointer throughout all
343     /// iterations of the loop, plus 1.
344     const SCEV *End;
345     /// Holds the information if this pointer is used for writing to memory.
346     bool IsWritePtr;
347     /// Holds the id of the set of pointers that could be dependent because of a
348     /// shared underlying object.
349     unsigned DependencySetId;
350     /// Holds the id of the disjoint alias set to which this pointer belongs.
351     unsigned AliasSetId;
352     /// SCEV for the access.
353     const SCEV *Expr;
354 
355     PointerInfo(Value *PointerValue, const SCEV *Start, const SCEV *End,
356                 bool IsWritePtr, unsigned DependencySetId, unsigned AliasSetId,
357                 const SCEV *Expr)
358         : PointerValue(PointerValue), Start(Start), End(End),
359           IsWritePtr(IsWritePtr), DependencySetId(DependencySetId),
360           AliasSetId(AliasSetId), Expr(Expr) {}
361   };
362 
363   RuntimePointerChecking(ScalarEvolution *SE) : Need(false), SE(SE) {}
364 
365   /// Reset the state of the pointer runtime information.
366   void reset() {
367     Need = false;
368     Pointers.clear();
369     Checks.clear();
370   }
371 
372   /// Insert a pointer and calculate the start and end SCEVs.
373   /// We need \p PSE in order to compute the SCEV expression of the pointer
374   /// according to the assumptions that we've made during the analysis.
375   /// The method might also version the pointer stride according to \p Strides,
376   /// and add new predicates to \p PSE.
377   void insert(Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId,
378               unsigned ASId, const ValueToValueMap &Strides,
379               PredicatedScalarEvolution &PSE);
380 
381   /// No run-time memory checking is necessary.
382   bool empty() const { return Pointers.empty(); }
383 
384   /// A grouping of pointers. A single memcheck is required between
385   /// two groups.
386   struct CheckingPtrGroup {
387     /// Create a new pointer checking group containing a single
388     /// pointer, with index \p Index in RtCheck.
389     CheckingPtrGroup(unsigned Index, RuntimePointerChecking &RtCheck)
390         : RtCheck(RtCheck), High(RtCheck.Pointers[Index].End),
391           Low(RtCheck.Pointers[Index].Start) {
392       Members.push_back(Index);
393     }
394 
395     /// Tries to add the pointer recorded in RtCheck at index
396     /// \p Index to this pointer checking group. We can only add a pointer
397     /// to a checking group if we will still be able to get
398     /// the upper and lower bounds of the check. Returns true in case
399     /// of success, false otherwise.
400     bool addPointer(unsigned Index);
401 
402     /// Constitutes the context of this pointer checking group. For each
403     /// pointer that is a member of this group we will retain the index
404     /// at which it appears in RtCheck.
405     RuntimePointerChecking &RtCheck;
406     /// The SCEV expression which represents the upper bound of all the
407     /// pointers in this group.
408     const SCEV *High;
409     /// The SCEV expression which represents the lower bound of all the
410     /// pointers in this group.
411     const SCEV *Low;
412     /// Indices of all the pointers that constitute this grouping.
413     SmallVector<unsigned, 2> Members;
414   };
415 
416   /// A memcheck which made up of a pair of grouped pointers.
417   ///
418   /// These *have* to be const for now, since checks are generated from
419   /// CheckingPtrGroups in LAI::addRuntimeChecks which is a const member
420   /// function.  FIXME: once check-generation is moved inside this class (after
421   /// the PtrPartition hack is removed), we could drop const.
422   typedef std::pair<const CheckingPtrGroup *, const CheckingPtrGroup *>
423       PointerCheck;
424 
425   /// Generate the checks and store it.  This also performs the grouping
426   /// of pointers to reduce the number of memchecks necessary.
427   void generateChecks(MemoryDepChecker::DepCandidates &DepCands,
428                       bool UseDependencies);
429 
430   /// Returns the checks that generateChecks created.
431   const SmallVector<PointerCheck, 4> &getChecks() const { return Checks; }
432 
433   /// Decide if we need to add a check between two groups of pointers,
434   /// according to needsChecking.
435   bool needsChecking(const CheckingPtrGroup &M,
436                      const CheckingPtrGroup &N) const;
437 
438   /// Returns the number of run-time checks required according to
439   /// needsChecking.
440   unsigned getNumberOfChecks() const { return Checks.size(); }
441 
442   /// Print the list run-time memory checks necessary.
443   void print(raw_ostream &OS, unsigned Depth = 0) const;
444 
445   /// Print \p Checks.
446   void printChecks(raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks,
447                    unsigned Depth = 0) const;
448 
449   /// This flag indicates if we need to add the runtime check.
450   bool Need;
451 
452   /// Information about the pointers that may require checking.
453   SmallVector<PointerInfo, 2> Pointers;
454 
455   /// Holds a partitioning of pointers into "check groups".
456   SmallVector<CheckingPtrGroup, 2> CheckingGroups;
457 
458   /// Check if pointers are in the same partition
459   ///
460   /// \p PtrToPartition contains the partition number for pointers (-1 if the
461   /// pointer belongs to multiple partitions).
462   static bool
463   arePointersInSamePartition(const SmallVectorImpl<int> &PtrToPartition,
464                              unsigned PtrIdx1, unsigned PtrIdx2);
465 
466   /// Decide whether we need to issue a run-time check for pointer at
467   /// index \p I and \p J to prove their independence.
468   bool needsChecking(unsigned I, unsigned J) const;
469 
470   /// Return PointerInfo for pointer at index \p PtrIdx.
471   const PointerInfo &getPointerInfo(unsigned PtrIdx) const {
472     return Pointers[PtrIdx];
473   }
474 
475 private:
476   /// Groups pointers such that a single memcheck is required
477   /// between two different groups. This will clear the CheckingGroups vector
478   /// and re-compute it. We will only group dependecies if \p UseDependencies
479   /// is true, otherwise we will create a separate group for each pointer.
480   void groupChecks(MemoryDepChecker::DepCandidates &DepCands,
481                    bool UseDependencies);
482 
483   /// Generate the checks and return them.
484   SmallVector<PointerCheck, 4>
485   generateChecks() const;
486 
487   /// Holds a pointer to the ScalarEvolution analysis.
488   ScalarEvolution *SE;
489 
490   /// Set of run-time checks required to establish independence of
491   /// otherwise may-aliasing pointers in the loop.
492   SmallVector<PointerCheck, 4> Checks;
493 };
494 
495 /// Drive the analysis of memory accesses in the loop
496 ///
497 /// This class is responsible for analyzing the memory accesses of a loop.  It
498 /// collects the accesses and then its main helper the AccessAnalysis class
499 /// finds and categorizes the dependences in buildDependenceSets.
500 ///
501 /// For memory dependences that can be analyzed at compile time, it determines
502 /// whether the dependence is part of cycle inhibiting vectorization.  This work
503 /// is delegated to the MemoryDepChecker class.
504 ///
505 /// For memory dependences that cannot be determined at compile time, it
506 /// generates run-time checks to prove independence.  This is done by
507 /// AccessAnalysis::canCheckPtrAtRT and the checks are maintained by the
508 /// RuntimePointerCheck class.
509 ///
510 /// If pointers can wrap or can't be expressed as affine AddRec expressions by
511 /// ScalarEvolution, we will generate run-time checks by emitting a
512 /// SCEVUnionPredicate.
513 ///
514 /// Checks for both memory dependences and the SCEV predicates contained in the
515 /// PSE must be emitted in order for the results of this analysis to be valid.
516 class LoopAccessInfo {
517 public:
518   LoopAccessInfo(Loop *L, ScalarEvolution *SE, const TargetLibraryInfo *TLI,
519                  AliasAnalysis *AA, DominatorTree *DT, LoopInfo *LI);
520 
521   /// Return true we can analyze the memory accesses in the loop and there are
522   /// no memory dependence cycles.
523   bool canVectorizeMemory() const { return CanVecMem; }
524 
525   /// Return true if there is a convergent operation in the loop. There may
526   /// still be reported runtime pointer checks that would be required, but it is
527   /// not legal to insert them.
528   bool hasConvergentOp() const { return HasConvergentOp; }
529 
530   const RuntimePointerChecking *getRuntimePointerChecking() const {
531     return PtrRtChecking.get();
532   }
533 
534   /// Number of memchecks required to prove independence of otherwise
535   /// may-alias pointers.
536   unsigned getNumRuntimePointerChecks() const {
537     return PtrRtChecking->getNumberOfChecks();
538   }
539 
540   /// Return true if the block BB needs to be predicated in order for the loop
541   /// to be vectorized.
542   static bool blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
543                                     DominatorTree *DT);
544 
545   /// Returns true if the value V is uniform within the loop.
546   bool isUniform(Value *V) const;
547 
548   uint64_t getMaxSafeDepDistBytes() const { return MaxSafeDepDistBytes; }
549   unsigned getNumStores() const { return NumStores; }
550   unsigned getNumLoads() const { return NumLoads;}
551 
552   /// Add code that checks at runtime if the accessed arrays overlap.
553   ///
554   /// Returns a pair of instructions where the first element is the first
555   /// instruction generated in possibly a sequence of instructions and the
556   /// second value is the final comparator value or NULL if no check is needed.
557   std::pair<Instruction *, Instruction *>
558   addRuntimeChecks(Instruction *Loc) const;
559 
560   /// Generete the instructions for the checks in \p PointerChecks.
561   ///
562   /// Returns a pair of instructions where the first element is the first
563   /// instruction generated in possibly a sequence of instructions and the
564   /// second value is the final comparator value or NULL if no check is needed.
565   std::pair<Instruction *, Instruction *>
566   addRuntimeChecks(Instruction *Loc,
567                    const SmallVectorImpl<RuntimePointerChecking::PointerCheck>
568                        &PointerChecks) const;
569 
570   /// The diagnostics report generated for the analysis.  E.g. why we
571   /// couldn't analyze the loop.
572   const OptimizationRemarkAnalysis *getReport() const { return Report.get(); }
573 
574   /// the Memory Dependence Checker which can determine the
575   /// loop-independent and loop-carried dependences between memory accesses.
576   const MemoryDepChecker &getDepChecker() const { return *DepChecker; }
577 
578   /// Return the list of instructions that use \p Ptr to read or write
579   /// memory.
580   SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr,
581                                                          bool isWrite) const {
582     return DepChecker->getInstructionsForAccess(Ptr, isWrite);
583   }
584 
585   /// If an access has a symbolic strides, this maps the pointer value to
586   /// the stride symbol.
587   const ValueToValueMap &getSymbolicStrides() const { return SymbolicStrides; }
588 
589   /// Pointer has a symbolic stride.
590   bool hasStride(Value *V) const { return StrideSet.count(V); }
591 
592   /// Print the information about the memory accesses in the loop.
593   void print(raw_ostream &OS, unsigned Depth = 0) const;
594 
595   /// If the loop has memory dependence involving an invariant address, i.e. two
596   /// stores or a store and a load, then return true, else return false.
597   bool hasDependenceInvolvingLoopInvariantAddress() const {
598     return HasDependenceInvolvingLoopInvariantAddress;
599   }
600 
601   /// Used to add runtime SCEV checks. Simplifies SCEV expressions and converts
602   /// them to a more usable form.  All SCEV expressions during the analysis
603   /// should be re-written (and therefore simplified) according to PSE.
604   /// A user of LoopAccessAnalysis will need to emit the runtime checks
605   /// associated with this predicate.
606   const PredicatedScalarEvolution &getPSE() const { return *PSE; }
607 
608 private:
609   /// Analyze the loop.
610   void analyzeLoop(AliasAnalysis *AA, LoopInfo *LI,
611                    const TargetLibraryInfo *TLI, DominatorTree *DT);
612 
613   /// Check if the structure of the loop allows it to be analyzed by this
614   /// pass.
615   bool canAnalyzeLoop();
616 
617   /// Save the analysis remark.
618   ///
619   /// LAA does not directly emits the remarks.  Instead it stores it which the
620   /// client can retrieve and presents as its own analysis
621   /// (e.g. -Rpass-analysis=loop-vectorize).
622   OptimizationRemarkAnalysis &recordAnalysis(StringRef RemarkName,
623                                              Instruction *Instr = nullptr);
624 
625   /// Collect memory access with loop invariant strides.
626   ///
627   /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop
628   /// invariant.
629   void collectStridedAccess(Value *LoadOrStoreInst);
630 
631   std::unique_ptr<PredicatedScalarEvolution> PSE;
632 
633   /// We need to check that all of the pointers in this list are disjoint
634   /// at runtime. Using std::unique_ptr to make using move ctor simpler.
635   std::unique_ptr<RuntimePointerChecking> PtrRtChecking;
636 
637   /// the Memory Dependence Checker which can determine the
638   /// loop-independent and loop-carried dependences between memory accesses.
639   std::unique_ptr<MemoryDepChecker> DepChecker;
640 
641   Loop *TheLoop;
642 
643   unsigned NumLoads;
644   unsigned NumStores;
645 
646   uint64_t MaxSafeDepDistBytes;
647 
648   /// Cache the result of analyzeLoop.
649   bool CanVecMem;
650   bool HasConvergentOp;
651 
652   /// Indicator that there are non vectorizable stores to a uniform address.
653   bool HasDependenceInvolvingLoopInvariantAddress;
654 
655   /// The diagnostics report generated for the analysis.  E.g. why we
656   /// couldn't analyze the loop.
657   std::unique_ptr<OptimizationRemarkAnalysis> Report;
658 
659   /// If an access has a symbolic strides, this maps the pointer value to
660   /// the stride symbol.
661   ValueToValueMap SymbolicStrides;
662 
663   /// Set of symbolic strides values.
664   SmallPtrSet<Value *, 8> StrideSet;
665 };
666 
667 Value *stripIntegerCast(Value *V);
668 
669 /// Return the SCEV corresponding to a pointer with the symbolic stride
670 /// replaced with constant one, assuming the SCEV predicate associated with
671 /// \p PSE is true.
672 ///
673 /// If necessary this method will version the stride of the pointer according
674 /// to \p PtrToStride and therefore add further predicates to \p PSE.
675 ///
676 /// If \p OrigPtr is not null, use it to look up the stride value instead of \p
677 /// Ptr.  \p PtrToStride provides the mapping between the pointer value and its
678 /// stride as collected by LoopVectorizationLegality::collectStridedAccess.
679 const SCEV *replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
680                                       const ValueToValueMap &PtrToStride,
681                                       Value *Ptr, Value *OrigPtr = nullptr);
682 
683 /// If the pointer has a constant stride return it in units of its
684 /// element size.  Otherwise return zero.
685 ///
686 /// Ensure that it does not wrap in the address space, assuming the predicate
687 /// associated with \p PSE is true.
688 ///
689 /// If necessary this method will version the stride of the pointer according
690 /// to \p PtrToStride and therefore add further predicates to \p PSE.
691 /// The \p Assume parameter indicates if we are allowed to make additional
692 /// run-time assumptions.
693 int64_t getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr, const Loop *Lp,
694                      const ValueToValueMap &StridesMap = ValueToValueMap(),
695                      bool Assume = false, bool ShouldCheckWrap = true);
696 
697 /// Attempt to sort the pointers in \p VL and return the sorted indices
698 /// in \p SortedIndices, if reordering is required.
699 ///
700 /// Returns 'true' if sorting is legal, otherwise returns 'false'.
701 ///
702 /// For example, for a given \p VL of memory accesses in program order, a[i+4],
703 /// a[i+0], a[i+1] and a[i+7], this function will sort the \p VL and save the
704 /// sorted indices in \p SortedIndices as a[i+0], a[i+1], a[i+4], a[i+7] and
705 /// saves the mask for actual memory accesses in program order in
706 /// \p SortedIndices as <1,2,0,3>
707 bool sortPtrAccesses(ArrayRef<Value *> VL, const DataLayout &DL,
708                      ScalarEvolution &SE,
709                      SmallVectorImpl<unsigned> &SortedIndices);
710 
711 /// Returns true if the memory operations \p A and \p B are consecutive.
712 /// This is a simple API that does not depend on the analysis pass.
713 bool isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
714                          ScalarEvolution &SE, bool CheckType = true);
715 
716 /// This analysis provides dependence information for the memory accesses
717 /// of a loop.
718 ///
719 /// It runs the analysis for a loop on demand.  This can be initiated by
720 /// querying the loop access info via LAA::getInfo.  getInfo return a
721 /// LoopAccessInfo object.  See this class for the specifics of what information
722 /// is provided.
723 class LoopAccessLegacyAnalysis : public FunctionPass {
724 public:
725   static char ID;
726 
727   LoopAccessLegacyAnalysis();
728 
729   bool runOnFunction(Function &F) override;
730 
731   void getAnalysisUsage(AnalysisUsage &AU) const override;
732 
733   /// Query the result of the loop access information for the loop \p L.
734   ///
735   /// If there is no cached result available run the analysis.
736   const LoopAccessInfo &getInfo(Loop *L);
737 
738   void releaseMemory() override {
739     // Invalidate the cache when the pass is freed.
740     LoopAccessInfoMap.clear();
741   }
742 
743   /// Print the result of the analysis when invoked with -analyze.
744   void print(raw_ostream &OS, const Module *M = nullptr) const override;
745 
746 private:
747   /// The cache.
748   DenseMap<Loop *, std::unique_ptr<LoopAccessInfo>> LoopAccessInfoMap;
749 
750   // The used analysis passes.
751   ScalarEvolution *SE = nullptr;
752   const TargetLibraryInfo *TLI = nullptr;
753   AliasAnalysis *AA = nullptr;
754   DominatorTree *DT = nullptr;
755   LoopInfo *LI = nullptr;
756 };
757 
758 /// This analysis provides dependence information for the memory
759 /// accesses of a loop.
760 ///
761 /// It runs the analysis for a loop on demand.  This can be initiated by
762 /// querying the loop access info via AM.getResult<LoopAccessAnalysis>.
763 /// getResult return a LoopAccessInfo object.  See this class for the
764 /// specifics of what information is provided.
765 class LoopAccessAnalysis
766     : public AnalysisInfoMixin<LoopAccessAnalysis> {
767   friend AnalysisInfoMixin<LoopAccessAnalysis>;
768   static AnalysisKey Key;
769 
770 public:
771   typedef LoopAccessInfo Result;
772 
773   Result run(Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR);
774 };
775 
776 inline Instruction *MemoryDepChecker::Dependence::getSource(
777     const LoopAccessInfo &LAI) const {
778   return LAI.getDepChecker().getMemoryInstructions()[Source];
779 }
780 
781 inline Instruction *MemoryDepChecker::Dependence::getDestination(
782     const LoopAccessInfo &LAI) const {
783   return LAI.getDepChecker().getMemoryInstructions()[Destination];
784 }
785 
786 } // End llvm namespace
787 
788 #endif
789