1 //===- MustExecute.h - Is an instruction known to execute--------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// Contains a collection of routines for determining if a given instruction is
10 /// guaranteed to execute if a given point in control flow is reached. The most
11 /// common example is an instruction within a loop being provably executed if we
12 /// branch to the header of it's containing loop.
13 ///
14 /// There are two interfaces available to determine if an instruction is
15 /// executed once a given point in the control flow is reached:
16 /// 1) A loop-centric one derived from LoopSafetyInfo.
17 /// 2) A "must be executed context"-based one implemented in the
18 ///    MustBeExecutedContextExplorer.
19 /// Please refer to the class comments for more information.
20 ///
21 //===----------------------------------------------------------------------===//
22 
23 #ifndef LLVM_ANALYSIS_MUSTEXECUTE_H
24 #define LLVM_ANALYSIS_MUSTEXECUTE_H
25 
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/Analysis/EHPersonalities.h"
28 #include "llvm/Analysis/InstructionPrecedenceTracking.h"
29 #include "llvm/Analysis/LoopInfo.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/Instruction.h"
33 
34 namespace llvm {
35 
36 namespace {
37 template <typename T> using GetterTy = std::function<T *(const Function &F)>;
38 }
39 
40 class Instruction;
41 class DominatorTree;
42 class PostDominatorTree;
43 class Loop;
44 
45 /// Captures loop safety information.
46 /// It keep information for loop blocks may throw exception or otherwise
47 /// exit abnormaly on any iteration of the loop which might actually execute
48 /// at runtime.  The primary way to consume this infromation is via
49 /// isGuaranteedToExecute below, but some callers bailout or fallback to
50 /// alternate reasoning if a loop contains any implicit control flow.
51 /// NOTE: LoopSafetyInfo contains cached information regarding loops and their
52 /// particular blocks. This information is only dropped on invocation of
53 /// computeLoopSafetyInfo. If the loop or any of its block is deleted, or if
54 /// any thrower instructions have been added or removed from them, or if the
55 /// control flow has changed, or in case of other meaningful modifications, the
56 /// LoopSafetyInfo needs to be recomputed. If a meaningful modifications to the
57 /// loop were made and the info wasn't recomputed properly, the behavior of all
58 /// methods except for computeLoopSafetyInfo is undefined.
59 class LoopSafetyInfo {
60   // Used to update funclet bundle operands.
61   DenseMap<BasicBlock *, ColorVector> BlockColors;
62 
63 protected:
64   /// Computes block colors.
65   void computeBlockColors(const Loop *CurLoop);
66 
67 public:
68   /// Returns block colors map that is used to update funclet operand bundles.
69   const DenseMap<BasicBlock *, ColorVector> &getBlockColors() const;
70 
71   /// Copy colors of block \p Old into the block \p New.
72   void copyColors(BasicBlock *New, BasicBlock *Old);
73 
74   /// Returns true iff the block \p BB potentially may throw exception. It can
75   /// be false-positive in cases when we want to avoid complex analysis.
76   virtual bool blockMayThrow(const BasicBlock *BB) const = 0;
77 
78   /// Returns true iff any block of the loop for which this info is contains an
79   /// instruction that may throw or otherwise exit abnormally.
80   virtual bool anyBlockMayThrow() const = 0;
81 
82   /// Return true if we must reach the block \p BB under assumption that the
83   /// loop \p CurLoop is entered.
84   bool allLoopPathsLeadToBlock(const Loop *CurLoop, const BasicBlock *BB,
85                                const DominatorTree *DT) const;
86 
87   /// Computes safety information for a loop checks loop body & header for
88   /// the possibility of may throw exception, it takes LoopSafetyInfo and loop
89   /// as argument. Updates safety information in LoopSafetyInfo argument.
90   /// Note: This is defined to clear and reinitialize an already initialized
91   /// LoopSafetyInfo.  Some callers rely on this fact.
92   virtual void computeLoopSafetyInfo(const Loop *CurLoop) = 0;
93 
94   /// Returns true if the instruction in a loop is guaranteed to execute at
95   /// least once (under the assumption that the loop is entered).
96   virtual bool isGuaranteedToExecute(const Instruction &Inst,
97                                      const DominatorTree *DT,
98                                      const Loop *CurLoop) const = 0;
99 
100   LoopSafetyInfo() = default;
101 
102   virtual ~LoopSafetyInfo() = default;
103 };
104 
105 
106 /// Simple and conservative implementation of LoopSafetyInfo that can give
107 /// false-positive answers to its queries in order to avoid complicated
108 /// analysis.
109 class SimpleLoopSafetyInfo: public LoopSafetyInfo {
110   bool MayThrow = false;       // The current loop contains an instruction which
111                                // may throw.
112   bool HeaderMayThrow = false; // Same as previous, but specific to loop header
113 
114 public:
115   virtual bool blockMayThrow(const BasicBlock *BB) const;
116 
117   virtual bool anyBlockMayThrow() const;
118 
119   virtual void computeLoopSafetyInfo(const Loop *CurLoop);
120 
121   virtual bool isGuaranteedToExecute(const Instruction &Inst,
122                                      const DominatorTree *DT,
123                                      const Loop *CurLoop) const;
124 
125   SimpleLoopSafetyInfo() : LoopSafetyInfo() {};
126 
127   virtual ~SimpleLoopSafetyInfo() {};
128 };
129 
130 /// This implementation of LoopSafetyInfo use ImplicitControlFlowTracking to
131 /// give precise answers on "may throw" queries. This implementation uses cache
132 /// that should be invalidated by calling the methods insertInstructionTo and
133 /// removeInstruction whenever we modify a basic block's contents by adding or
134 /// removing instructions.
135 class ICFLoopSafetyInfo: public LoopSafetyInfo {
136   bool MayThrow = false;       // The current loop contains an instruction which
137                                // may throw.
138   // Contains information about implicit control flow in this loop's blocks.
139   mutable ImplicitControlFlowTracking ICF;
140   // Contains information about instruction that may possibly write memory.
141   mutable MemoryWriteTracking MW;
142 
143 public:
144   virtual bool blockMayThrow(const BasicBlock *BB) const;
145 
146   virtual bool anyBlockMayThrow() const;
147 
148   virtual void computeLoopSafetyInfo(const Loop *CurLoop);
149 
150   virtual bool isGuaranteedToExecute(const Instruction &Inst,
151                                      const DominatorTree *DT,
152                                      const Loop *CurLoop) const;
153 
154   /// Returns true if we could not execute a memory-modifying instruction before
155   /// we enter \p BB under assumption that \p CurLoop is entered.
156   bool doesNotWriteMemoryBefore(const BasicBlock *BB, const Loop *CurLoop)
157       const;
158 
159   /// Returns true if we could not execute a memory-modifying instruction before
160   /// we execute \p I under assumption that \p CurLoop is entered.
161   bool doesNotWriteMemoryBefore(const Instruction &I, const Loop *CurLoop)
162       const;
163 
164   /// Inform the safety info that we are planning to insert a new instruction
165   /// \p Inst into the basic block \p BB. It will make all cache updates to keep
166   /// it correct after this insertion.
167   void insertInstructionTo(const Instruction *Inst, const BasicBlock *BB);
168 
169   /// Inform safety info that we are planning to remove the instruction \p Inst
170   /// from its block. It will make all cache updates to keep it correct after
171   /// this removal.
172   void removeInstruction(const Instruction *Inst);
173 
174   ICFLoopSafetyInfo(DominatorTree *DT) : LoopSafetyInfo(), ICF(DT), MW(DT) {};
175 
176   virtual ~ICFLoopSafetyInfo() {};
177 };
178 
179 struct MustBeExecutedContextExplorer;
180 
181 /// Must be executed iterators visit stretches of instructions that are
182 /// guaranteed to be executed together, potentially with other instruction
183 /// executed in-between.
184 ///
185 /// Given the following code, and assuming all statements are single
186 /// instructions which transfer execution to the successor (see
187 /// isGuaranteedToTransferExecutionToSuccessor), there are two possible
188 /// outcomes. If we start the iterator at A, B, or E, we will visit only A, B,
189 /// and E. If we start at C or D, we will visit all instructions A-E.
190 ///
191 /// \code
192 ///   A;
193 ///   B;
194 ///   if (...) {
195 ///     C;
196 ///     D;
197 ///   }
198 ///   E;
199 /// \endcode
200 ///
201 ///
202 /// Below is the example extneded with instructions F and G. Now we assume F
203 /// might not transfer execution to it's successor G. As a result we get the
204 /// following visit sets:
205 ///
206 /// Start Instruction   | Visit Set
207 /// A                   | A, B,       E, F
208 ///    B                | A, B,       E, F
209 ///       C             | A, B, C, D, E, F
210 ///          D          | A, B, C, D, E, F
211 ///             E       | A, B,       E, F
212 ///                F    | A, B,       E, F
213 ///                   G | A, B,       E, F, G
214 ///
215 ///
216 /// \code
217 ///   A;
218 ///   B;
219 ///   if (...) {
220 ///     C;
221 ///     D;
222 ///   }
223 ///   E;
224 ///   F;  // Might not transfer execution to its successor G.
225 ///   G;
226 /// \endcode
227 ///
228 ///
229 /// A more complex example involving conditionals, loops, break, and continue
230 /// is shown below. We again assume all instructions will transmit control to
231 /// the successor and we assume we can prove the inner loop to be finite. We
232 /// omit non-trivial branch conditions as the exploration is oblivious to them.
233 /// Constant branches are assumed to be unconditional in the CFG. The resulting
234 /// visist sets are shown in the table below.
235 ///
236 /// \code
237 ///   A;
238 ///   while (true) {
239 ///     B;
240 ///     if (...)
241 ///       C;
242 ///     if (...)
243 ///       continue;
244 ///     D;
245 ///     if (...)
246 ///       break;
247 ///     do {
248 ///       if (...)
249 ///         continue;
250 ///       E;
251 ///     } while (...);
252 ///     F;
253 ///   }
254 ///   G;
255 /// \endcode
256 ///
257 /// Start Instruction    | Visit Set
258 /// A                    | A, B
259 ///    B                 | A, B
260 ///       C              | A, B, C
261 ///          D           | A, B,    D
262 ///             E        | A, B,    D, E, F
263 ///                F     | A, B,    D,    F
264 ///                   G  | A, B,    D,       G
265 ///
266 ///
267 /// Note that the examples show optimal visist sets but not necessarily the ones
268 /// derived by the explorer depending on the available CFG analyses (see
269 /// MustBeExecutedContextExplorer). Also note that we, depending on the options,
270 /// the visit set can contain instructions from other functions.
271 struct MustBeExecutedIterator {
272   /// Type declarations that make his class an input iterator.
273   ///{
274   typedef const Instruction *value_type;
275   typedef std::ptrdiff_t difference_type;
276   typedef const Instruction **pointer;
277   typedef const Instruction *&reference;
278   typedef std::input_iterator_tag iterator_category;
279   ///}
280 
281   using ExplorerTy = MustBeExecutedContextExplorer;
282 
283   MustBeExecutedIterator(const MustBeExecutedIterator &Other)
284       : Visited(Other.Visited), Explorer(Other.Explorer),
285         CurInst(Other.CurInst) {}
286 
287   MustBeExecutedIterator(MustBeExecutedIterator &&Other)
288       : Visited(std::move(Other.Visited)), Explorer(Other.Explorer),
289         CurInst(Other.CurInst) {}
290 
291   MustBeExecutedIterator &operator=(MustBeExecutedIterator &&Other) {
292     if (this != &Other) {
293       std::swap(Visited, Other.Visited);
294       std::swap(CurInst, Other.CurInst);
295     }
296     return *this;
297   }
298 
299   ~MustBeExecutedIterator() {}
300 
301   /// Pre- and post-increment operators.
302   ///{
303   MustBeExecutedIterator &operator++() {
304     CurInst = advance();
305     return *this;
306   }
307 
308   MustBeExecutedIterator operator++(int) {
309     MustBeExecutedIterator tmp(*this);
310     operator++();
311     return tmp;
312   }
313   ///}
314 
315   /// Equality and inequality operators. Note that we ignore the history here.
316   ///{
317   bool operator==(const MustBeExecutedIterator &Other) const {
318     return CurInst == Other.CurInst;
319   }
320 
321   bool operator!=(const MustBeExecutedIterator &Other) const {
322     return !(*this == Other);
323   }
324   ///}
325 
326   /// Return the underlying instruction.
327   const Instruction *&operator*() { return CurInst; }
328   const Instruction *getCurrentInst() const { return CurInst; }
329 
330   /// Return true if \p I was encountered by this iterator already.
331   bool count(const Instruction *I) const { return Visited.count(I); }
332 
333 private:
334   using VisitedSetTy = DenseSet<const Instruction *>;
335 
336   /// Private constructors.
337   MustBeExecutedIterator(ExplorerTy &Explorer, const Instruction *I);
338 
339   /// Reset the iterator to its initial state pointing at \p I.
340   void reset(const Instruction *I);
341 
342   /// Try to advance one of the underlying positions (Head or Tail).
343   ///
344   /// \return The next instruction in the must be executed context, or nullptr
345   ///         if none was found.
346   const Instruction *advance();
347 
348   /// A set to track the visited instructions in order to deal with endless
349   /// loops and recursion.
350   VisitedSetTy Visited;
351 
352   /// A reference to the explorer that created this iterator.
353   ExplorerTy &Explorer;
354 
355   /// The instruction we are currently exposing to the user. There is always an
356   /// instruction that we know is executed with the given program point,
357   /// initially the program point itself.
358   const Instruction *CurInst;
359 
360   friend struct MustBeExecutedContextExplorer;
361 };
362 
363 /// A "must be executed context" for a given program point PP is the set of
364 /// instructions, potentially before and after PP, that are executed always when
365 /// PP is reached. The MustBeExecutedContextExplorer an interface to explore
366 /// "must be executed contexts" in a module through the use of
367 /// MustBeExecutedIterator.
368 ///
369 /// The explorer exposes "must be executed iterators" that traverse the must be
370 /// executed context. There is little information sharing between iterators as
371 /// the expected use case involves few iterators for "far apart" instructions.
372 /// If that changes, we should consider caching more intermediate results.
373 struct MustBeExecutedContextExplorer {
374 
375   /// In the description of the parameters we use PP to denote a program point
376   /// for which the must be executed context is explored, or put differently,
377   /// for which the MustBeExecutedIterator is created.
378   ///
379   /// \param ExploreInterBlock    Flag to indicate if instructions in blocks
380   ///                             other than the parent of PP should be
381   ///                             explored.
382   MustBeExecutedContextExplorer(
383       bool ExploreInterBlock,
384       GetterTy<const LoopInfo> LIGetter =
385           [](const Function &) { return nullptr; },
386       GetterTy<const PostDominatorTree> PDTGetter =
387           [](const Function &) { return nullptr; })
388       : ExploreInterBlock(ExploreInterBlock), LIGetter(LIGetter),
389         PDTGetter(PDTGetter), EndIterator(*this, nullptr) {}
390 
391   /// Clean up the dynamically allocated iterators.
392   ~MustBeExecutedContextExplorer() {
393     DeleteContainerSeconds(InstructionIteratorMap);
394   }
395 
396   /// Iterator-based interface. \see MustBeExecutedIterator.
397   ///{
398   using iterator = MustBeExecutedIterator;
399   using const_iterator = const MustBeExecutedIterator;
400 
401   /// Return an iterator to explore the context around \p PP.
402   iterator &begin(const Instruction *PP) {
403     auto *&It = InstructionIteratorMap[PP];
404     if (!It)
405       It = new iterator(*this, PP);
406     return *It;
407   }
408 
409   /// Return an iterator to explore the cached context around \p PP.
410   const_iterator &begin(const Instruction *PP) const {
411     return *InstructionIteratorMap.lookup(PP);
412   }
413 
414   /// Return an universal end iterator.
415   ///{
416   iterator &end() { return EndIterator; }
417   iterator &end(const Instruction *) { return EndIterator; }
418 
419   const_iterator &end() const { return EndIterator; }
420   const_iterator &end(const Instruction *) const { return EndIterator; }
421   ///}
422 
423   /// Return an iterator range to explore the context around \p PP.
424   llvm::iterator_range<iterator> range(const Instruction *PP) {
425     return llvm::make_range(begin(PP), end(PP));
426   }
427 
428   /// Return an iterator range to explore the cached context around \p PP.
429   llvm::iterator_range<const_iterator> range(const Instruction *PP) const {
430     return llvm::make_range(begin(PP), end(PP));
431   }
432   ///}
433 
434   /// Helper to look for \p I in the context of \p PP.
435   ///
436   /// The context is expanded until \p I was found or no more expansion is
437   /// possible.
438   ///
439   /// \returns True, iff \p I was found.
440   bool findInContextOf(const Instruction *I, const Instruction *PP) {
441     auto EIt = begin(PP), EEnd = end(PP);
442     return findInContextOf(I, EIt, EEnd);
443   }
444 
445   /// Helper to look for \p I in the context defined by \p EIt and \p EEnd.
446   ///
447   /// The context is expanded until \p I was found or no more expansion is
448   /// possible.
449   ///
450   /// \returns True, iff \p I was found.
451   bool findInContextOf(const Instruction *I, iterator &EIt, iterator &EEnd) {
452     bool Found = EIt.count(I);
453     while (!Found && EIt != EEnd)
454       Found = (++EIt).getCurrentInst() == I;
455     return Found;
456   }
457 
458   /// Return the next instruction that is guaranteed to be executed after \p PP.
459   ///
460   /// \param It              The iterator that is used to traverse the must be
461   ///                        executed context.
462   /// \param PP              The program point for which the next instruction
463   ///                        that is guaranteed to execute is determined.
464   const Instruction *
465   getMustBeExecutedNextInstruction(MustBeExecutedIterator &It,
466                                    const Instruction *PP);
467 
468   /// Find the next join point from \p InitBB in forward direction.
469   const BasicBlock *findForwardJoinPoint(const BasicBlock *InitBB);
470 
471   /// Parameter that limit the performed exploration. See the constructor for
472   /// their meaning.
473   ///{
474   const bool ExploreInterBlock;
475   ///}
476 
477 private:
478   /// Getters for common CFG analyses: LoopInfo, DominatorTree, and
479   /// PostDominatorTree.
480   ///{
481   GetterTy<const LoopInfo> LIGetter;
482   GetterTy<const PostDominatorTree> PDTGetter;
483   ///}
484 
485   /// Map to cache isGuaranteedToTransferExecutionToSuccessor results.
486   DenseMap<const BasicBlock *, Optional<bool>> BlockTransferMap;
487 
488   /// Map to cache containsIrreducibleCFG results.
489   DenseMap<const Function*, Optional<bool>> IrreducibleControlMap;
490 
491   /// Map from instructions to associated must be executed iterators.
492   DenseMap<const Instruction *, MustBeExecutedIterator *>
493       InstructionIteratorMap;
494 
495   /// A unique end iterator.
496   MustBeExecutedIterator EndIterator;
497 };
498 
499 } // namespace llvm
500 
501 #endif
502