1 //===- llvm/Analysis/LoopAccessAnalysis.h -----------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interface for the loop memory dependence framework that
10 // was originally developed for the Loop Vectorizer.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_ANALYSIS_LOOPACCESSANALYSIS_H
15 #define LLVM_ANALYSIS_LOOPACCESSANALYSIS_H
16 
17 #include "llvm/ADT/EquivalenceClasses.h"
18 #include "llvm/Analysis/LoopAnalysisManager.h"
19 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
20 #include "llvm/IR/DiagnosticInfo.h"
21 #include "llvm/Pass.h"
22 #include <optional>
23 
24 namespace llvm {
25 
26 class AAResults;
27 class DataLayout;
28 class Loop;
29 class LoopAccessInfo;
30 class raw_ostream;
31 class SCEV;
32 class SCEVUnionPredicate;
33 class Value;
34 
35 /// Collection of parameters shared beetween the Loop Vectorizer and the
36 /// Loop Access Analysis.
37 struct VectorizerParams {
38   /// Maximum SIMD width.
39   static const unsigned MaxVectorWidth;
40 
41   /// VF as overridden by the user.
42   static unsigned VectorizationFactor;
43   /// Interleave factor as overridden by the user.
44   static unsigned VectorizationInterleave;
45   /// True if force-vector-interleave was specified by the user.
46   static bool isInterleaveForced();
47 
48   /// \When performing memory disambiguation checks at runtime do not
49   /// make more than this number of comparisons.
50   static unsigned RuntimeMemoryCheckThreshold;
51 };
52 
53 /// Checks memory dependences among accesses to the same underlying
54 /// object to determine whether there vectorization is legal or not (and at
55 /// which vectorization factor).
56 ///
57 /// Note: This class will compute a conservative dependence for access to
58 /// different underlying pointers. Clients, such as the loop vectorizer, will
59 /// sometimes deal these potential dependencies by emitting runtime checks.
60 ///
61 /// We use the ScalarEvolution framework to symbolically evalutate access
62 /// functions pairs. Since we currently don't restructure the loop we can rely
63 /// on the program order of memory accesses to determine their safety.
64 /// At the moment we will only deem accesses as safe for:
65 ///  * A negative constant distance assuming program order.
66 ///
67 ///      Safe: tmp = a[i + 1];     OR     a[i + 1] = x;
68 ///            a[i] = tmp;                y = a[i];
69 ///
70 ///   The latter case is safe because later checks guarantuee that there can't
71 ///   be a cycle through a phi node (that is, we check that "x" and "y" is not
72 ///   the same variable: a header phi can only be an induction or a reduction, a
73 ///   reduction can't have a memory sink, an induction can't have a memory
74 ///   source). This is important and must not be violated (or we have to
75 ///   resort to checking for cycles through memory).
76 ///
77 ///  * A positive constant distance assuming program order that is bigger
78 ///    than the biggest memory access.
79 ///
80 ///     tmp = a[i]        OR              b[i] = x
81 ///     a[i+2] = tmp                      y = b[i+2];
82 ///
83 ///     Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively.
84 ///
85 ///  * Zero distances and all accesses have the same size.
86 ///
87 class MemoryDepChecker {
88 public:
89   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
90   typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList;
91   /// Set of potential dependent memory accesses.
92   typedef EquivalenceClasses<MemAccessInfo> DepCandidates;
93 
94   /// Type to keep track of the status of the dependence check. The order of
95   /// the elements is important and has to be from most permissive to least
96   /// permissive.
97   enum class VectorizationSafetyStatus {
98     // Can vectorize safely without RT checks. All dependences are known to be
99     // safe.
100     Safe,
101     // Can possibly vectorize with RT checks to overcome unknown dependencies.
102     PossiblySafeWithRtChecks,
103     // Cannot vectorize due to known unsafe dependencies.
104     Unsafe,
105   };
106 
107   /// Dependece between memory access instructions.
108   struct Dependence {
109     /// The type of the dependence.
110     enum DepType {
111       // No dependence.
112       NoDep,
113       // We couldn't determine the direction or the distance.
114       Unknown,
115       // Lexically forward.
116       //
117       // FIXME: If we only have loop-independent forward dependences (e.g. a
118       // read and write of A[i]), LAA will locally deem the dependence "safe"
119       // without querying the MemoryDepChecker.  Therefore we can miss
120       // enumerating loop-independent forward dependences in
121       // getDependences.  Note that as soon as there are different
122       // indices used to access the same array, the MemoryDepChecker *is*
123       // queried and the dependence list is complete.
124       Forward,
125       // Forward, but if vectorized, is likely to prevent store-to-load
126       // forwarding.
127       ForwardButPreventsForwarding,
128       // Lexically backward.
129       Backward,
130       // Backward, but the distance allows a vectorization factor of
131       // MaxSafeDepDistBytes.
132       BackwardVectorizable,
133       // Same, but may prevent store-to-load forwarding.
134       BackwardVectorizableButPreventsForwarding
135     };
136 
137     /// String version of the types.
138     static const char *DepName[];
139 
140     /// Index of the source of the dependence in the InstMap vector.
141     unsigned Source;
142     /// Index of the destination of the dependence in the InstMap vector.
143     unsigned Destination;
144     /// The type of the dependence.
145     DepType Type;
146 
147     Dependence(unsigned Source, unsigned Destination, DepType Type)
148         : Source(Source), Destination(Destination), Type(Type) {}
149 
150     /// Return the source instruction of the dependence.
151     Instruction *getSource(const LoopAccessInfo &LAI) const;
152     /// Return the destination instruction of the dependence.
153     Instruction *getDestination(const LoopAccessInfo &LAI) const;
154 
155     /// Dependence types that don't prevent vectorization.
156     static VectorizationSafetyStatus isSafeForVectorization(DepType Type);
157 
158     /// Lexically forward dependence.
159     bool isForward() const;
160     /// Lexically backward dependence.
161     bool isBackward() const;
162 
163     /// May be a lexically backward dependence type (includes Unknown).
164     bool isPossiblyBackward() const;
165 
166     /// Print the dependence.  \p Instr is used to map the instruction
167     /// indices to instructions.
168     void print(raw_ostream &OS, unsigned Depth,
169                const SmallVectorImpl<Instruction *> &Instrs) const;
170   };
171 
172   MemoryDepChecker(PredicatedScalarEvolution &PSE, const Loop *L)
173       : PSE(PSE), InnermostLoop(L) {}
174 
175   /// Register the location (instructions are given increasing numbers)
176   /// of a write access.
177   void addAccess(StoreInst *SI);
178 
179   /// Register the location (instructions are given increasing numbers)
180   /// of a write access.
181   void addAccess(LoadInst *LI);
182 
183   /// Check whether the dependencies between the accesses are safe.
184   ///
185   /// Only checks sets with elements in \p CheckDeps.
186   bool areDepsSafe(DepCandidates &AccessSets, MemAccessInfoList &CheckDeps,
187                    const DenseMap<Value *, const SCEV *> &Strides);
188 
189   /// No memory dependence was encountered that would inhibit
190   /// vectorization.
191   bool isSafeForVectorization() const {
192     return Status == VectorizationSafetyStatus::Safe;
193   }
194 
195   /// Return true if the number of elements that are safe to operate on
196   /// simultaneously is not bounded.
197   bool isSafeForAnyVectorWidth() const {
198     return MaxSafeVectorWidthInBits == UINT_MAX;
199   }
200 
201   /// The maximum number of bytes of a vector register we can vectorize
202   /// the accesses safely with.
203   uint64_t getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
204 
205   /// Return the number of elements that are safe to operate on
206   /// simultaneously, multiplied by the size of the element in bits.
207   uint64_t getMaxSafeVectorWidthInBits() const {
208     return MaxSafeVectorWidthInBits;
209   }
210 
211   /// In same cases when the dependency check fails we can still
212   /// vectorize the loop with a dynamic array access check.
213   bool shouldRetryWithRuntimeCheck() const {
214     return FoundNonConstantDistanceDependence &&
215            Status == VectorizationSafetyStatus::PossiblySafeWithRtChecks;
216   }
217 
218   /// Returns the memory dependences.  If null is returned we exceeded
219   /// the MaxDependences threshold and this information is not
220   /// available.
221   const SmallVectorImpl<Dependence> *getDependences() const {
222     return RecordDependences ? &Dependences : nullptr;
223   }
224 
225   void clearDependences() { Dependences.clear(); }
226 
227   /// The vector of memory access instructions.  The indices are used as
228   /// instruction identifiers in the Dependence class.
229   const SmallVectorImpl<Instruction *> &getMemoryInstructions() const {
230     return InstMap;
231   }
232 
233   /// Generate a mapping between the memory instructions and their
234   /// indices according to program order.
235   DenseMap<Instruction *, unsigned> generateInstructionOrderMap() const {
236     DenseMap<Instruction *, unsigned> OrderMap;
237 
238     for (unsigned I = 0; I < InstMap.size(); ++I)
239       OrderMap[InstMap[I]] = I;
240 
241     return OrderMap;
242   }
243 
244   /// Find the set of instructions that read or write via \p Ptr.
245   SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr,
246                                                          bool isWrite) const;
247 
248   /// Return the program order indices for the access location (Ptr, IsWrite).
249   /// Returns an empty ArrayRef if there are no accesses for the location.
250   ArrayRef<unsigned> getOrderForAccess(Value *Ptr, bool IsWrite) const {
251     auto I = Accesses.find({Ptr, IsWrite});
252     if (I != Accesses.end())
253       return I->second;
254     return {};
255   }
256 
257   const Loop *getInnermostLoop() const { return InnermostLoop; }
258 
259 private:
260   /// A wrapper around ScalarEvolution, used to add runtime SCEV checks, and
261   /// applies dynamic knowledge to simplify SCEV expressions and convert them
262   /// to a more usable form. We need this in case assumptions about SCEV
263   /// expressions need to be made in order to avoid unknown dependences. For
264   /// example we might assume a unit stride for a pointer in order to prove
265   /// that a memory access is strided and doesn't wrap.
266   PredicatedScalarEvolution &PSE;
267   const Loop *InnermostLoop;
268 
269   /// Maps access locations (ptr, read/write) to program order.
270   DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses;
271 
272   /// Memory access instructions in program order.
273   SmallVector<Instruction *, 16> InstMap;
274 
275   /// The program order index to be used for the next instruction.
276   unsigned AccessIdx = 0;
277 
278   // We can access this many bytes in parallel safely.
279   uint64_t MaxSafeDepDistBytes = 0;
280 
281   /// Number of elements (from consecutive iterations) that are safe to
282   /// operate on simultaneously, multiplied by the size of the element in bits.
283   /// The size of the element is taken from the memory access that is most
284   /// restrictive.
285   uint64_t MaxSafeVectorWidthInBits = -1U;
286 
287   /// If we see a non-constant dependence distance we can still try to
288   /// vectorize this loop with runtime checks.
289   bool FoundNonConstantDistanceDependence = false;
290 
291   /// Result of the dependence checks, indicating whether the checked
292   /// dependences are safe for vectorization, require RT checks or are known to
293   /// be unsafe.
294   VectorizationSafetyStatus Status = VectorizationSafetyStatus::Safe;
295 
296   //// True if Dependences reflects the dependences in the
297   //// loop.  If false we exceeded MaxDependences and
298   //// Dependences is invalid.
299   bool RecordDependences = true;
300 
301   /// Memory dependences collected during the analysis.  Only valid if
302   /// RecordDependences is true.
303   SmallVector<Dependence, 8> Dependences;
304 
305   /// Check whether there is a plausible dependence between the two
306   /// accesses.
307   ///
308   /// Access \p A must happen before \p B in program order. The two indices
309   /// identify the index into the program order map.
310   ///
311   /// This function checks  whether there is a plausible dependence (or the
312   /// absence of such can't be proved) between the two accesses. If there is a
313   /// plausible dependence but the dependence distance is bigger than one
314   /// element access it records this distance in \p MaxSafeDepDistBytes (if this
315   /// distance is smaller than any other distance encountered so far).
316   /// Otherwise, this function returns true signaling a possible dependence.
317   Dependence::DepType isDependent(const MemAccessInfo &A, unsigned AIdx,
318                                   const MemAccessInfo &B, unsigned BIdx,
319                                   const DenseMap<Value *, const SCEV *> &Strides);
320 
321   /// Check whether the data dependence could prevent store-load
322   /// forwarding.
323   ///
324   /// \return false if we shouldn't vectorize at all or avoid larger
325   /// vectorization factors by limiting MaxSafeDepDistBytes.
326   bool couldPreventStoreLoadForward(uint64_t Distance, uint64_t TypeByteSize);
327 
328   /// Updates the current safety status with \p S. We can go from Safe to
329   /// either PossiblySafeWithRtChecks or Unsafe and from
330   /// PossiblySafeWithRtChecks to Unsafe.
331   void mergeInStatus(VectorizationSafetyStatus S);
332 };
333 
334 class RuntimePointerChecking;
335 /// A grouping of pointers. A single memcheck is required between
336 /// two groups.
337 struct RuntimeCheckingPtrGroup {
338   /// Create a new pointer checking group containing a single
339   /// pointer, with index \p Index in RtCheck.
340   RuntimeCheckingPtrGroup(unsigned Index, RuntimePointerChecking &RtCheck);
341 
342   /// Tries to add the pointer recorded in RtCheck at index
343   /// \p Index to this pointer checking group. We can only add a pointer
344   /// to a checking group if we will still be able to get
345   /// the upper and lower bounds of the check. Returns true in case
346   /// of success, false otherwise.
347   bool addPointer(unsigned Index, RuntimePointerChecking &RtCheck);
348   bool addPointer(unsigned Index, const SCEV *Start, const SCEV *End,
349                   unsigned AS, bool NeedsFreeze, ScalarEvolution &SE);
350 
351   /// The SCEV expression which represents the upper bound of all the
352   /// pointers in this group.
353   const SCEV *High;
354   /// The SCEV expression which represents the lower bound of all the
355   /// pointers in this group.
356   const SCEV *Low;
357   /// Indices of all the pointers that constitute this grouping.
358   SmallVector<unsigned, 2> Members;
359   /// Address space of the involved pointers.
360   unsigned AddressSpace;
361   /// Whether the pointer needs to be frozen after expansion, e.g. because it
362   /// may be poison outside the loop.
363   bool NeedsFreeze = false;
364 };
365 
366 /// A memcheck which made up of a pair of grouped pointers.
367 typedef std::pair<const RuntimeCheckingPtrGroup *,
368                   const RuntimeCheckingPtrGroup *>
369     RuntimePointerCheck;
370 
371 struct PointerDiffInfo {
372   const SCEV *SrcStart;
373   const SCEV *SinkStart;
374   unsigned AccessSize;
375   bool NeedsFreeze;
376 
377   PointerDiffInfo(const SCEV *SrcStart, const SCEV *SinkStart,
378                   unsigned AccessSize, bool NeedsFreeze)
379       : SrcStart(SrcStart), SinkStart(SinkStart), AccessSize(AccessSize),
380         NeedsFreeze(NeedsFreeze) {}
381 };
382 
383 /// Holds information about the memory runtime legality checks to verify
384 /// that a group of pointers do not overlap.
385 class RuntimePointerChecking {
386   friend struct RuntimeCheckingPtrGroup;
387 
388 public:
389   struct PointerInfo {
390     /// Holds the pointer value that we need to check.
391     TrackingVH<Value> PointerValue;
392     /// Holds the smallest byte address accessed by the pointer throughout all
393     /// iterations of the loop.
394     const SCEV *Start;
395     /// Holds the largest byte address accessed by the pointer throughout all
396     /// iterations of the loop, plus 1.
397     const SCEV *End;
398     /// Holds the information if this pointer is used for writing to memory.
399     bool IsWritePtr;
400     /// Holds the id of the set of pointers that could be dependent because of a
401     /// shared underlying object.
402     unsigned DependencySetId;
403     /// Holds the id of the disjoint alias set to which this pointer belongs.
404     unsigned AliasSetId;
405     /// SCEV for the access.
406     const SCEV *Expr;
407     /// True if the pointer expressions needs to be frozen after expansion.
408     bool NeedsFreeze;
409 
410     PointerInfo(Value *PointerValue, const SCEV *Start, const SCEV *End,
411                 bool IsWritePtr, unsigned DependencySetId, unsigned AliasSetId,
412                 const SCEV *Expr, bool NeedsFreeze)
413         : PointerValue(PointerValue), Start(Start), End(End),
414           IsWritePtr(IsWritePtr), DependencySetId(DependencySetId),
415           AliasSetId(AliasSetId), Expr(Expr), NeedsFreeze(NeedsFreeze) {}
416   };
417 
418   RuntimePointerChecking(MemoryDepChecker &DC, ScalarEvolution *SE)
419       : DC(DC), SE(SE) {}
420 
421   /// Reset the state of the pointer runtime information.
422   void reset() {
423     Need = false;
424     Pointers.clear();
425     Checks.clear();
426   }
427 
428   /// Insert a pointer and calculate the start and end SCEVs.
429   /// We need \p PSE in order to compute the SCEV expression of the pointer
430   /// according to the assumptions that we've made during the analysis.
431   /// The method might also version the pointer stride according to \p Strides,
432   /// and add new predicates to \p PSE.
433   void insert(Loop *Lp, Value *Ptr, const SCEV *PtrExpr, Type *AccessTy,
434               bool WritePtr, unsigned DepSetId, unsigned ASId,
435               PredicatedScalarEvolution &PSE, bool NeedsFreeze);
436 
437   /// No run-time memory checking is necessary.
438   bool empty() const { return Pointers.empty(); }
439 
440   /// Generate the checks and store it.  This also performs the grouping
441   /// of pointers to reduce the number of memchecks necessary.
442   void generateChecks(MemoryDepChecker::DepCandidates &DepCands,
443                       bool UseDependencies);
444 
445   /// Returns the checks that generateChecks created. They can be used to ensure
446   /// no read/write accesses overlap across all loop iterations.
447   const SmallVectorImpl<RuntimePointerCheck> &getChecks() const {
448     return Checks;
449   }
450 
451   // Returns an optional list of (pointer-difference expressions, access size)
452   // pairs that can be used to prove that there are no vectorization-preventing
453   // dependencies at runtime. There are is a vectorization-preventing dependency
454   // if any pointer-difference is <u VF * InterleaveCount * access size. Returns
455   // std::nullopt if pointer-difference checks cannot be used.
456   std::optional<ArrayRef<PointerDiffInfo>> getDiffChecks() const {
457     if (!CanUseDiffCheck)
458       return std::nullopt;
459     return {DiffChecks};
460   }
461 
462   /// Decide if we need to add a check between two groups of pointers,
463   /// according to needsChecking.
464   bool needsChecking(const RuntimeCheckingPtrGroup &M,
465                      const RuntimeCheckingPtrGroup &N) const;
466 
467   /// Returns the number of run-time checks required according to
468   /// needsChecking.
469   unsigned getNumberOfChecks() const { return Checks.size(); }
470 
471   /// Print the list run-time memory checks necessary.
472   void print(raw_ostream &OS, unsigned Depth = 0) const;
473 
474   /// Print \p Checks.
475   void printChecks(raw_ostream &OS,
476                    const SmallVectorImpl<RuntimePointerCheck> &Checks,
477                    unsigned Depth = 0) const;
478 
479   /// This flag indicates if we need to add the runtime check.
480   bool Need = false;
481 
482   /// Information about the pointers that may require checking.
483   SmallVector<PointerInfo, 2> Pointers;
484 
485   /// Holds a partitioning of pointers into "check groups".
486   SmallVector<RuntimeCheckingPtrGroup, 2> CheckingGroups;
487 
488   /// Check if pointers are in the same partition
489   ///
490   /// \p PtrToPartition contains the partition number for pointers (-1 if the
491   /// pointer belongs to multiple partitions).
492   static bool
493   arePointersInSamePartition(const SmallVectorImpl<int> &PtrToPartition,
494                              unsigned PtrIdx1, unsigned PtrIdx2);
495 
496   /// Decide whether we need to issue a run-time check for pointer at
497   /// index \p I and \p J to prove their independence.
498   bool needsChecking(unsigned I, unsigned J) const;
499 
500   /// Return PointerInfo for pointer at index \p PtrIdx.
501   const PointerInfo &getPointerInfo(unsigned PtrIdx) const {
502     return Pointers[PtrIdx];
503   }
504 
505   ScalarEvolution *getSE() const { return SE; }
506 
507 private:
508   /// Groups pointers such that a single memcheck is required
509   /// between two different groups. This will clear the CheckingGroups vector
510   /// and re-compute it. We will only group dependecies if \p UseDependencies
511   /// is true, otherwise we will create a separate group for each pointer.
512   void groupChecks(MemoryDepChecker::DepCandidates &DepCands,
513                    bool UseDependencies);
514 
515   /// Generate the checks and return them.
516   SmallVector<RuntimePointerCheck, 4> generateChecks();
517 
518   /// Try to create add a new (pointer-difference, access size) pair to
519   /// DiffCheck for checking groups \p CGI and \p CGJ. If pointer-difference
520   /// checks cannot be used for the groups, set CanUseDiffCheck to false.
521   void tryToCreateDiffCheck(const RuntimeCheckingPtrGroup &CGI,
522                             const RuntimeCheckingPtrGroup &CGJ);
523 
524   MemoryDepChecker &DC;
525 
526   /// Holds a pointer to the ScalarEvolution analysis.
527   ScalarEvolution *SE;
528 
529   /// Set of run-time checks required to establish independence of
530   /// otherwise may-aliasing pointers in the loop.
531   SmallVector<RuntimePointerCheck, 4> Checks;
532 
533   /// Flag indicating if pointer-difference checks can be used
534   bool CanUseDiffCheck = true;
535 
536   /// A list of (pointer-difference, access size) pairs that can be used to
537   /// prove that there are no vectorization-preventing dependencies.
538   SmallVector<PointerDiffInfo> DiffChecks;
539 };
540 
541 /// Drive the analysis of memory accesses in the loop
542 ///
543 /// This class is responsible for analyzing the memory accesses of a loop.  It
544 /// collects the accesses and then its main helper the AccessAnalysis class
545 /// finds and categorizes the dependences in buildDependenceSets.
546 ///
547 /// For memory dependences that can be analyzed at compile time, it determines
548 /// whether the dependence is part of cycle inhibiting vectorization.  This work
549 /// is delegated to the MemoryDepChecker class.
550 ///
551 /// For memory dependences that cannot be determined at compile time, it
552 /// generates run-time checks to prove independence.  This is done by
553 /// AccessAnalysis::canCheckPtrAtRT and the checks are maintained by the
554 /// RuntimePointerCheck class.
555 ///
556 /// If pointers can wrap or can't be expressed as affine AddRec expressions by
557 /// ScalarEvolution, we will generate run-time checks by emitting a
558 /// SCEVUnionPredicate.
559 ///
560 /// Checks for both memory dependences and the SCEV predicates contained in the
561 /// PSE must be emitted in order for the results of this analysis to be valid.
562 class LoopAccessInfo {
563 public:
564   LoopAccessInfo(Loop *L, ScalarEvolution *SE, const TargetLibraryInfo *TLI,
565                  AAResults *AA, DominatorTree *DT, LoopInfo *LI);
566 
567   /// Return true we can analyze the memory accesses in the loop and there are
568   /// no memory dependence cycles.
569   bool canVectorizeMemory() const { return CanVecMem; }
570 
571   /// Return true if there is a convergent operation in the loop. There may
572   /// still be reported runtime pointer checks that would be required, but it is
573   /// not legal to insert them.
574   bool hasConvergentOp() const { return HasConvergentOp; }
575 
576   const RuntimePointerChecking *getRuntimePointerChecking() const {
577     return PtrRtChecking.get();
578   }
579 
580   /// Number of memchecks required to prove independence of otherwise
581   /// may-alias pointers.
582   unsigned getNumRuntimePointerChecks() const {
583     return PtrRtChecking->getNumberOfChecks();
584   }
585 
586   /// Return true if the block BB needs to be predicated in order for the loop
587   /// to be vectorized.
588   static bool blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
589                                     DominatorTree *DT);
590 
591   /// Returns true if value \p V is loop invariant.
592   bool isInvariant(Value *V) const;
593 
594   unsigned getNumStores() const { return NumStores; }
595   unsigned getNumLoads() const { return NumLoads;}
596 
597   /// The diagnostics report generated for the analysis.  E.g. why we
598   /// couldn't analyze the loop.
599   const OptimizationRemarkAnalysis *getReport() const { return Report.get(); }
600 
601   /// the Memory Dependence Checker which can determine the
602   /// loop-independent and loop-carried dependences between memory accesses.
603   const MemoryDepChecker &getDepChecker() const { return *DepChecker; }
604 
605   /// Return the list of instructions that use \p Ptr to read or write
606   /// memory.
607   SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr,
608                                                          bool isWrite) const {
609     return DepChecker->getInstructionsForAccess(Ptr, isWrite);
610   }
611 
612   /// If an access has a symbolic strides, this maps the pointer value to
613   /// the stride symbol.
614   const DenseMap<Value *, const SCEV *> &getSymbolicStrides() const {
615     return SymbolicStrides;
616   }
617 
618   /// Print the information about the memory accesses in the loop.
619   void print(raw_ostream &OS, unsigned Depth = 0) const;
620 
621   /// If the loop has memory dependence involving an invariant address, i.e. two
622   /// stores or a store and a load, then return true, else return false.
623   bool hasDependenceInvolvingLoopInvariantAddress() const {
624     return HasDependenceInvolvingLoopInvariantAddress;
625   }
626 
627   /// Return the list of stores to invariant addresses.
628   ArrayRef<StoreInst *> getStoresToInvariantAddresses() const {
629     return StoresToInvariantAddresses;
630   }
631 
632   /// Used to add runtime SCEV checks. Simplifies SCEV expressions and converts
633   /// them to a more usable form.  All SCEV expressions during the analysis
634   /// should be re-written (and therefore simplified) according to PSE.
635   /// A user of LoopAccessAnalysis will need to emit the runtime checks
636   /// associated with this predicate.
637   const PredicatedScalarEvolution &getPSE() const { return *PSE; }
638 
639 private:
640   /// Analyze the loop.
641   void analyzeLoop(AAResults *AA, LoopInfo *LI,
642                    const TargetLibraryInfo *TLI, DominatorTree *DT);
643 
644   /// Check if the structure of the loop allows it to be analyzed by this
645   /// pass.
646   bool canAnalyzeLoop();
647 
648   /// Save the analysis remark.
649   ///
650   /// LAA does not directly emits the remarks.  Instead it stores it which the
651   /// client can retrieve and presents as its own analysis
652   /// (e.g. -Rpass-analysis=loop-vectorize).
653   OptimizationRemarkAnalysis &recordAnalysis(StringRef RemarkName,
654                                              Instruction *Instr = nullptr);
655 
656   /// Collect memory access with loop invariant strides.
657   ///
658   /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop
659   /// invariant.
660   void collectStridedAccess(Value *LoadOrStoreInst);
661 
662   // Emits the first unsafe memory dependence in a loop.
663   // Emits nothing if there are no unsafe dependences
664   // or if the dependences were not recorded.
665   void emitUnsafeDependenceRemark();
666 
667   std::unique_ptr<PredicatedScalarEvolution> PSE;
668 
669   /// We need to check that all of the pointers in this list are disjoint
670   /// at runtime. Using std::unique_ptr to make using move ctor simpler.
671   std::unique_ptr<RuntimePointerChecking> PtrRtChecking;
672 
673   /// the Memory Dependence Checker which can determine the
674   /// loop-independent and loop-carried dependences between memory accesses.
675   std::unique_ptr<MemoryDepChecker> DepChecker;
676 
677   Loop *TheLoop;
678 
679   unsigned NumLoads = 0;
680   unsigned NumStores = 0;
681 
682   uint64_t MaxSafeDepDistBytes = -1;
683 
684   /// Cache the result of analyzeLoop.
685   bool CanVecMem = false;
686   bool HasConvergentOp = false;
687 
688   /// Indicator that there are non vectorizable stores to a uniform address.
689   bool HasDependenceInvolvingLoopInvariantAddress = false;
690 
691   /// List of stores to invariant addresses.
692   SmallVector<StoreInst *> StoresToInvariantAddresses;
693 
694   /// The diagnostics report generated for the analysis.  E.g. why we
695   /// couldn't analyze the loop.
696   std::unique_ptr<OptimizationRemarkAnalysis> Report;
697 
698   /// If an access has a symbolic strides, this maps the pointer value to
699   /// the stride symbol.
700   DenseMap<Value *, const SCEV *> SymbolicStrides;
701 };
702 
703 /// Return the SCEV corresponding to a pointer with the symbolic stride
704 /// replaced with constant one, assuming the SCEV predicate associated with
705 /// \p PSE is true.
706 ///
707 /// If necessary this method will version the stride of the pointer according
708 /// to \p PtrToStride and therefore add further predicates to \p PSE.
709 ///
710 /// \p PtrToStride provides the mapping between the pointer value and its
711 /// stride as collected by LoopVectorizationLegality::collectStridedAccess.
712 const SCEV *
713 replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
714                           const DenseMap<Value *, const SCEV *> &PtrToStride,
715                           Value *Ptr);
716 
717 /// If the pointer has a constant stride return it in units of the access type
718 /// size.  Otherwise return std::nullopt.
719 ///
720 /// Ensure that it does not wrap in the address space, assuming the predicate
721 /// associated with \p PSE is true.
722 ///
723 /// If necessary this method will version the stride of the pointer according
724 /// to \p PtrToStride and therefore add further predicates to \p PSE.
725 /// The \p Assume parameter indicates if we are allowed to make additional
726 /// run-time assumptions.
727 ///
728 /// Note that the analysis results are defined if-and-only-if the original
729 /// memory access was defined.  If that access was dead, or UB, then the
730 /// result of this function is undefined.
731 std::optional<int64_t>
732 getPtrStride(PredicatedScalarEvolution &PSE, Type *AccessTy, Value *Ptr,
733              const Loop *Lp,
734              const DenseMap<Value *, const SCEV *> &StridesMap = DenseMap<Value *, const SCEV *>(),
735              bool Assume = false, bool ShouldCheckWrap = true);
736 
737 /// Returns the distance between the pointers \p PtrA and \p PtrB iff they are
738 /// compatible and it is possible to calculate the distance between them. This
739 /// is a simple API that does not depend on the analysis pass.
740 /// \param StrictCheck Ensure that the calculated distance matches the
741 /// type-based one after all the bitcasts removal in the provided pointers.
742 std::optional<int> getPointersDiff(Type *ElemTyA, Value *PtrA, Type *ElemTyB,
743                                    Value *PtrB, const DataLayout &DL,
744                                    ScalarEvolution &SE,
745                                    bool StrictCheck = false,
746                                    bool CheckType = true);
747 
748 /// Attempt to sort the pointers in \p VL and return the sorted indices
749 /// in \p SortedIndices, if reordering is required.
750 ///
751 /// Returns 'true' if sorting is legal, otherwise returns 'false'.
752 ///
753 /// For example, for a given \p VL of memory accesses in program order, a[i+4],
754 /// a[i+0], a[i+1] and a[i+7], this function will sort the \p VL and save the
755 /// sorted indices in \p SortedIndices as a[i+0], a[i+1], a[i+4], a[i+7] and
756 /// saves the mask for actual memory accesses in program order in
757 /// \p SortedIndices as <1,2,0,3>
758 bool sortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy, const DataLayout &DL,
759                      ScalarEvolution &SE,
760                      SmallVectorImpl<unsigned> &SortedIndices);
761 
762 /// Returns true if the memory operations \p A and \p B are consecutive.
763 /// This is a simple API that does not depend on the analysis pass.
764 bool isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
765                          ScalarEvolution &SE, bool CheckType = true);
766 
767 class LoopAccessInfoManager {
768   /// The cache.
769   DenseMap<Loop *, std::unique_ptr<LoopAccessInfo>> LoopAccessInfoMap;
770 
771   // The used analysis passes.
772   ScalarEvolution &SE;
773   AAResults &AA;
774   DominatorTree &DT;
775   LoopInfo &LI;
776   const TargetLibraryInfo *TLI = nullptr;
777 
778 public:
779   LoopAccessInfoManager(ScalarEvolution &SE, AAResults &AA, DominatorTree &DT,
780                         LoopInfo &LI, const TargetLibraryInfo *TLI)
781       : SE(SE), AA(AA), DT(DT), LI(LI), TLI(TLI) {}
782 
783   const LoopAccessInfo &getInfo(Loop &L);
784 
785   void clear() { LoopAccessInfoMap.clear(); }
786 
787   bool invalidate(Function &F, const PreservedAnalyses &PA,
788                   FunctionAnalysisManager::Invalidator &Inv);
789 };
790 
791 /// This analysis provides dependence information for the memory
792 /// accesses of a loop.
793 ///
794 /// It runs the analysis for a loop on demand.  This can be initiated by
795 /// querying the loop access info via AM.getResult<LoopAccessAnalysis>.
796 /// getResult return a LoopAccessInfo object.  See this class for the
797 /// specifics of what information is provided.
798 class LoopAccessAnalysis
799     : public AnalysisInfoMixin<LoopAccessAnalysis> {
800   friend AnalysisInfoMixin<LoopAccessAnalysis>;
801   static AnalysisKey Key;
802 
803 public:
804   typedef LoopAccessInfoManager Result;
805 
806   Result run(Function &F, FunctionAnalysisManager &AM);
807 };
808 
809 inline Instruction *MemoryDepChecker::Dependence::getSource(
810     const LoopAccessInfo &LAI) const {
811   return LAI.getDepChecker().getMemoryInstructions()[Source];
812 }
813 
814 inline Instruction *MemoryDepChecker::Dependence::getDestination(
815     const LoopAccessInfo &LAI) const {
816   return LAI.getDepChecker().getMemoryInstructions()[Destination];
817 }
818 
819 } // End llvm namespace
820 
821 #endif
822