1 //===- llvm/Analysis/MemoryDependenceAnalysis.h - Memory Deps ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the MemoryDependenceAnalysis analysis pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_ANALYSIS_MEMORYDEPENDENCEANALYSIS_H
14 #define LLVM_ANALYSIS_MEMORYDEPENDENCEANALYSIS_H
15 
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/PointerEmbeddedInt.h"
18 #include "llvm/ADT/PointerIntPair.h"
19 #include "llvm/ADT/PointerSumType.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/Analysis/MemoryLocation.h"
22 #include "llvm/IR/PassManager.h"
23 #include "llvm/IR/PredIteratorCache.h"
24 #include "llvm/IR/ValueHandle.h"
25 #include "llvm/Pass.h"
26 #include <optional>
27 
28 namespace llvm {
29 
30 class AAResults;
31 class AssumptionCache;
32 class BatchAAResults;
33 class DominatorTree;
34 class PHITransAddr;
35 
36 /// A memory dependence query can return one of three different answers.
37 class MemDepResult {
38   enum DepType {
39     /// Clients of MemDep never see this.
40     ///
41     /// Entries with this marker occur in a LocalDeps map or NonLocalDeps map
42     /// when the instruction they previously referenced was removed from
43     /// MemDep.  In either case, the entry may include an instruction pointer.
44     /// If so, the pointer is an instruction in the block where scanning can
45     /// start from, saving some work.
46     ///
47     /// In a default-constructed MemDepResult object, the type will be Invalid
48     /// and the instruction pointer will be null.
49     Invalid = 0,
50 
51     /// This is a dependence on the specified instruction which clobbers the
52     /// desired value.  The pointer member of the MemDepResult pair holds the
53     /// instruction that clobbers the memory.  For example, this occurs when we
54     /// see a may-aliased store to the memory location we care about.
55     ///
56     /// There are several cases that may be interesting here:
57     ///   1. Loads are clobbered by may-alias stores.
58     ///   2. Loads are considered clobbered by partially-aliased loads.  The
59     ///      client may choose to analyze deeper into these cases.
60     Clobber,
61 
62     /// This is a dependence on the specified instruction which defines or
63     /// produces the desired memory location.  The pointer member of the
64     /// MemDepResult pair holds the instruction that defines the memory.
65     ///
66     /// Cases of interest:
67     ///   1. This could be a load or store for dependence queries on
68     ///      load/store.  The value loaded or stored is the produced value.
69     ///      Note that the pointer operand may be different than that of the
70     ///      queried pointer due to must aliases and phi translation. Note
71     ///      that the def may not be the same type as the query, the pointers
72     ///      may just be must aliases.
73     ///   2. For loads and stores, this could be an allocation instruction. In
74     ///      this case, the load is loading an undef value or a store is the
75     ///      first store to (that part of) the allocation.
76     ///   3. Dependence queries on calls return Def only when they are readonly
77     ///      calls or memory use intrinsics with identical callees and no
78     ///      intervening clobbers.  No validation is done that the operands to
79     ///      the calls are the same.
80     ///   4. For loads and stores, this could be a select instruction that
81     ///      defines pointer to this memory location. In this case, users can
82     ///      find non-clobbered Defs for both select values that are reaching
83     //       the desired memory location (there is still a guarantee that there
84     //       are no clobbers between analyzed memory location and select).
85     Def,
86 
87     /// This marker indicates that the query has no known dependency in the
88     /// specified block.
89     ///
90     /// More detailed state info is encoded in the upper part of the pair (i.e.
91     /// the Instruction*)
92     Other
93   };
94 
95   /// If DepType is "Other", the upper part of the sum type is an encoding of
96   /// the following more detailed type information.
97   enum OtherType {
98     /// This marker indicates that the query has no dependency in the specified
99     /// block.
100     ///
101     /// To find out more, the client should query other predecessor blocks.
102     NonLocal = 1,
103     /// This marker indicates that the query has no dependency in the specified
104     /// function.
105     NonFuncLocal,
106     /// This marker indicates that the query dependency is unknown.
107     Unknown
108   };
109 
110   using ValueTy = PointerSumType<
111       DepType, PointerSumTypeMember<Invalid, Instruction *>,
112       PointerSumTypeMember<Clobber, Instruction *>,
113       PointerSumTypeMember<Def, Instruction *>,
114       PointerSumTypeMember<Other, PointerEmbeddedInt<OtherType, 3>>>;
115   ValueTy Value;
116 
117   explicit MemDepResult(ValueTy V) : Value(V) {}
118 
119 public:
120   MemDepResult() = default;
121 
122   /// get methods: These are static ctor methods for creating various
123   /// MemDepResult kinds.
124   static MemDepResult getDef(Instruction *Inst) {
125     assert(Inst && "Def requires inst");
126     return MemDepResult(ValueTy::create<Def>(Inst));
127   }
128   static MemDepResult getClobber(Instruction *Inst) {
129     assert(Inst && "Clobber requires inst");
130     return MemDepResult(ValueTy::create<Clobber>(Inst));
131   }
132   static MemDepResult getNonLocal() {
133     return MemDepResult(ValueTy::create<Other>(NonLocal));
134   }
135   static MemDepResult getNonFuncLocal() {
136     return MemDepResult(ValueTy::create<Other>(NonFuncLocal));
137   }
138   static MemDepResult getUnknown() {
139     return MemDepResult(ValueTy::create<Other>(Unknown));
140   }
141 
142   /// Tests if this MemDepResult represents a query that is an instruction
143   /// clobber dependency.
144   bool isClobber() const { return Value.is<Clobber>(); }
145 
146   /// Tests if this MemDepResult represents a query that is an instruction
147   /// definition dependency.
148   bool isDef() const { return Value.is<Def>(); }
149 
150   /// Tests if this MemDepResult represents a valid local query (Clobber/Def).
151   bool isLocal() const { return isClobber() || isDef(); }
152 
153   /// Tests if this MemDepResult represents a query that is transparent to the
154   /// start of the block, but where a non-local hasn't been done.
155   bool isNonLocal() const {
156     return Value.is<Other>() && Value.cast<Other>() == NonLocal;
157   }
158 
159   /// Tests if this MemDepResult represents a query that is transparent to the
160   /// start of the function.
161   bool isNonFuncLocal() const {
162     return Value.is<Other>() && Value.cast<Other>() == NonFuncLocal;
163   }
164 
165   /// Tests if this MemDepResult represents a query which cannot and/or will
166   /// not be computed.
167   bool isUnknown() const {
168     return Value.is<Other>() && Value.cast<Other>() == Unknown;
169   }
170 
171   /// If this is a normal dependency, returns the instruction that is depended
172   /// on.  Otherwise, returns null.
173   Instruction *getInst() const {
174     switch (Value.getTag()) {
175     case Invalid:
176       return Value.cast<Invalid>();
177     case Clobber:
178       return Value.cast<Clobber>();
179     case Def:
180       return Value.cast<Def>();
181     case Other:
182       return nullptr;
183     }
184     llvm_unreachable("Unknown discriminant!");
185   }
186 
187   bool operator==(const MemDepResult &M) const { return Value == M.Value; }
188   bool operator!=(const MemDepResult &M) const { return Value != M.Value; }
189   bool operator<(const MemDepResult &M) const { return Value < M.Value; }
190   bool operator>(const MemDepResult &M) const { return Value > M.Value; }
191 
192 private:
193   friend class MemoryDependenceResults;
194 
195   /// Tests if this is a MemDepResult in its dirty/invalid. state.
196   bool isDirty() const { return Value.is<Invalid>(); }
197 
198   static MemDepResult getDirty(Instruction *Inst) {
199     return MemDepResult(ValueTy::create<Invalid>(Inst));
200   }
201 };
202 
203 /// This is an entry in the NonLocalDepInfo cache.
204 ///
205 /// For each BasicBlock (the BB entry) it keeps a MemDepResult.
206 class NonLocalDepEntry {
207   BasicBlock *BB;
208   MemDepResult Result;
209 
210 public:
211   NonLocalDepEntry(BasicBlock *BB, MemDepResult Result)
212       : BB(BB), Result(Result) {}
213 
214   // This is used for searches.
215   NonLocalDepEntry(BasicBlock *BB) : BB(BB) {}
216 
217   // BB is the sort key, it can't be changed.
218   BasicBlock *getBB() const { return BB; }
219 
220   void setResult(const MemDepResult &R) { Result = R; }
221 
222   const MemDepResult &getResult() const { return Result; }
223 
224   bool operator<(const NonLocalDepEntry &RHS) const { return BB < RHS.BB; }
225 };
226 
227 /// This is a result from a NonLocal dependence query.
228 ///
229 /// For each BasicBlock (the BB entry) it keeps a MemDepResult and the
230 /// (potentially phi translated) address that was live in the block.
231 class NonLocalDepResult {
232   NonLocalDepEntry Entry;
233   Value *Address;
234 
235 public:
236   NonLocalDepResult(BasicBlock *BB, MemDepResult Result, Value *Address)
237       : Entry(BB, Result), Address(Address) {}
238 
239   // BB is the sort key, it can't be changed.
240   BasicBlock *getBB() const { return Entry.getBB(); }
241 
242   void setResult(const MemDepResult &R, Value *Addr) {
243     Entry.setResult(R);
244     Address = Addr;
245   }
246 
247   const MemDepResult &getResult() const { return Entry.getResult(); }
248 
249   /// Returns the address of this pointer in this block.
250   ///
251   /// This can be different than the address queried for the non-local result
252   /// because of phi translation.  This returns null if the address was not
253   /// available in a block (i.e. because phi translation failed) or if this is
254   /// a cached result and that address was deleted.
255   ///
256   /// The address is always null for a non-local 'call' dependence.
257   Value *getAddress() const { return Address; }
258 };
259 
260 /// Provides a lazy, caching interface for making common memory aliasing
261 /// information queries, backed by LLVM's alias analysis passes.
262 ///
263 /// The dependency information returned is somewhat unusual, but is pragmatic.
264 /// If queried about a store or call that might modify memory, the analysis
265 /// will return the instruction[s] that may either load from that memory or
266 /// store to it.  If queried with a load or call that can never modify memory,
267 /// the analysis will return calls and stores that might modify the pointer,
268 /// but generally does not return loads unless a) they are volatile, or
269 /// b) they load from *must-aliased* pointers.  Returning a dependence on
270 /// must-alias'd pointers instead of all pointers interacts well with the
271 /// internal caching mechanism.
272 class MemoryDependenceResults {
273   // A map from instructions to their dependency.
274   using LocalDepMapType = DenseMap<Instruction *, MemDepResult>;
275   LocalDepMapType LocalDeps;
276 
277 public:
278   using NonLocalDepInfo = std::vector<NonLocalDepEntry>;
279 
280 private:
281   /// A pair<Value*, bool> where the bool is true if the dependence is a read
282   /// only dependence, false if read/write.
283   using ValueIsLoadPair = PointerIntPair<const Value *, 1, bool>;
284 
285   /// This pair is used when caching information for a block.
286   ///
287   /// If the pointer is null, the cache value is not a full query that starts
288   /// at the specified block.  If non-null, the bool indicates whether or not
289   /// the contents of the block was skipped.
290   using BBSkipFirstBlockPair = PointerIntPair<BasicBlock *, 1, bool>;
291 
292   /// This record is the information kept for each (value, is load) pair.
293   struct NonLocalPointerInfo {
294     /// The pair of the block and the skip-first-block flag.
295     BBSkipFirstBlockPair Pair;
296     /// The results of the query for each relevant block.
297     NonLocalDepInfo NonLocalDeps;
298     /// The maximum size of the dereferences of the pointer.
299     ///
300     /// May be UnknownSize if the sizes are unknown.
301     LocationSize Size = LocationSize::afterPointer();
302     /// The AA tags associated with dereferences of the pointer.
303     ///
304     /// The members may be null if there are no tags or conflicting tags.
305     AAMDNodes AATags;
306 
307     NonLocalPointerInfo() = default;
308   };
309 
310   /// Cache storing single nonlocal def for the instruction.
311   /// It is set when nonlocal def would be found in function returning only
312   /// local dependencies.
313   DenseMap<AssertingVH<const Value>, NonLocalDepResult> NonLocalDefsCache;
314   using ReverseNonLocalDefsCacheTy =
315     DenseMap<Instruction *, SmallPtrSet<const Value*, 4>>;
316   ReverseNonLocalDefsCacheTy ReverseNonLocalDefsCache;
317 
318   /// This map stores the cached results of doing a pointer lookup at the
319   /// bottom of a block.
320   ///
321   /// The key of this map is the pointer+isload bit, the value is a list of
322   /// <bb->result> mappings.
323   using CachedNonLocalPointerInfo =
324       DenseMap<ValueIsLoadPair, NonLocalPointerInfo>;
325   CachedNonLocalPointerInfo NonLocalPointerDeps;
326 
327   // A map from instructions to their non-local pointer dependencies.
328   using ReverseNonLocalPtrDepTy =
329       DenseMap<Instruction *, SmallPtrSet<ValueIsLoadPair, 4>>;
330   ReverseNonLocalPtrDepTy ReverseNonLocalPtrDeps;
331 
332   /// This is the instruction we keep for each cached access that we have for
333   /// an instruction.
334   ///
335   /// The pointer is an owning pointer and the bool indicates whether we have
336   /// any dirty bits in the set.
337   using PerInstNLInfo = std::pair<NonLocalDepInfo, bool>;
338 
339   // A map from instructions to their non-local dependencies.
340   using NonLocalDepMapType = DenseMap<Instruction *, PerInstNLInfo>;
341 
342   NonLocalDepMapType NonLocalDepsMap;
343 
344   // A reverse mapping from dependencies to the dependees.  This is
345   // used when removing instructions to keep the cache coherent.
346   using ReverseDepMapType =
347       DenseMap<Instruction *, SmallPtrSet<Instruction *, 4>>;
348   ReverseDepMapType ReverseLocalDeps;
349 
350   // A reverse mapping from dependencies to the non-local dependees.
351   ReverseDepMapType ReverseNonLocalDeps;
352 
353   /// Current AA implementation, just a cache.
354   AAResults &AA;
355   AssumptionCache &AC;
356   const TargetLibraryInfo &TLI;
357   DominatorTree &DT;
358   PredIteratorCache PredCache;
359 
360   unsigned DefaultBlockScanLimit;
361 
362   /// Offsets to dependant clobber loads.
363   using ClobberOffsetsMapType = DenseMap<LoadInst *, int32_t>;
364   ClobberOffsetsMapType ClobberOffsets;
365 
366 public:
367   MemoryDependenceResults(AAResults &AA, AssumptionCache &AC,
368                           const TargetLibraryInfo &TLI, DominatorTree &DT,
369                           unsigned DefaultBlockScanLimit)
370       : AA(AA), AC(AC), TLI(TLI), DT(DT),
371         DefaultBlockScanLimit(DefaultBlockScanLimit) {}
372 
373   /// Handle invalidation in the new PM.
374   bool invalidate(Function &F, const PreservedAnalyses &PA,
375                   FunctionAnalysisManager::Invalidator &Inv);
376 
377   /// Some methods limit the number of instructions they will examine.
378   /// The return value of this method is the default limit that will be
379   /// used if no limit is explicitly passed in.
380   unsigned getDefaultBlockScanLimit() const;
381 
382   /// Returns the instruction on which a memory operation depends.
383   ///
384   /// See the class comment for more details. It is illegal to call this on
385   /// non-memory instructions.
386   MemDepResult getDependency(Instruction *QueryInst);
387 
388   /// Perform a full dependency query for the specified call, returning the set
389   /// of blocks that the value is potentially live across.
390   ///
391   /// The returned set of results will include a "NonLocal" result for all
392   /// blocks where the value is live across.
393   ///
394   /// This method assumes the instruction returns a "NonLocal" dependency
395   /// within its own block.
396   ///
397   /// This returns a reference to an internal data structure that may be
398   /// invalidated on the next non-local query or when an instruction is
399   /// removed.  Clients must copy this data if they want it around longer than
400   /// that.
401   const NonLocalDepInfo &getNonLocalCallDependency(CallBase *QueryCall);
402 
403   /// Perform a full dependency query for an access to the QueryInst's
404   /// specified memory location, returning the set of instructions that either
405   /// define or clobber the value.
406   ///
407   /// Warning: For a volatile query instruction, the dependencies will be
408   /// accurate, and thus usable for reordering, but it is never legal to
409   /// remove the query instruction.
410   ///
411   /// This method assumes the pointer has a "NonLocal" dependency within
412   /// QueryInst's parent basic block.
413   void getNonLocalPointerDependency(Instruction *QueryInst,
414                                     SmallVectorImpl<NonLocalDepResult> &Result);
415 
416   /// Removes an instruction from the dependence analysis, updating the
417   /// dependence of instructions that previously depended on it.
418   void removeInstruction(Instruction *InstToRemove);
419 
420   /// Invalidates cached information about the specified pointer, because it
421   /// may be too conservative in memdep.
422   ///
423   /// This is an optional call that can be used when the client detects an
424   /// equivalence between the pointer and some other value and replaces the
425   /// other value with ptr. This can make Ptr available in more places that
426   /// cached info does not necessarily keep.
427   void invalidateCachedPointerInfo(Value *Ptr);
428 
429   /// Clears the PredIteratorCache info.
430   ///
431   /// This needs to be done when the CFG changes, e.g., due to splitting
432   /// critical edges.
433   void invalidateCachedPredecessors();
434 
435   /// Returns the instruction on which a memory location depends.
436   ///
437   /// If isLoad is true, this routine ignores may-aliases with read-only
438   /// operations.  If isLoad is false, this routine ignores may-aliases
439   /// with reads from read-only locations. If possible, pass the query
440   /// instruction as well; this function may take advantage of the metadata
441   /// annotated to the query instruction to refine the result. \p Limit
442   /// can be used to set the maximum number of instructions that will be
443   /// examined to find the pointer dependency. On return, it will be set to
444   /// the number of instructions left to examine. If a null pointer is passed
445   /// in, the limit will default to the value of -memdep-block-scan-limit.
446   ///
447   /// Note that this is an uncached query, and thus may be inefficient.
448   MemDepResult getPointerDependencyFrom(const MemoryLocation &Loc, bool isLoad,
449                                         BasicBlock::iterator ScanIt,
450                                         BasicBlock *BB,
451                                         Instruction *QueryInst = nullptr,
452                                         unsigned *Limit = nullptr);
453 
454   MemDepResult getPointerDependencyFrom(const MemoryLocation &Loc, bool isLoad,
455                                         BasicBlock::iterator ScanIt,
456                                         BasicBlock *BB,
457                                         Instruction *QueryInst,
458                                         unsigned *Limit,
459                                         BatchAAResults &BatchAA);
460 
461   MemDepResult
462   getSimplePointerDependencyFrom(const MemoryLocation &MemLoc, bool isLoad,
463                                  BasicBlock::iterator ScanIt, BasicBlock *BB,
464                                  Instruction *QueryInst, unsigned *Limit,
465                                  BatchAAResults &BatchAA);
466 
467   /// This analysis looks for other loads and stores with invariant.group
468   /// metadata and the same pointer operand. Returns Unknown if it does not
469   /// find anything, and Def if it can be assumed that 2 instructions load or
470   /// store the same value and NonLocal which indicate that non-local Def was
471   /// found, which can be retrieved by calling getNonLocalPointerDependency
472   /// with the same queried instruction.
473   MemDepResult getInvariantGroupPointerDependency(LoadInst *LI, BasicBlock *BB);
474 
475   /// Release memory in caches.
476   void releaseMemory();
477 
478   /// Return the clobber offset to dependent instruction.
479   std::optional<int32_t> getClobberOffset(LoadInst *DepInst) const {
480     const auto Off = ClobberOffsets.find(DepInst);
481     if (Off != ClobberOffsets.end())
482       return Off->getSecond();
483     return std::nullopt;
484   }
485 
486 private:
487   MemDepResult getCallDependencyFrom(CallBase *Call, bool isReadOnlyCall,
488                                      BasicBlock::iterator ScanIt,
489                                      BasicBlock *BB);
490   bool getNonLocalPointerDepFromBB(Instruction *QueryInst,
491                                    const PHITransAddr &Pointer,
492                                    const MemoryLocation &Loc, bool isLoad,
493                                    BasicBlock *BB,
494                                    SmallVectorImpl<NonLocalDepResult> &Result,
495                                    DenseMap<BasicBlock *, Value *> &Visited,
496                                    bool SkipFirstBlock = false,
497                                    bool IsIncomplete = false);
498   MemDepResult getNonLocalInfoForBlock(Instruction *QueryInst,
499                                        const MemoryLocation &Loc, bool isLoad,
500                                        BasicBlock *BB, NonLocalDepInfo *Cache,
501                                        unsigned NumSortedEntries,
502                                        BatchAAResults &BatchAA);
503 
504   void removeCachedNonLocalPointerDependencies(ValueIsLoadPair P);
505 
506   void verifyRemoved(Instruction *Inst) const;
507 };
508 
509 /// An analysis that produces \c MemoryDependenceResults for a function.
510 ///
511 /// This is essentially a no-op because the results are computed entirely
512 /// lazily.
513 class MemoryDependenceAnalysis
514     : public AnalysisInfoMixin<MemoryDependenceAnalysis> {
515   friend AnalysisInfoMixin<MemoryDependenceAnalysis>;
516 
517   static AnalysisKey Key;
518 
519   unsigned DefaultBlockScanLimit;
520 
521 public:
522   using Result = MemoryDependenceResults;
523 
524   MemoryDependenceAnalysis();
525   MemoryDependenceAnalysis(unsigned DefaultBlockScanLimit) : DefaultBlockScanLimit(DefaultBlockScanLimit) { }
526 
527   MemoryDependenceResults run(Function &F, FunctionAnalysisManager &AM);
528 };
529 
530 /// A wrapper analysis pass for the legacy pass manager that exposes a \c
531 /// MemoryDepnedenceResults instance.
532 class MemoryDependenceWrapperPass : public FunctionPass {
533   std::optional<MemoryDependenceResults> MemDep;
534 
535 public:
536   static char ID;
537 
538   MemoryDependenceWrapperPass();
539   ~MemoryDependenceWrapperPass() override;
540 
541   /// Pass Implementation stuff.  This doesn't do any analysis eagerly.
542   bool runOnFunction(Function &) override;
543 
544   /// Clean up memory in between runs
545   void releaseMemory() override;
546 
547   /// Does not modify anything.  It uses Value Numbering and Alias Analysis.
548   void getAnalysisUsage(AnalysisUsage &AU) const override;
549 
550   MemoryDependenceResults &getMemDep() { return *MemDep; }
551 };
552 
553 } // end namespace llvm
554 
555 #endif // LLVM_ANALYSIS_MEMORYDEPENDENCEANALYSIS_H
556