1 //===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the LoopInfo class that is used to identify natural loops
10 // and determine the loop depth of various nodes of the CFG.  A natural loop
11 // has exactly one entry-point, which is called the header. Note that natural
12 // loops may actually be several loops that share the same header node.
13 //
14 // This analysis calculates the nesting structure of loops in a function.  For
15 // each natural loop identified, this analysis identifies natural loops
16 // contained entirely within the loop and the basic blocks the make up the loop.
17 //
18 // It can calculate on the fly various bits of information, for example:
19 //
20 //  * whether there is a preheader for the loop
21 //  * the number of back edges to the header
22 //  * whether or not a particular block branches out of the loop
23 //  * the successor blocks of the loop
24 //  * the loop depth
25 //  * etc...
26 //
27 // Note that this analysis specifically identifies *Loops* not cycles or SCCs
28 // in the CFG.  There can be strongly connected components in the CFG which
29 // this analysis will not recognize and that will not be represented by a Loop
30 // instance.  In particular, a Loop might be inside such a non-loop SCC, or a
31 // non-loop SCC might contain a sub-SCC which is a Loop.
32 //
33 // For an overview of terminology used in this API (and thus all of our loop
34 // analyses or transforms), see docs/LoopTerminology.rst.
35 //
36 //===----------------------------------------------------------------------===//
37 
38 #ifndef LLVM_ANALYSIS_LOOPINFO_H
39 #define LLVM_ANALYSIS_LOOPINFO_H
40 
41 #include "llvm/ADT/DenseMap.h"
42 #include "llvm/ADT/DenseSet.h"
43 #include "llvm/ADT/GraphTraits.h"
44 #include "llvm/ADT/SmallPtrSet.h"
45 #include "llvm/ADT/SmallVector.h"
46 #include "llvm/IR/CFG.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/PassManager.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/Allocator.h"
52 #include <algorithm>
53 #include <utility>
54 
55 namespace llvm {
56 
57 class DominatorTree;
58 class LoopInfo;
59 class Loop;
60 class InductionDescriptor;
61 class MDNode;
62 class MemorySSAUpdater;
63 class ScalarEvolution;
64 class raw_ostream;
65 template <class N, bool IsPostDom> class DominatorTreeBase;
66 template <class N, class M> class LoopInfoBase;
67 template <class N, class M> class LoopBase;
68 
69 //===----------------------------------------------------------------------===//
70 /// Instances of this class are used to represent loops that are detected in the
71 /// flow graph.
72 ///
73 template <class BlockT, class LoopT> class LoopBase {
74   LoopT *ParentLoop;
75   // Loops contained entirely within this one.
76   std::vector<LoopT *> SubLoops;
77 
78   // The list of blocks in this loop. First entry is the header node.
79   std::vector<BlockT *> Blocks;
80 
81   SmallPtrSet<const BlockT *, 8> DenseBlockSet;
82 
83 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
84   /// Indicator that this loop is no longer a valid loop.
85   bool IsInvalid = false;
86 #endif
87 
88   LoopBase(const LoopBase<BlockT, LoopT> &) = delete;
89   const LoopBase<BlockT, LoopT> &
90   operator=(const LoopBase<BlockT, LoopT> &) = delete;
91 
92 public:
93   /// Return the nesting level of this loop.  An outer-most loop has depth 1,
94   /// for consistency with loop depth values used for basic blocks, where depth
95   /// 0 is used for blocks not inside any loops.
96   unsigned getLoopDepth() const {
97     assert(!isInvalid() && "Loop not in a valid state!");
98     unsigned D = 1;
99     for (const LoopT *CurLoop = ParentLoop; CurLoop;
100          CurLoop = CurLoop->ParentLoop)
101       ++D;
102     return D;
103   }
104   BlockT *getHeader() const { return getBlocks().front(); }
105   /// Return the parent loop if it exists or nullptr for top
106   /// level loops.
107 
108   /// A loop is either top-level in a function (that is, it is not
109   /// contained in any other loop) or it is entirely enclosed in
110   /// some other loop.
111   /// If a loop is top-level, it has no parent, otherwise its
112   /// parent is the innermost loop in which it is enclosed.
113   LoopT *getParentLoop() const { return ParentLoop; }
114 
115   /// This is a raw interface for bypassing addChildLoop.
116   void setParentLoop(LoopT *L) {
117     assert(!isInvalid() && "Loop not in a valid state!");
118     ParentLoop = L;
119   }
120 
121   /// Return true if the specified loop is contained within in this loop.
122   bool contains(const LoopT *L) const {
123     assert(!isInvalid() && "Loop not in a valid state!");
124     if (L == this)
125       return true;
126     if (!L)
127       return false;
128     return contains(L->getParentLoop());
129   }
130 
131   /// Return true if the specified basic block is in this loop.
132   bool contains(const BlockT *BB) const {
133     assert(!isInvalid() && "Loop not in a valid state!");
134     return DenseBlockSet.count(BB);
135   }
136 
137   /// Return true if the specified instruction is in this loop.
138   template <class InstT> bool contains(const InstT *Inst) const {
139     return contains(Inst->getParent());
140   }
141 
142   /// Return the loops contained entirely within this loop.
143   const std::vector<LoopT *> &getSubLoops() const {
144     assert(!isInvalid() && "Loop not in a valid state!");
145     return SubLoops;
146   }
147   std::vector<LoopT *> &getSubLoopsVector() {
148     assert(!isInvalid() && "Loop not in a valid state!");
149     return SubLoops;
150   }
151   typedef typename std::vector<LoopT *>::const_iterator iterator;
152   typedef
153       typename std::vector<LoopT *>::const_reverse_iterator reverse_iterator;
154   iterator begin() const { return getSubLoops().begin(); }
155   iterator end() const { return getSubLoops().end(); }
156   reverse_iterator rbegin() const { return getSubLoops().rbegin(); }
157   reverse_iterator rend() const { return getSubLoops().rend(); }
158 
159   // LoopInfo does not detect irreducible control flow, just natural
160   // loops. That is, it is possible that there is cyclic control
161   // flow within the "innermost loop" or around the "outermost
162   // loop".
163 
164   /// Return true if the loop does not contain any (natural) loops.
165   bool isInnermost() const { return getSubLoops().empty(); }
166   /// Return true if the loop does not have a parent (natural) loop
167   // (i.e. it is outermost, which is the same as top-level).
168   bool isOutermost() const { return getParentLoop() == nullptr; }
169 
170   /// Get a list of the basic blocks which make up this loop.
171   ArrayRef<BlockT *> getBlocks() const {
172     assert(!isInvalid() && "Loop not in a valid state!");
173     return Blocks;
174   }
175   typedef typename ArrayRef<BlockT *>::const_iterator block_iterator;
176   block_iterator block_begin() const { return getBlocks().begin(); }
177   block_iterator block_end() const { return getBlocks().end(); }
178   inline iterator_range<block_iterator> blocks() const {
179     assert(!isInvalid() && "Loop not in a valid state!");
180     return make_range(block_begin(), block_end());
181   }
182 
183   /// Get the number of blocks in this loop in constant time.
184   /// Invalidate the loop, indicating that it is no longer a loop.
185   unsigned getNumBlocks() const {
186     assert(!isInvalid() && "Loop not in a valid state!");
187     return Blocks.size();
188   }
189 
190   /// Return a direct, mutable handle to the blocks vector so that we can
191   /// mutate it efficiently with techniques like `std::remove`.
192   std::vector<BlockT *> &getBlocksVector() {
193     assert(!isInvalid() && "Loop not in a valid state!");
194     return Blocks;
195   }
196   /// Return a direct, mutable handle to the blocks set so that we can
197   /// mutate it efficiently.
198   SmallPtrSetImpl<const BlockT *> &getBlocksSet() {
199     assert(!isInvalid() && "Loop not in a valid state!");
200     return DenseBlockSet;
201   }
202 
203   /// Return a direct, immutable handle to the blocks set.
204   const SmallPtrSetImpl<const BlockT *> &getBlocksSet() const {
205     assert(!isInvalid() && "Loop not in a valid state!");
206     return DenseBlockSet;
207   }
208 
209   /// Return true if this loop is no longer valid.  The only valid use of this
210   /// helper is "assert(L.isInvalid())" or equivalent, since IsInvalid is set to
211   /// true by the destructor.  In other words, if this accessor returns true,
212   /// the caller has already triggered UB by calling this accessor; and so it
213   /// can only be called in a context where a return value of true indicates a
214   /// programmer error.
215   bool isInvalid() const {
216 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
217     return IsInvalid;
218 #else
219     return false;
220 #endif
221   }
222 
223   /// True if terminator in the block can branch to another block that is
224   /// outside of the current loop. \p BB must be inside the loop.
225   bool isLoopExiting(const BlockT *BB) const {
226     assert(!isInvalid() && "Loop not in a valid state!");
227     assert(contains(BB) && "Exiting block must be part of the loop");
228     for (const auto *Succ : children<const BlockT *>(BB)) {
229       if (!contains(Succ))
230         return true;
231     }
232     return false;
233   }
234 
235   /// Returns true if \p BB is a loop-latch.
236   /// A latch block is a block that contains a branch back to the header.
237   /// This function is useful when there are multiple latches in a loop
238   /// because \fn getLoopLatch will return nullptr in that case.
239   bool isLoopLatch(const BlockT *BB) const {
240     assert(!isInvalid() && "Loop not in a valid state!");
241     assert(contains(BB) && "block does not belong to the loop");
242 
243     BlockT *Header = getHeader();
244     auto PredBegin = GraphTraits<Inverse<BlockT *>>::child_begin(Header);
245     auto PredEnd = GraphTraits<Inverse<BlockT *>>::child_end(Header);
246     return std::find(PredBegin, PredEnd, BB) != PredEnd;
247   }
248 
249   /// Calculate the number of back edges to the loop header.
250   unsigned getNumBackEdges() const {
251     assert(!isInvalid() && "Loop not in a valid state!");
252     unsigned NumBackEdges = 0;
253     BlockT *H = getHeader();
254 
255     for (const auto Pred : children<Inverse<BlockT *>>(H))
256       if (contains(Pred))
257         ++NumBackEdges;
258 
259     return NumBackEdges;
260   }
261 
262   //===--------------------------------------------------------------------===//
263   // APIs for simple analysis of the loop.
264   //
265   // Note that all of these methods can fail on general loops (ie, there may not
266   // be a preheader, etc).  For best success, the loop simplification and
267   // induction variable canonicalization pass should be used to normalize loops
268   // for easy analysis.  These methods assume canonical loops.
269 
270   /// Return all blocks inside the loop that have successors outside of the
271   /// loop. These are the blocks _inside of the current loop_ which branch out.
272   /// The returned list is always unique.
273   void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const;
274 
275   /// If getExitingBlocks would return exactly one block, return that block.
276   /// Otherwise return null.
277   BlockT *getExitingBlock() const;
278 
279   /// Return all of the successor blocks of this loop. These are the blocks
280   /// _outside of the current loop_ which are branched to.
281   void getExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const;
282 
283   /// If getExitBlocks would return exactly one block, return that block.
284   /// Otherwise return null.
285   BlockT *getExitBlock() const;
286 
287   /// Return true if no exit block for the loop has a predecessor that is
288   /// outside the loop.
289   bool hasDedicatedExits() const;
290 
291   /// Return all unique successor blocks of this loop.
292   /// These are the blocks _outside of the current loop_ which are branched to.
293   void getUniqueExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const;
294 
295   /// Return all unique successor blocks of this loop except successors from
296   /// Latch block are not considered. If the exit comes from Latch has also
297   /// non Latch predecessor in a loop it will be added to ExitBlocks.
298   /// These are the blocks _outside of the current loop_ which are branched to.
299   void getUniqueNonLatchExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const;
300 
301   /// If getUniqueExitBlocks would return exactly one block, return that block.
302   /// Otherwise return null.
303   BlockT *getUniqueExitBlock() const;
304 
305   /// Return true if this loop does not have any exit blocks.
306   bool hasNoExitBlocks() const;
307 
308   /// Edge type.
309   typedef std::pair<BlockT *, BlockT *> Edge;
310 
311   /// Return all pairs of (_inside_block_,_outside_block_).
312   void getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const;
313 
314   /// If there is a preheader for this loop, return it. A loop has a preheader
315   /// if there is only one edge to the header of the loop from outside of the
316   /// loop. If this is the case, the block branching to the header of the loop
317   /// is the preheader node.
318   ///
319   /// This method returns null if there is no preheader for the loop.
320   BlockT *getLoopPreheader() const;
321 
322   /// If the given loop's header has exactly one unique predecessor outside the
323   /// loop, return it. Otherwise return null.
324   ///  This is less strict that the loop "preheader" concept, which requires
325   /// the predecessor to have exactly one successor.
326   BlockT *getLoopPredecessor() const;
327 
328   /// If there is a single latch block for this loop, return it.
329   /// A latch block is a block that contains a branch back to the header.
330   BlockT *getLoopLatch() const;
331 
332   /// Return all loop latch blocks of this loop. A latch block is a block that
333   /// contains a branch back to the header.
334   void getLoopLatches(SmallVectorImpl<BlockT *> &LoopLatches) const {
335     assert(!isInvalid() && "Loop not in a valid state!");
336     BlockT *H = getHeader();
337     for (const auto Pred : children<Inverse<BlockT *>>(H))
338       if (contains(Pred))
339         LoopLatches.push_back(Pred);
340   }
341 
342   /// Return all inner loops in the loop nest rooted by the loop in preorder,
343   /// with siblings in forward program order.
344   template <class Type>
345   static void getInnerLoopsInPreorder(const LoopT &L,
346                                       SmallVectorImpl<Type> &PreOrderLoops) {
347     SmallVector<LoopT *, 4> PreOrderWorklist;
348     PreOrderWorklist.append(L.rbegin(), L.rend());
349 
350     while (!PreOrderWorklist.empty()) {
351       LoopT *L = PreOrderWorklist.pop_back_val();
352       // Sub-loops are stored in forward program order, but will process the
353       // worklist backwards so append them in reverse order.
354       PreOrderWorklist.append(L->rbegin(), L->rend());
355       PreOrderLoops.push_back(L);
356     }
357   }
358 
359   /// Return all loops in the loop nest rooted by the loop in preorder, with
360   /// siblings in forward program order.
361   SmallVector<const LoopT *, 4> getLoopsInPreorder() const {
362     SmallVector<const LoopT *, 4> PreOrderLoops;
363     const LoopT *CurLoop = static_cast<const LoopT *>(this);
364     PreOrderLoops.push_back(CurLoop);
365     getInnerLoopsInPreorder(*CurLoop, PreOrderLoops);
366     return PreOrderLoops;
367   }
368   SmallVector<LoopT *, 4> getLoopsInPreorder() {
369     SmallVector<LoopT *, 4> PreOrderLoops;
370     LoopT *CurLoop = static_cast<LoopT *>(this);
371     PreOrderLoops.push_back(CurLoop);
372     getInnerLoopsInPreorder(*CurLoop, PreOrderLoops);
373     return PreOrderLoops;
374   }
375 
376   //===--------------------------------------------------------------------===//
377   // APIs for updating loop information after changing the CFG
378   //
379 
380   /// This method is used by other analyses to update loop information.
381   /// NewBB is set to be a new member of the current loop.
382   /// Because of this, it is added as a member of all parent loops, and is added
383   /// to the specified LoopInfo object as being in the current basic block.  It
384   /// is not valid to replace the loop header with this method.
385   void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI);
386 
387   /// This is used when splitting loops up. It replaces the OldChild entry in
388   /// our children list with NewChild, and updates the parent pointer of
389   /// OldChild to be null and the NewChild to be this loop.
390   /// This updates the loop depth of the new child.
391   void replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild);
392 
393   /// Add the specified loop to be a child of this loop.
394   /// This updates the loop depth of the new child.
395   void addChildLoop(LoopT *NewChild) {
396     assert(!isInvalid() && "Loop not in a valid state!");
397     assert(!NewChild->ParentLoop && "NewChild already has a parent!");
398     NewChild->ParentLoop = static_cast<LoopT *>(this);
399     SubLoops.push_back(NewChild);
400   }
401 
402   /// This removes the specified child from being a subloop of this loop. The
403   /// loop is not deleted, as it will presumably be inserted into another loop.
404   LoopT *removeChildLoop(iterator I) {
405     assert(!isInvalid() && "Loop not in a valid state!");
406     assert(I != SubLoops.end() && "Cannot remove end iterator!");
407     LoopT *Child = *I;
408     assert(Child->ParentLoop == this && "Child is not a child of this loop!");
409     SubLoops.erase(SubLoops.begin() + (I - begin()));
410     Child->ParentLoop = nullptr;
411     return Child;
412   }
413 
414   /// This removes the specified child from being a subloop of this loop. The
415   /// loop is not deleted, as it will presumably be inserted into another loop.
416   LoopT *removeChildLoop(LoopT *Child) {
417     return removeChildLoop(llvm::find(*this, Child));
418   }
419 
420   /// This adds a basic block directly to the basic block list.
421   /// This should only be used by transformations that create new loops.  Other
422   /// transformations should use addBasicBlockToLoop.
423   void addBlockEntry(BlockT *BB) {
424     assert(!isInvalid() && "Loop not in a valid state!");
425     Blocks.push_back(BB);
426     DenseBlockSet.insert(BB);
427   }
428 
429   /// interface to reverse Blocks[from, end of loop] in this loop
430   void reverseBlock(unsigned from) {
431     assert(!isInvalid() && "Loop not in a valid state!");
432     std::reverse(Blocks.begin() + from, Blocks.end());
433   }
434 
435   /// interface to do reserve() for Blocks
436   void reserveBlocks(unsigned size) {
437     assert(!isInvalid() && "Loop not in a valid state!");
438     Blocks.reserve(size);
439   }
440 
441   /// This method is used to move BB (which must be part of this loop) to be the
442   /// loop header of the loop (the block that dominates all others).
443   void moveToHeader(BlockT *BB) {
444     assert(!isInvalid() && "Loop not in a valid state!");
445     if (Blocks[0] == BB)
446       return;
447     for (unsigned i = 0;; ++i) {
448       assert(i != Blocks.size() && "Loop does not contain BB!");
449       if (Blocks[i] == BB) {
450         Blocks[i] = Blocks[0];
451         Blocks[0] = BB;
452         return;
453       }
454     }
455   }
456 
457   /// This removes the specified basic block from the current loop, updating the
458   /// Blocks as appropriate. This does not update the mapping in the LoopInfo
459   /// class.
460   void removeBlockFromLoop(BlockT *BB) {
461     assert(!isInvalid() && "Loop not in a valid state!");
462     auto I = find(Blocks, BB);
463     assert(I != Blocks.end() && "N is not in this list!");
464     Blocks.erase(I);
465 
466     DenseBlockSet.erase(BB);
467   }
468 
469   /// Verify loop structure
470   void verifyLoop() const;
471 
472   /// Verify loop structure of this loop and all nested loops.
473   void verifyLoopNest(DenseSet<const LoopT *> *Loops) const;
474 
475   /// Returns true if the loop is annotated parallel.
476   ///
477   /// Derived classes can override this method using static template
478   /// polymorphism.
479   bool isAnnotatedParallel() const { return false; }
480 
481   /// Print loop with all the BBs inside it.
482   void print(raw_ostream &OS, bool Verbose = false, bool PrintNested = true,
483              unsigned Depth = 0) const;
484 
485 protected:
486   friend class LoopInfoBase<BlockT, LoopT>;
487 
488   /// This creates an empty loop.
489   LoopBase() : ParentLoop(nullptr) {}
490 
491   explicit LoopBase(BlockT *BB) : ParentLoop(nullptr) {
492     Blocks.push_back(BB);
493     DenseBlockSet.insert(BB);
494   }
495 
496   // Since loop passes like SCEV are allowed to key analysis results off of
497   // `Loop` pointers, we cannot re-use pointers within a loop pass manager.
498   // This means loop passes should not be `delete` ing `Loop` objects directly
499   // (and risk a later `Loop` allocation re-using the address of a previous one)
500   // but should be using LoopInfo::markAsRemoved, which keeps around the `Loop`
501   // pointer till the end of the lifetime of the `LoopInfo` object.
502   //
503   // To make it easier to follow this rule, we mark the destructor as
504   // non-public.
505   ~LoopBase() {
506     for (auto *SubLoop : SubLoops)
507       SubLoop->~LoopT();
508 
509 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
510     IsInvalid = true;
511 #endif
512     SubLoops.clear();
513     Blocks.clear();
514     DenseBlockSet.clear();
515     ParentLoop = nullptr;
516   }
517 };
518 
519 template <class BlockT, class LoopT>
520 raw_ostream &operator<<(raw_ostream &OS, const LoopBase<BlockT, LoopT> &Loop) {
521   Loop.print(OS);
522   return OS;
523 }
524 
525 // Implementation in LoopInfoImpl.h
526 extern template class LoopBase<BasicBlock, Loop>;
527 
528 /// Represents a single loop in the control flow graph.  Note that not all SCCs
529 /// in the CFG are necessarily loops.
530 class LLVM_EXTERNAL_VISIBILITY Loop : public LoopBase<BasicBlock, Loop> {
531 public:
532   /// A range representing the start and end location of a loop.
533   class LocRange {
534     DebugLoc Start;
535     DebugLoc End;
536 
537   public:
538     LocRange() = default;
539     LocRange(DebugLoc Start) : Start(Start), End(Start) {}
540     LocRange(DebugLoc Start, DebugLoc End)
541         : Start(std::move(Start)), End(std::move(End)) {}
542 
543     const DebugLoc &getStart() const { return Start; }
544     const DebugLoc &getEnd() const { return End; }
545 
546     /// Check for null.
547     ///
548     explicit operator bool() const { return Start && End; }
549   };
550 
551   /// Return true if the specified value is loop invariant.
552   bool isLoopInvariant(const Value *V) const;
553 
554   /// Return true if all the operands of the specified instruction are loop
555   /// invariant.
556   bool hasLoopInvariantOperands(const Instruction *I) const;
557 
558   /// If the given value is an instruction inside of the loop and it can be
559   /// hoisted, do so to make it trivially loop-invariant.
560   /// Return true if \c V is already loop-invariant, and false if \c V can't
561   /// be made loop-invariant. If \c V is made loop-invariant, \c Changed is
562   /// set to true. This function can be used as a slightly more aggressive
563   /// replacement for isLoopInvariant.
564   ///
565   /// If InsertPt is specified, it is the point to hoist instructions to.
566   /// If null, the terminator of the loop preheader is used.
567   ///
568   bool makeLoopInvariant(Value *V, bool &Changed,
569                          Instruction *InsertPt = nullptr,
570                          MemorySSAUpdater *MSSAU = nullptr) const;
571 
572   /// If the given instruction is inside of the loop and it can be hoisted, do
573   /// so to make it trivially loop-invariant.
574   /// Return true if \c I is already loop-invariant, and false if \c I can't
575   /// be made loop-invariant. If \c I is made loop-invariant, \c Changed is
576   /// set to true. This function can be used as a slightly more aggressive
577   /// replacement for isLoopInvariant.
578   ///
579   /// If InsertPt is specified, it is the point to hoist instructions to.
580   /// If null, the terminator of the loop preheader is used.
581   ///
582   bool makeLoopInvariant(Instruction *I, bool &Changed,
583                          Instruction *InsertPt = nullptr,
584                          MemorySSAUpdater *MSSAU = nullptr) const;
585 
586   /// Check to see if the loop has a canonical induction variable: an integer
587   /// recurrence that starts at 0 and increments by one each time through the
588   /// loop. If so, return the phi node that corresponds to it.
589   ///
590   /// The IndVarSimplify pass transforms loops to have a canonical induction
591   /// variable.
592   ///
593   PHINode *getCanonicalInductionVariable() const;
594 
595   /// Get the latch condition instruction.
596   ICmpInst *getLatchCmpInst() const;
597 
598   /// Obtain the unique incoming and back edge. Return false if they are
599   /// non-unique or the loop is dead; otherwise, return true.
600   bool getIncomingAndBackEdge(BasicBlock *&Incoming,
601                               BasicBlock *&Backedge) const;
602 
603   /// Below are some utilities to get the loop guard, loop bounds and induction
604   /// variable, and to check if a given phinode is an auxiliary induction
605   /// variable, if the loop is guarded, and if the loop is canonical.
606   ///
607   /// Here is an example:
608   /// \code
609   /// for (int i = lb; i < ub; i+=step)
610   ///   <loop body>
611   /// --- pseudo LLVMIR ---
612   /// beforeloop:
613   ///   guardcmp = (lb < ub)
614   ///   if (guardcmp) goto preheader; else goto afterloop
615   /// preheader:
616   /// loop:
617   ///   i_1 = phi[{lb, preheader}, {i_2, latch}]
618   ///   <loop body>
619   ///   i_2 = i_1 + step
620   /// latch:
621   ///   cmp = (i_2 < ub)
622   ///   if (cmp) goto loop
623   /// exit:
624   /// afterloop:
625   /// \endcode
626   ///
627   /// - getBounds
628   ///   - getInitialIVValue      --> lb
629   ///   - getStepInst            --> i_2 = i_1 + step
630   ///   - getStepValue           --> step
631   ///   - getFinalIVValue        --> ub
632   ///   - getCanonicalPredicate  --> '<'
633   ///   - getDirection           --> Increasing
634   ///
635   /// - getInductionVariable            --> i_1
636   /// - isAuxiliaryInductionVariable(x) --> true if x == i_1
637   /// - getLoopGuardBranch()
638   ///                 --> `if (guardcmp) goto preheader; else goto afterloop`
639   /// - isGuarded()                     --> true
640   /// - isCanonical                     --> false
641   struct LoopBounds {
642     /// Return the LoopBounds object if
643     /// - the given \p IndVar is an induction variable
644     /// - the initial value of the induction variable can be found
645     /// - the step instruction of the induction variable can be found
646     /// - the final value of the induction variable can be found
647     ///
648     /// Else None.
649     static Optional<Loop::LoopBounds> getBounds(const Loop &L, PHINode &IndVar,
650                                                 ScalarEvolution &SE);
651 
652     /// Get the initial value of the loop induction variable.
653     Value &getInitialIVValue() const { return InitialIVValue; }
654 
655     /// Get the instruction that updates the loop induction variable.
656     Instruction &getStepInst() const { return StepInst; }
657 
658     /// Get the step that the loop induction variable gets updated by in each
659     /// loop iteration. Return nullptr if not found.
660     Value *getStepValue() const { return StepValue; }
661 
662     /// Get the final value of the loop induction variable.
663     Value &getFinalIVValue() const { return FinalIVValue; }
664 
665     /// Return the canonical predicate for the latch compare instruction, if
666     /// able to be calcuated. Else BAD_ICMP_PREDICATE.
667     ///
668     /// A predicate is considered as canonical if requirements below are all
669     /// satisfied:
670     /// 1. The first successor of the latch branch is the loop header
671     ///    If not, inverse the predicate.
672     /// 2. One of the operands of the latch comparison is StepInst
673     ///    If not, and
674     ///    - if the current calcuated predicate is not ne or eq, flip the
675     ///      predicate.
676     ///    - else if the loop is increasing, return slt
677     ///      (notice that it is safe to change from ne or eq to sign compare)
678     ///    - else if the loop is decreasing, return sgt
679     ///      (notice that it is safe to change from ne or eq to sign compare)
680     ///
681     /// Here is an example when both (1) and (2) are not satisfied:
682     /// \code
683     /// loop.header:
684     ///  %iv = phi [%initialiv, %loop.preheader], [%inc, %loop.header]
685     ///  %inc = add %iv, %step
686     ///  %cmp = slt %iv, %finaliv
687     ///  br %cmp, %loop.exit, %loop.header
688     /// loop.exit:
689     /// \endcode
690     /// - The second successor of the latch branch is the loop header instead
691     ///   of the first successor (slt -> sge)
692     /// - The first operand of the latch comparison (%cmp) is the IndVar (%iv)
693     ///   instead of the StepInst (%inc) (sge -> sgt)
694     ///
695     /// The predicate would be sgt if both (1) and (2) are satisfied.
696     /// getCanonicalPredicate() returns sgt for this example.
697     /// Note: The IR is not changed.
698     ICmpInst::Predicate getCanonicalPredicate() const;
699 
700     /// An enum for the direction of the loop
701     /// - for (int i = 0; i < ub; ++i)  --> Increasing
702     /// - for (int i = ub; i > 0; --i)  --> Descresing
703     /// - for (int i = x; i != y; i+=z) --> Unknown
704     enum class Direction { Increasing, Decreasing, Unknown };
705 
706     /// Get the direction of the loop.
707     Direction getDirection() const;
708 
709   private:
710     LoopBounds(const Loop &Loop, Value &I, Instruction &SI, Value *SV, Value &F,
711                ScalarEvolution &SE)
712         : L(Loop), InitialIVValue(I), StepInst(SI), StepValue(SV),
713           FinalIVValue(F), SE(SE) {}
714 
715     const Loop &L;
716 
717     // The initial value of the loop induction variable
718     Value &InitialIVValue;
719 
720     // The instruction that updates the loop induction variable
721     Instruction &StepInst;
722 
723     // The value that the loop induction variable gets updated by in each loop
724     // iteration
725     Value *StepValue;
726 
727     // The final value of the loop induction variable
728     Value &FinalIVValue;
729 
730     ScalarEvolution &SE;
731   };
732 
733   /// Return the struct LoopBounds collected if all struct members are found,
734   /// else None.
735   Optional<LoopBounds> getBounds(ScalarEvolution &SE) const;
736 
737   /// Return the loop induction variable if found, else return nullptr.
738   /// An instruction is considered as the loop induction variable if
739   /// - it is an induction variable of the loop; and
740   /// - it is used to determine the condition of the branch in the loop latch
741   ///
742   /// Note: the induction variable doesn't need to be canonical, i.e. starts at
743   /// zero and increments by one each time through the loop (but it can be).
744   PHINode *getInductionVariable(ScalarEvolution &SE) const;
745 
746   /// Get the loop induction descriptor for the loop induction variable. Return
747   /// true if the loop induction variable is found.
748   bool getInductionDescriptor(ScalarEvolution &SE,
749                               InductionDescriptor &IndDesc) const;
750 
751   /// Return true if the given PHINode \p AuxIndVar is
752   /// - in the loop header
753   /// - not used outside of the loop
754   /// - incremented by a loop invariant step for each loop iteration
755   /// - step instruction opcode should be add or sub
756   /// Note: auxiliary induction variable is not required to be used in the
757   ///       conditional branch in the loop latch. (but it can be)
758   bool isAuxiliaryInductionVariable(PHINode &AuxIndVar,
759                                     ScalarEvolution &SE) const;
760 
761   /// Return the loop guard branch, if it exists.
762   ///
763   /// This currently only works on simplified loop, as it requires a preheader
764   /// and a latch to identify the guard. It will work on loops of the form:
765   /// \code
766   /// GuardBB:
767   ///   br cond1, Preheader, ExitSucc <== GuardBranch
768   /// Preheader:
769   ///   br Header
770   /// Header:
771   ///  ...
772   ///   br Latch
773   /// Latch:
774   ///   br cond2, Header, ExitBlock
775   /// ExitBlock:
776   ///   br ExitSucc
777   /// ExitSucc:
778   /// \endcode
779   BranchInst *getLoopGuardBranch() const;
780 
781   /// Return true iff the loop is
782   /// - in simplify rotated form, and
783   /// - guarded by a loop guard branch.
784   bool isGuarded() const { return (getLoopGuardBranch() != nullptr); }
785 
786   /// Return true if the loop is in rotated form.
787   ///
788   /// This does not check if the loop was rotated by loop rotation, instead it
789   /// only checks if the loop is in rotated form (has a valid latch that exists
790   /// the loop).
791   bool isRotatedForm() const {
792     assert(!isInvalid() && "Loop not in a valid state!");
793     BasicBlock *Latch = getLoopLatch();
794     return Latch && isLoopExiting(Latch);
795   }
796 
797   /// Return true if the loop induction variable starts at zero and increments
798   /// by one each time through the loop.
799   bool isCanonical(ScalarEvolution &SE) const;
800 
801   /// Return true if the Loop is in LCSSA form.
802   bool isLCSSAForm(const DominatorTree &DT) const;
803 
804   /// Return true if this Loop and all inner subloops are in LCSSA form.
805   bool isRecursivelyLCSSAForm(const DominatorTree &DT,
806                               const LoopInfo &LI) const;
807 
808   /// Return true if the Loop is in the form that the LoopSimplify form
809   /// transforms loops to, which is sometimes called normal form.
810   bool isLoopSimplifyForm() const;
811 
812   /// Return true if the loop body is safe to clone in practice.
813   bool isSafeToClone() const;
814 
815   /// Returns true if the loop is annotated parallel.
816   ///
817   /// A parallel loop can be assumed to not contain any dependencies between
818   /// iterations by the compiler. That is, any loop-carried dependency checking
819   /// can be skipped completely when parallelizing the loop on the target
820   /// machine. Thus, if the parallel loop information originates from the
821   /// programmer, e.g. via the OpenMP parallel for pragma, it is the
822   /// programmer's responsibility to ensure there are no loop-carried
823   /// dependencies. The final execution order of the instructions across
824   /// iterations is not guaranteed, thus, the end result might or might not
825   /// implement actual concurrent execution of instructions across multiple
826   /// iterations.
827   bool isAnnotatedParallel() const;
828 
829   /// Return the llvm.loop loop id metadata node for this loop if it is present.
830   ///
831   /// If this loop contains the same llvm.loop metadata on each branch to the
832   /// header then the node is returned. If any latch instruction does not
833   /// contain llvm.loop or if multiple latches contain different nodes then
834   /// 0 is returned.
835   MDNode *getLoopID() const;
836   /// Set the llvm.loop loop id metadata for this loop.
837   ///
838   /// The LoopID metadata node will be added to each terminator instruction in
839   /// the loop that branches to the loop header.
840   ///
841   /// The LoopID metadata node should have one or more operands and the first
842   /// operand should be the node itself.
843   void setLoopID(MDNode *LoopID) const;
844 
845   /// Add llvm.loop.unroll.disable to this loop's loop id metadata.
846   ///
847   /// Remove existing unroll metadata and add unroll disable metadata to
848   /// indicate the loop has already been unrolled.  This prevents a loop
849   /// from being unrolled more than is directed by a pragma if the loop
850   /// unrolling pass is run more than once (which it generally is).
851   void setLoopAlreadyUnrolled();
852 
853   /// Add llvm.loop.mustprogress to this loop's loop id metadata.
854   void setLoopMustProgress();
855 
856   void dump() const;
857   void dumpVerbose() const;
858 
859   /// Return the debug location of the start of this loop.
860   /// This looks for a BB terminating instruction with a known debug
861   /// location by looking at the preheader and header blocks. If it
862   /// cannot find a terminating instruction with location information,
863   /// it returns an unknown location.
864   DebugLoc getStartLoc() const;
865 
866   /// Return the source code span of the loop.
867   LocRange getLocRange() const;
868 
869   StringRef getName() const {
870     if (BasicBlock *Header = getHeader())
871       if (Header->hasName())
872         return Header->getName();
873     return "<unnamed loop>";
874   }
875 
876 private:
877   Loop() = default;
878 
879   friend class LoopInfoBase<BasicBlock, Loop>;
880   friend class LoopBase<BasicBlock, Loop>;
881   explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {}
882   ~Loop() = default;
883 };
884 
885 //===----------------------------------------------------------------------===//
886 /// This class builds and contains all of the top-level loop
887 /// structures in the specified function.
888 ///
889 
890 template <class BlockT, class LoopT> class LoopInfoBase {
891   // BBMap - Mapping of basic blocks to the inner most loop they occur in
892   DenseMap<const BlockT *, LoopT *> BBMap;
893   std::vector<LoopT *> TopLevelLoops;
894   BumpPtrAllocator LoopAllocator;
895 
896   friend class LoopBase<BlockT, LoopT>;
897   friend class LoopInfo;
898 
899   void operator=(const LoopInfoBase &) = delete;
900   LoopInfoBase(const LoopInfoBase &) = delete;
901 
902 public:
903   LoopInfoBase() = default;
904   ~LoopInfoBase() { releaseMemory(); }
905 
906   LoopInfoBase(LoopInfoBase &&Arg)
907       : BBMap(std::move(Arg.BBMap)),
908         TopLevelLoops(std::move(Arg.TopLevelLoops)),
909         LoopAllocator(std::move(Arg.LoopAllocator)) {
910     // We have to clear the arguments top level loops as we've taken ownership.
911     Arg.TopLevelLoops.clear();
912   }
913   LoopInfoBase &operator=(LoopInfoBase &&RHS) {
914     BBMap = std::move(RHS.BBMap);
915 
916     for (auto *L : TopLevelLoops)
917       L->~LoopT();
918 
919     TopLevelLoops = std::move(RHS.TopLevelLoops);
920     LoopAllocator = std::move(RHS.LoopAllocator);
921     RHS.TopLevelLoops.clear();
922     return *this;
923   }
924 
925   void releaseMemory() {
926     BBMap.clear();
927 
928     for (auto *L : TopLevelLoops)
929       L->~LoopT();
930     TopLevelLoops.clear();
931     LoopAllocator.Reset();
932   }
933 
934   template <typename... ArgsTy> LoopT *AllocateLoop(ArgsTy &&... Args) {
935     LoopT *Storage = LoopAllocator.Allocate<LoopT>();
936     return new (Storage) LoopT(std::forward<ArgsTy>(Args)...);
937   }
938 
939   /// iterator/begin/end - The interface to the top-level loops in the current
940   /// function.
941   ///
942   typedef typename std::vector<LoopT *>::const_iterator iterator;
943   typedef
944       typename std::vector<LoopT *>::const_reverse_iterator reverse_iterator;
945   iterator begin() const { return TopLevelLoops.begin(); }
946   iterator end() const { return TopLevelLoops.end(); }
947   reverse_iterator rbegin() const { return TopLevelLoops.rbegin(); }
948   reverse_iterator rend() const { return TopLevelLoops.rend(); }
949   bool empty() const { return TopLevelLoops.empty(); }
950 
951   /// Return all of the loops in the function in preorder across the loop
952   /// nests, with siblings in forward program order.
953   ///
954   /// Note that because loops form a forest of trees, preorder is equivalent to
955   /// reverse postorder.
956   SmallVector<LoopT *, 4> getLoopsInPreorder() const;
957 
958   /// Return all of the loops in the function in preorder across the loop
959   /// nests, with siblings in *reverse* program order.
960   ///
961   /// Note that because loops form a forest of trees, preorder is equivalent to
962   /// reverse postorder.
963   ///
964   /// Also note that this is *not* a reverse preorder. Only the siblings are in
965   /// reverse program order.
966   SmallVector<LoopT *, 4> getLoopsInReverseSiblingPreorder() const;
967 
968   /// Return the inner most loop that BB lives in. If a basic block is in no
969   /// loop (for example the entry node), null is returned.
970   LoopT *getLoopFor(const BlockT *BB) const { return BBMap.lookup(BB); }
971 
972   /// Same as getLoopFor.
973   const LoopT *operator[](const BlockT *BB) const { return getLoopFor(BB); }
974 
975   /// Return the loop nesting level of the specified block. A depth of 0 means
976   /// the block is not inside any loop.
977   unsigned getLoopDepth(const BlockT *BB) const {
978     const LoopT *L = getLoopFor(BB);
979     return L ? L->getLoopDepth() : 0;
980   }
981 
982   // True if the block is a loop header node
983   bool isLoopHeader(const BlockT *BB) const {
984     const LoopT *L = getLoopFor(BB);
985     return L && L->getHeader() == BB;
986   }
987 
988   /// Return the top-level loops.
989   const std::vector<LoopT *> &getTopLevelLoops() const { return TopLevelLoops; }
990 
991   /// Return the top-level loops.
992   std::vector<LoopT *> &getTopLevelLoopsVector() { return TopLevelLoops; }
993 
994   /// This removes the specified top-level loop from this loop info object.
995   /// The loop is not deleted, as it will presumably be inserted into
996   /// another loop.
997   LoopT *removeLoop(iterator I) {
998     assert(I != end() && "Cannot remove end iterator!");
999     LoopT *L = *I;
1000     assert(L->isOutermost() && "Not a top-level loop!");
1001     TopLevelLoops.erase(TopLevelLoops.begin() + (I - begin()));
1002     return L;
1003   }
1004 
1005   /// Change the top-level loop that contains BB to the specified loop.
1006   /// This should be used by transformations that restructure the loop hierarchy
1007   /// tree.
1008   void changeLoopFor(BlockT *BB, LoopT *L) {
1009     if (!L) {
1010       BBMap.erase(BB);
1011       return;
1012     }
1013     BBMap[BB] = L;
1014   }
1015 
1016   /// Replace the specified loop in the top-level loops list with the indicated
1017   /// loop.
1018   void changeTopLevelLoop(LoopT *OldLoop, LoopT *NewLoop) {
1019     auto I = find(TopLevelLoops, OldLoop);
1020     assert(I != TopLevelLoops.end() && "Old loop not at top level!");
1021     *I = NewLoop;
1022     assert(!NewLoop->ParentLoop && !OldLoop->ParentLoop &&
1023            "Loops already embedded into a subloop!");
1024   }
1025 
1026   /// This adds the specified loop to the collection of top-level loops.
1027   void addTopLevelLoop(LoopT *New) {
1028     assert(New->isOutermost() && "Loop already in subloop!");
1029     TopLevelLoops.push_back(New);
1030   }
1031 
1032   /// This method completely removes BB from all data structures,
1033   /// including all of the Loop objects it is nested in and our mapping from
1034   /// BasicBlocks to loops.
1035   void removeBlock(BlockT *BB) {
1036     auto I = BBMap.find(BB);
1037     if (I != BBMap.end()) {
1038       for (LoopT *L = I->second; L; L = L->getParentLoop())
1039         L->removeBlockFromLoop(BB);
1040 
1041       BBMap.erase(I);
1042     }
1043   }
1044 
1045   // Internals
1046 
1047   static bool isNotAlreadyContainedIn(const LoopT *SubLoop,
1048                                       const LoopT *ParentLoop) {
1049     if (!SubLoop)
1050       return true;
1051     if (SubLoop == ParentLoop)
1052       return false;
1053     return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
1054   }
1055 
1056   /// Create the loop forest using a stable algorithm.
1057   void analyze(const DominatorTreeBase<BlockT, false> &DomTree);
1058 
1059   // Debugging
1060   void print(raw_ostream &OS) const;
1061 
1062   void verify(const DominatorTreeBase<BlockT, false> &DomTree) const;
1063 
1064   /// Destroy a loop that has been removed from the `LoopInfo` nest.
1065   ///
1066   /// This runs the destructor of the loop object making it invalid to
1067   /// reference afterward. The memory is retained so that the *pointer* to the
1068   /// loop remains valid.
1069   ///
1070   /// The caller is responsible for removing this loop from the loop nest and
1071   /// otherwise disconnecting it from the broader `LoopInfo` data structures.
1072   /// Callers that don't naturally handle this themselves should probably call
1073   /// `erase' instead.
1074   void destroy(LoopT *L) {
1075     L->~LoopT();
1076 
1077     // Since LoopAllocator is a BumpPtrAllocator, this Deallocate only poisons
1078     // \c L, but the pointer remains valid for non-dereferencing uses.
1079     LoopAllocator.Deallocate(L);
1080   }
1081 };
1082 
1083 // Implementation in LoopInfoImpl.h
1084 extern template class LoopInfoBase<BasicBlock, Loop>;
1085 
1086 class LoopInfo : public LoopInfoBase<BasicBlock, Loop> {
1087   typedef LoopInfoBase<BasicBlock, Loop> BaseT;
1088 
1089   friend class LoopBase<BasicBlock, Loop>;
1090 
1091   void operator=(const LoopInfo &) = delete;
1092   LoopInfo(const LoopInfo &) = delete;
1093 
1094 public:
1095   LoopInfo() = default;
1096   explicit LoopInfo(const DominatorTreeBase<BasicBlock, false> &DomTree);
1097 
1098   LoopInfo(LoopInfo &&Arg) : BaseT(std::move(static_cast<BaseT &>(Arg))) {}
1099   LoopInfo &operator=(LoopInfo &&RHS) {
1100     BaseT::operator=(std::move(static_cast<BaseT &>(RHS)));
1101     return *this;
1102   }
1103 
1104   /// Handle invalidation explicitly.
1105   bool invalidate(Function &F, const PreservedAnalyses &PA,
1106                   FunctionAnalysisManager::Invalidator &);
1107 
1108   // Most of the public interface is provided via LoopInfoBase.
1109 
1110   /// Update LoopInfo after removing the last backedge from a loop. This updates
1111   /// the loop forest and parent loops for each block so that \c L is no longer
1112   /// referenced, but does not actually delete \c L immediately. The pointer
1113   /// will remain valid until this LoopInfo's memory is released.
1114   void erase(Loop *L);
1115 
1116   /// Returns true if replacing From with To everywhere is guaranteed to
1117   /// preserve LCSSA form.
1118   bool replacementPreservesLCSSAForm(Instruction *From, Value *To) {
1119     // Preserving LCSSA form is only problematic if the replacing value is an
1120     // instruction.
1121     Instruction *I = dyn_cast<Instruction>(To);
1122     if (!I)
1123       return true;
1124     // If both instructions are defined in the same basic block then replacement
1125     // cannot break LCSSA form.
1126     if (I->getParent() == From->getParent())
1127       return true;
1128     // If the instruction is not defined in a loop then it can safely replace
1129     // anything.
1130     Loop *ToLoop = getLoopFor(I->getParent());
1131     if (!ToLoop)
1132       return true;
1133     // If the replacing instruction is defined in the same loop as the original
1134     // instruction, or in a loop that contains it as an inner loop, then using
1135     // it as a replacement will not break LCSSA form.
1136     return ToLoop->contains(getLoopFor(From->getParent()));
1137   }
1138 
1139   /// Checks if moving a specific instruction can break LCSSA in any loop.
1140   ///
1141   /// Return true if moving \p Inst to before \p NewLoc will break LCSSA,
1142   /// assuming that the function containing \p Inst and \p NewLoc is currently
1143   /// in LCSSA form.
1144   bool movementPreservesLCSSAForm(Instruction *Inst, Instruction *NewLoc) {
1145     assert(Inst->getFunction() == NewLoc->getFunction() &&
1146            "Can't reason about IPO!");
1147 
1148     auto *OldBB = Inst->getParent();
1149     auto *NewBB = NewLoc->getParent();
1150 
1151     // Movement within the same loop does not break LCSSA (the equality check is
1152     // to avoid doing a hashtable lookup in case of intra-block movement).
1153     if (OldBB == NewBB)
1154       return true;
1155 
1156     auto *OldLoop = getLoopFor(OldBB);
1157     auto *NewLoop = getLoopFor(NewBB);
1158 
1159     if (OldLoop == NewLoop)
1160       return true;
1161 
1162     // Check if Outer contains Inner; with the null loop counting as the
1163     // "outermost" loop.
1164     auto Contains = [](const Loop *Outer, const Loop *Inner) {
1165       return !Outer || Outer->contains(Inner);
1166     };
1167 
1168     // To check that the movement of Inst to before NewLoc does not break LCSSA,
1169     // we need to check two sets of uses for possible LCSSA violations at
1170     // NewLoc: the users of NewInst, and the operands of NewInst.
1171 
1172     // If we know we're hoisting Inst out of an inner loop to an outer loop,
1173     // then the uses *of* Inst don't need to be checked.
1174 
1175     if (!Contains(NewLoop, OldLoop)) {
1176       for (Use &U : Inst->uses()) {
1177         auto *UI = cast<Instruction>(U.getUser());
1178         auto *UBB = isa<PHINode>(UI) ? cast<PHINode>(UI)->getIncomingBlock(U)
1179                                      : UI->getParent();
1180         if (UBB != NewBB && getLoopFor(UBB) != NewLoop)
1181           return false;
1182       }
1183     }
1184 
1185     // If we know we're sinking Inst from an outer loop into an inner loop, then
1186     // the *operands* of Inst don't need to be checked.
1187 
1188     if (!Contains(OldLoop, NewLoop)) {
1189       // See below on why we can't handle phi nodes here.
1190       if (isa<PHINode>(Inst))
1191         return false;
1192 
1193       for (Use &U : Inst->operands()) {
1194         auto *DefI = dyn_cast<Instruction>(U.get());
1195         if (!DefI)
1196           return false;
1197 
1198         // This would need adjustment if we allow Inst to be a phi node -- the
1199         // new use block won't simply be NewBB.
1200 
1201         auto *DefBlock = DefI->getParent();
1202         if (DefBlock != NewBB && getLoopFor(DefBlock) != NewLoop)
1203           return false;
1204       }
1205     }
1206 
1207     return true;
1208   }
1209 
1210   // Return true if a new use of V added in ExitBB would require an LCSSA PHI
1211   // to be inserted at the begining of the block.  Note that V is assumed to
1212   // dominate ExitBB, and ExitBB must be the exit block of some loop.  The
1213   // IR is assumed to be in LCSSA form before the planned insertion.
1214   bool wouldBeOutOfLoopUseRequiringLCSSA(const Value *V,
1215                                          const BasicBlock *ExitBB) const;
1216 
1217 };
1218 
1219 /// Enable verification of loop info.
1220 ///
1221 /// The flag enables checks which are expensive and are disabled by default
1222 /// unless the `EXPENSIVE_CHECKS` macro is defined.  The `-verify-loop-info`
1223 /// flag allows the checks to be enabled selectively without re-compilation.
1224 extern bool VerifyLoopInfo;
1225 
1226 // Allow clients to walk the list of nested loops...
1227 template <> struct GraphTraits<const Loop *> {
1228   typedef const Loop *NodeRef;
1229   typedef LoopInfo::iterator ChildIteratorType;
1230 
1231   static NodeRef getEntryNode(const Loop *L) { return L; }
1232   static ChildIteratorType child_begin(NodeRef N) { return N->begin(); }
1233   static ChildIteratorType child_end(NodeRef N) { return N->end(); }
1234 };
1235 
1236 template <> struct GraphTraits<Loop *> {
1237   typedef Loop *NodeRef;
1238   typedef LoopInfo::iterator ChildIteratorType;
1239 
1240   static NodeRef getEntryNode(Loop *L) { return L; }
1241   static ChildIteratorType child_begin(NodeRef N) { return N->begin(); }
1242   static ChildIteratorType child_end(NodeRef N) { return N->end(); }
1243 };
1244 
1245 /// Analysis pass that exposes the \c LoopInfo for a function.
1246 class LoopAnalysis : public AnalysisInfoMixin<LoopAnalysis> {
1247   friend AnalysisInfoMixin<LoopAnalysis>;
1248   static AnalysisKey Key;
1249 
1250 public:
1251   typedef LoopInfo Result;
1252 
1253   LoopInfo run(Function &F, FunctionAnalysisManager &AM);
1254 };
1255 
1256 /// Printer pass for the \c LoopAnalysis results.
1257 class LoopPrinterPass : public PassInfoMixin<LoopPrinterPass> {
1258   raw_ostream &OS;
1259 
1260 public:
1261   explicit LoopPrinterPass(raw_ostream &OS) : OS(OS) {}
1262   PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
1263 };
1264 
1265 /// Verifier pass for the \c LoopAnalysis results.
1266 struct LoopVerifierPass : public PassInfoMixin<LoopVerifierPass> {
1267   PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
1268 };
1269 
1270 /// The legacy pass manager's analysis pass to compute loop information.
1271 class LoopInfoWrapperPass : public FunctionPass {
1272   LoopInfo LI;
1273 
1274 public:
1275   static char ID; // Pass identification, replacement for typeid
1276 
1277   LoopInfoWrapperPass();
1278 
1279   LoopInfo &getLoopInfo() { return LI; }
1280   const LoopInfo &getLoopInfo() const { return LI; }
1281 
1282   /// Calculate the natural loop information for a given function.
1283   bool runOnFunction(Function &F) override;
1284 
1285   void verifyAnalysis() const override;
1286 
1287   void releaseMemory() override { LI.releaseMemory(); }
1288 
1289   void print(raw_ostream &O, const Module *M = nullptr) const override;
1290 
1291   void getAnalysisUsage(AnalysisUsage &AU) const override;
1292 };
1293 
1294 /// Function to print a loop's contents as LLVM's text IR assembly.
1295 void printLoop(Loop &L, raw_ostream &OS, const std::string &Banner = "");
1296 
1297 /// Find and return the loop attribute node for the attribute @p Name in
1298 /// @p LoopID. Return nullptr if there is no such attribute.
1299 MDNode *findOptionMDForLoopID(MDNode *LoopID, StringRef Name);
1300 
1301 /// Find string metadata for a loop.
1302 ///
1303 /// Returns the MDNode where the first operand is the metadata's name. The
1304 /// following operands are the metadata's values. If no metadata with @p Name is
1305 /// found, return nullptr.
1306 MDNode *findOptionMDForLoop(const Loop *TheLoop, StringRef Name);
1307 
1308 Optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop,
1309                                             StringRef Name);
1310 
1311 /// Returns true if Name is applied to TheLoop and enabled.
1312 bool getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name);
1313 
1314 /// Find named metadata for a loop with an integer value.
1315 llvm::Optional<int>
1316 getOptionalIntLoopAttribute(const Loop *TheLoop, StringRef Name);
1317 
1318 /// Find named metadata for a loop with an integer value. Return \p Default if
1319 /// not set.
1320 int getIntLoopAttribute(const Loop *TheLoop, StringRef Name, int Default = 0);
1321 
1322 /// Find string metadata for loop
1323 ///
1324 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
1325 /// operand or null otherwise.  If the string metadata is not found return
1326 /// Optional's not-a-value.
1327 Optional<const MDOperand *> findStringMetadataForLoop(const Loop *TheLoop,
1328                                                       StringRef Name);
1329 
1330 /// Look for the loop attribute that requires progress within the loop.
1331 /// Note: Most consumers probably want "isMustProgress" which checks
1332 /// the containing function attribute too.
1333 bool hasMustProgress(const Loop *L);
1334 
1335 /// Return true if this loop can be assumed to make progress.  (i.e. can't
1336 /// be infinite without side effects without also being undefined)
1337 bool isMustProgress(const Loop *L);
1338 
1339 /// Return true if this loop can be assumed to run for a finite number of
1340 /// iterations.
1341 bool isFinite(const Loop *L);
1342 
1343 /// Return whether an MDNode might represent an access group.
1344 ///
1345 /// Access group metadata nodes have to be distinct and empty. Being
1346 /// always-empty ensures that it never needs to be changed (which -- because
1347 /// MDNodes are designed immutable -- would require creating a new MDNode). Note
1348 /// that this is not a sufficient condition: not every distinct and empty NDNode
1349 /// is representing an access group.
1350 bool isValidAsAccessGroup(MDNode *AccGroup);
1351 
1352 /// Create a new LoopID after the loop has been transformed.
1353 ///
1354 /// This can be used when no follow-up loop attributes are defined
1355 /// (llvm::makeFollowupLoopID returning None) to stop transformations to be
1356 /// applied again.
1357 ///
1358 /// @param Context        The LLVMContext in which to create the new LoopID.
1359 /// @param OrigLoopID     The original LoopID; can be nullptr if the original
1360 ///                       loop has no LoopID.
1361 /// @param RemovePrefixes Remove all loop attributes that have these prefixes.
1362 ///                       Use to remove metadata of the transformation that has
1363 ///                       been applied.
1364 /// @param AddAttrs       Add these loop attributes to the new LoopID.
1365 ///
1366 /// @return A new LoopID that can be applied using Loop::setLoopID().
1367 llvm::MDNode *
1368 makePostTransformationMetadata(llvm::LLVMContext &Context, MDNode *OrigLoopID,
1369                                llvm::ArrayRef<llvm::StringRef> RemovePrefixes,
1370                                llvm::ArrayRef<llvm::MDNode *> AddAttrs);
1371 
1372 } // End llvm namespace
1373 
1374 #endif
1375