1 //===- MemorySSAUpdater.h - Memory SSA Updater-------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // \file
10 // An automatic updater for MemorySSA that handles arbitrary insertion,
11 // deletion, and moves.  It performs phi insertion where necessary, and
12 // automatically updates the MemorySSA IR to be correct.
13 // While updating loads or removing instructions is often easy enough to not
14 // need this, updating stores should generally not be attemped outside this
15 // API.
16 //
17 // Basic API usage:
18 // Create the memory access you want for the instruction (this is mainly so
19 // we know where it is, without having to duplicate the entire set of create
20 // functions MemorySSA supports).
21 // Call insertDef or insertUse depending on whether it's a MemoryUse or a
22 // MemoryDef.
23 // That's it.
24 //
25 // For moving, first, move the instruction itself using the normal SSA
26 // instruction moving API, then just call moveBefore, moveAfter,or moveTo with
27 // the right arguments.
28 //
29 //===----------------------------------------------------------------------===//
30 
31 #ifndef LLVM_ANALYSIS_MEMORYSSAUPDATER_H
32 #define LLVM_ANALYSIS_MEMORYSSAUPDATER_H
33 
34 #include "llvm/ADT/SmallPtrSet.h"
35 #include "llvm/ADT/SmallSet.h"
36 #include "llvm/ADT/SmallVector.h"
37 #include "llvm/Analysis/MemorySSA.h"
38 #include "llvm/IR/ValueHandle.h"
39 #include "llvm/IR/ValueMap.h"
40 #include "llvm/Support/CFGDiff.h"
41 
42 namespace llvm {
43 
44 class BasicBlock;
45 class DominatorTree;
46 class Instruction;
47 class LoopBlocksRPO;
48 template <typename T, unsigned int N> class SmallSetVector;
49 
50 using ValueToValueMapTy = ValueMap<const Value *, WeakTrackingVH>;
51 using PhiToDefMap = SmallDenseMap<MemoryPhi *, MemoryAccess *>;
52 using CFGUpdate = cfg::Update<BasicBlock *>;
53 
54 class MemorySSAUpdater {
55 private:
56   MemorySSA *MSSA;
57 
58   /// We use WeakVH rather than a costly deletion to deal with dangling pointers.
59   /// MemoryPhis are created eagerly and sometimes get zapped shortly afterwards.
60   SmallVector<WeakVH, 16> InsertedPHIs;
61 
62   SmallPtrSet<BasicBlock *, 8> VisitedBlocks;
63   SmallSet<AssertingVH<MemoryPhi>, 8> NonOptPhis;
64 
65 public:
MemorySSAUpdater(MemorySSA * MSSA)66   MemorySSAUpdater(MemorySSA *MSSA) : MSSA(MSSA) {}
67 
68   /// Insert a definition into the MemorySSA IR.  RenameUses will rename any use
69   /// below the new def block (and any inserted phis).  RenameUses should be set
70   /// to true if the definition may cause new aliases for loads below it.  This
71   /// is not the case for hoisting or sinking or other forms of code *movement*.
72   /// It *is* the case for straight code insertion.
73   /// For example:
74   /// store a
75   /// if (foo) { }
76   /// load a
77   ///
78   /// Moving the store into the if block, and calling insertDef, does not
79   /// require RenameUses.
80   /// However, changing it to:
81   /// store a
82   /// if (foo) { store b }
83   /// load a
84   /// Where a mayalias b, *does* require RenameUses be set to true.
85   void insertDef(MemoryDef *Def, bool RenameUses = false);
86   void insertUse(MemoryUse *Use, bool RenameUses = false);
87   /// Update the MemoryPhi in `To` following an edge deletion between `From` and
88   /// `To`. If `To` becomes unreachable, a call to removeBlocks should be made.
89   void removeEdge(BasicBlock *From, BasicBlock *To);
90   /// Update the MemoryPhi in `To` to have a single incoming edge from `From`,
91   /// following a CFG change that replaced multiple edges (switch) with a direct
92   /// branch.
93   void removeDuplicatePhiEdgesBetween(const BasicBlock *From,
94                                       const BasicBlock *To);
95   /// Update MemorySSA when inserting a unique backedge block for a loop.
96   void updatePhisWhenInsertingUniqueBackedgeBlock(BasicBlock *LoopHeader,
97                                                   BasicBlock *LoopPreheader,
98                                                   BasicBlock *BackedgeBlock);
99   /// Update MemorySSA after a loop was cloned, given the blocks in RPO order,
100   /// the exit blocks and a 1:1 mapping of all blocks and instructions
101   /// cloned. This involves duplicating all defs and uses in the cloned blocks
102   /// Updating phi nodes in exit block successors is done separately.
103   void updateForClonedLoop(const LoopBlocksRPO &LoopBlocks,
104                            ArrayRef<BasicBlock *> ExitBlocks,
105                            const ValueToValueMapTy &VM,
106                            bool IgnoreIncomingWithNoClones = false);
107   // Block BB was fully or partially cloned into its predecessor P1. Map
108   // contains the 1:1 mapping of instructions cloned and VM[BB]=P1.
109   void updateForClonedBlockIntoPred(BasicBlock *BB, BasicBlock *P1,
110                                     const ValueToValueMapTy &VM);
111   /// Update phi nodes in exit block successors following cloning. Exit blocks
112   /// that were not cloned don't have additional predecessors added.
113   void updateExitBlocksForClonedLoop(ArrayRef<BasicBlock *> ExitBlocks,
114                                      const ValueToValueMapTy &VMap,
115                                      DominatorTree &DT);
116   void updateExitBlocksForClonedLoop(
117       ArrayRef<BasicBlock *> ExitBlocks,
118       ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, DominatorTree &DT);
119 
120   /// Apply CFG updates, analogous with the DT edge updates. By default, the
121   /// DT is assumed to be already up to date. If UpdateDTFirst is true, first
122   /// update the DT with the same updates.
123   void applyUpdates(ArrayRef<CFGUpdate> Updates, DominatorTree &DT,
124                     bool UpdateDTFirst = false);
125   /// Apply CFG insert updates, analogous with the DT edge updates.
126   void applyInsertUpdates(ArrayRef<CFGUpdate> Updates, DominatorTree &DT);
127 
128   void moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where);
129   void moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where);
130   void moveToPlace(MemoryUseOrDef *What, BasicBlock *BB,
131                    MemorySSA::InsertionPlace Where);
132   /// `From` block was spliced into `From` and `To`. There is a CFG edge from
133   /// `From` to `To`. Move all accesses from `From` to `To` starting at
134   /// instruction `Start`. `To` is newly created BB, so empty of
135   /// MemorySSA::MemoryAccesses. Edges are already updated, so successors of
136   /// `To` with MPhi nodes need to update incoming block.
137   /// |------|        |------|
138   /// | From |        | From |
139   /// |      |        |------|
140   /// |      |           ||
141   /// |      |   =>      \/
142   /// |      |        |------|  <- Start
143   /// |      |        |  To  |
144   /// |------|        |------|
145   void moveAllAfterSpliceBlocks(BasicBlock *From, BasicBlock *To,
146                                 Instruction *Start);
147   /// `From` block was merged into `To`. There is a CFG edge from `To` to
148   /// `From`.`To` still branches to `From`, but all instructions were moved and
149   /// `From` is now an empty block; `From` is about to be deleted. Move all
150   /// accesses from `From` to `To` starting at instruction `Start`. `To` may
151   /// have multiple successors, `From` has a single predecessor. `From` may have
152   /// successors with MPhi nodes, replace their incoming block with `To`.
153   /// |------|        |------|
154   /// |  To  |        |  To  |
155   /// |------|        |      |
156   ///    ||      =>   |      |
157   ///    \/           |      |
158   /// |------|        |      |  <- Start
159   /// | From |        |      |
160   /// |------|        |------|
161   void moveAllAfterMergeBlocks(BasicBlock *From, BasicBlock *To,
162                                Instruction *Start);
163   /// A new empty BasicBlock (New) now branches directly to Old. Some of
164   /// Old's predecessors (Preds) are now branching to New instead of Old.
165   /// If New is the only predecessor, move Old's Phi, if present, to New.
166   /// Otherwise, add a new Phi in New with appropriate incoming values, and
167   /// update the incoming values in Old's Phi node too, if present.
168   void wireOldPredecessorsToNewImmediatePredecessor(
169       BasicBlock *Old, BasicBlock *New, ArrayRef<BasicBlock *> Preds,
170       bool IdenticalEdgesWereMerged = true);
171   // The below are utility functions. Other than creation of accesses to pass
172   // to insertDef, and removeAccess to remove accesses, you should generally
173   // not attempt to update memoryssa yourself. It is very non-trivial to get
174   // the edge cases right, and the above calls already operate in near-optimal
175   // time bounds.
176 
177   /// Create a MemoryAccess in MemorySSA at a specified point in a block.
178   ///
179   /// When used by itself, this method will only insert the new MemoryAccess
180   /// into the access list, but not make any other changes, such as inserting
181   /// MemoryPHI nodes, or updating users to point to the new MemoryAccess. You
182   /// must specify a correct Definition in this case.
183   ///
184   /// Usually, this API is instead combined with insertUse() or insertDef(),
185   /// which will perform all the necessary MSSA updates. If these APIs are used,
186   /// then nullptr can be used as Definition, as the correct defining access
187   /// will be automatically determined.
188   ///
189   /// Note: If a MemoryAccess already exists for I, this function will make it
190   /// inaccessible and it *must* have removeMemoryAccess called on it.
191   MemoryAccess *createMemoryAccessInBB(Instruction *I, MemoryAccess *Definition,
192                                        const BasicBlock *BB,
193                                        MemorySSA::InsertionPlace Point);
194 
195   /// Create a MemoryAccess in MemorySSA before an existing MemoryAccess.
196   ///
197   /// See createMemoryAccessInBB() for usage details.
198   MemoryUseOrDef *createMemoryAccessBefore(Instruction *I,
199                                            MemoryAccess *Definition,
200                                            MemoryUseOrDef *InsertPt);
201   /// Create a MemoryAccess in MemorySSA after an existing MemoryAccess.
202   ///
203   /// See createMemoryAccessInBB() for usage details.
204   MemoryUseOrDef *createMemoryAccessAfter(Instruction *I,
205                                           MemoryAccess *Definition,
206                                           MemoryAccess *InsertPt);
207 
208   /// Remove a MemoryAccess from MemorySSA, including updating all
209   /// definitions and uses.
210   /// This should be called when a memory instruction that has a MemoryAccess
211   /// associated with it is erased from the program.  For example, if a store or
212   /// load is simply erased (not replaced), removeMemoryAccess should be called
213   /// on the MemoryAccess for that store/load.
214   void removeMemoryAccess(MemoryAccess *, bool OptimizePhis = false);
215 
216   /// Remove MemoryAccess for a given instruction, if a MemoryAccess exists.
217   /// This should be called when an instruction (load/store) is deleted from
218   /// the program.
219   void removeMemoryAccess(const Instruction *I, bool OptimizePhis = false) {
220     if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
221       removeMemoryAccess(MA, OptimizePhis);
222   }
223 
224   /// Remove all MemoryAcceses in a set of BasicBlocks about to be deleted.
225   /// Assumption we make here: all uses of deleted defs and phi must either
226   /// occur in blocks about to be deleted (thus will be deleted as well), or
227   /// they occur in phis that will simply lose an incoming value.
228   /// Deleted blocks still have successor info, but their predecessor edges and
229   /// Phi nodes may already be updated. Instructions in DeadBlocks should be
230   /// deleted after this call.
231   void removeBlocks(const SmallSetVector<BasicBlock *, 8> &DeadBlocks);
232 
233   /// Instruction I will be changed to an unreachable. Remove all accesses in
234   /// I's block that follow I (inclusive), and update the Phis in the blocks'
235   /// successors.
236   void changeToUnreachable(const Instruction *I);
237 
238   /// Get handle on MemorySSA.
getMemorySSA()239   MemorySSA* getMemorySSA() const { return MSSA; }
240 
241 private:
242   // Move What before Where in the MemorySSA IR.
243   template <class WhereType>
244   void moveTo(MemoryUseOrDef *What, BasicBlock *BB, WhereType Where);
245   // Move all memory accesses from `From` to `To` starting at `Start`.
246   // Restrictions apply, see public wrappers of this method.
247   void moveAllAccesses(BasicBlock *From, BasicBlock *To, Instruction *Start);
248   MemoryAccess *getPreviousDef(MemoryAccess *);
249   MemoryAccess *getPreviousDefInBlock(MemoryAccess *);
250   MemoryAccess *
251   getPreviousDefFromEnd(BasicBlock *,
252                         DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &);
253   MemoryAccess *
254   getPreviousDefRecursive(BasicBlock *,
255                           DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &);
256   MemoryAccess *recursePhi(MemoryAccess *Phi);
257   MemoryAccess *tryRemoveTrivialPhi(MemoryPhi *Phi);
258   template <class RangeType>
259   MemoryAccess *tryRemoveTrivialPhi(MemoryPhi *Phi, RangeType &Operands);
260   void tryRemoveTrivialPhis(ArrayRef<WeakVH> UpdatedPHIs);
261   void fixupDefs(const SmallVectorImpl<WeakVH> &);
262   // Clone all uses and defs from BB to NewBB given a 1:1 map of all
263   // instructions and blocks cloned, and a map of MemoryPhi : Definition
264   // (MemoryAccess Phi or Def). VMap maps old instructions to cloned
265   // instructions and old blocks to cloned blocks. MPhiMap, is created in the
266   // caller of this private method, and maps existing MemoryPhis to new
267   // definitions that new MemoryAccesses must point to. These definitions may
268   // not necessarily be MemoryPhis themselves, they may be MemoryDefs. As such,
269   // the map is between MemoryPhis and MemoryAccesses, where the MemoryAccesses
270   // may be MemoryPhis or MemoryDefs and not MemoryUses.
271   // If CloneWasSimplified = true, the clone was exact. Otherwise, assume that
272   // the clone involved simplifications that may have: (1) turned a MemoryUse
273   // into an instruction that MemorySSA has no representation for, or (2) turned
274   // a MemoryDef into a MemoryUse or an instruction that MemorySSA has no
275   // representation for. No other cases are supported.
276   void cloneUsesAndDefs(BasicBlock *BB, BasicBlock *NewBB,
277                         const ValueToValueMapTy &VMap, PhiToDefMap &MPhiMap,
278                         bool CloneWasSimplified = false);
279   template <typename Iter>
280   void privateUpdateExitBlocksForClonedLoop(ArrayRef<BasicBlock *> ExitBlocks,
281                                             Iter ValuesBegin, Iter ValuesEnd,
282                                             DominatorTree &DT);
283   void applyInsertUpdates(ArrayRef<CFGUpdate>, DominatorTree &DT,
284                           const GraphDiff<BasicBlock *> *GD);
285 };
286 } // end namespace llvm
287 
288 #endif // LLVM_ANALYSIS_MEMORYSSAUPDATER_H
289