1 //===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The ScalarEvolution class is an LLVM pass which can be used to analyze and
10 // categorize scalar expressions in loops.  It specializes in recognizing
11 // general induction variables, representing them with the abstract and opaque
12 // SCEV class.  Given this analysis, trip counts of loops and other important
13 // properties can be obtained.
14 //
15 // This analysis is primarily useful for induction variable substitution and
16 // strength reduction.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
21 #define LLVM_ANALYSIS_SCALAREVOLUTION_H
22 
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/ADT/ArrayRef.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/DenseMapInfo.h"
27 #include "llvm/ADT/FoldingSet.h"
28 #include "llvm/ADT/Hashing.h"
29 #include "llvm/ADT/Optional.h"
30 #include "llvm/ADT/PointerIntPair.h"
31 #include "llvm/ADT/SetVector.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/IR/ConstantRange.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/InstrTypes.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/Operator.h"
39 #include "llvm/IR/PassManager.h"
40 #include "llvm/IR/ValueHandle.h"
41 #include "llvm/IR/ValueMap.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/Allocator.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/Compiler.h"
46 #include <algorithm>
47 #include <cassert>
48 #include <cstdint>
49 #include <memory>
50 #include <utility>
51 
52 namespace llvm {
53 
54 class AssumptionCache;
55 class BasicBlock;
56 class Constant;
57 class ConstantInt;
58 class DataLayout;
59 class DominatorTree;
60 class GEPOperator;
61 class Instruction;
62 class LLVMContext;
63 class Loop;
64 class LoopInfo;
65 class raw_ostream;
66 class ScalarEvolution;
67 class SCEVAddRecExpr;
68 class SCEVUnknown;
69 class StructType;
70 class TargetLibraryInfo;
71 class Type;
72 class Value;
73 enum SCEVTypes : unsigned short;
74 
75 /// This class represents an analyzed expression in the program.  These are
76 /// opaque objects that the client is not allowed to do much with directly.
77 ///
78 class SCEV : public FoldingSetNode {
79   friend struct FoldingSetTrait<SCEV>;
80 
81   /// A reference to an Interned FoldingSetNodeID for this node.  The
82   /// ScalarEvolution's BumpPtrAllocator holds the data.
83   FoldingSetNodeIDRef FastID;
84 
85   // The SCEV baseclass this node corresponds to
86   const SCEVTypes SCEVType;
87 
88 protected:
89   // Estimated complexity of this node's expression tree size.
90   const unsigned short ExpressionSize;
91 
92   /// This field is initialized to zero and may be used in subclasses to store
93   /// miscellaneous information.
94   unsigned short SubclassData = 0;
95 
96 public:
97   /// NoWrapFlags are bitfield indices into SubclassData.
98   ///
99   /// Add and Mul expressions may have no-unsigned-wrap <NUW> or
100   /// no-signed-wrap <NSW> properties, which are derived from the IR
101   /// operator. NSW is a misnomer that we use to mean no signed overflow or
102   /// underflow.
103   ///
104   /// AddRec expressions may have a no-self-wraparound <NW> property if, in
105   /// the integer domain, abs(step) * max-iteration(loop) <=
106   /// unsigned-max(bitwidth).  This means that the recurrence will never reach
107   /// its start value if the step is non-zero.  Computing the same value on
108   /// each iteration is not considered wrapping, and recurrences with step = 0
109   /// are trivially <NW>.  <NW> is independent of the sign of step and the
110   /// value the add recurrence starts with.
111   ///
112   /// Note that NUW and NSW are also valid properties of a recurrence, and
113   /// either implies NW. For convenience, NW will be set for a recurrence
114   /// whenever either NUW or NSW are set.
115   enum NoWrapFlags {
116     FlagAnyWrap = 0,    // No guarantee.
117     FlagNW = (1 << 0),  // No self-wrap.
118     FlagNUW = (1 << 1), // No unsigned wrap.
119     FlagNSW = (1 << 2), // No signed wrap.
120     NoWrapMask = (1 << 3) - 1
121   };
122 
123   explicit SCEV(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy,
124                 unsigned short ExpressionSize)
125       : FastID(ID), SCEVType(SCEVTy), ExpressionSize(ExpressionSize) {}
126   SCEV(const SCEV &) = delete;
127   SCEV &operator=(const SCEV &) = delete;
128 
129   SCEVTypes getSCEVType() const { return SCEVType; }
130 
131   /// Return the LLVM type of this SCEV expression.
132   Type *getType() const;
133 
134   /// Return true if the expression is a constant zero.
135   bool isZero() const;
136 
137   /// Return true if the expression is a constant one.
138   bool isOne() const;
139 
140   /// Return true if the expression is a constant all-ones value.
141   bool isAllOnesValue() const;
142 
143   /// Return true if the specified scev is negated, but not a constant.
144   bool isNonConstantNegative() const;
145 
146   // Returns estimated size of the mathematical expression represented by this
147   // SCEV. The rules of its calculation are following:
148   // 1) Size of a SCEV without operands (like constants and SCEVUnknown) is 1;
149   // 2) Size SCEV with operands Op1, Op2, ..., OpN is calculated by formula:
150   //    (1 + Size(Op1) + ... + Size(OpN)).
151   // This value gives us an estimation of time we need to traverse through this
152   // SCEV and all its operands recursively. We may use it to avoid performing
153   // heavy transformations on SCEVs of excessive size for sake of saving the
154   // compilation time.
155   unsigned short getExpressionSize() const {
156     return ExpressionSize;
157   }
158 
159   /// Print out the internal representation of this scalar to the specified
160   /// stream.  This should really only be used for debugging purposes.
161   void print(raw_ostream &OS) const;
162 
163   /// This method is used for debugging.
164   void dump() const;
165 };
166 
167 // Specialize FoldingSetTrait for SCEV to avoid needing to compute
168 // temporary FoldingSetNodeID values.
169 template <> struct FoldingSetTrait<SCEV> : DefaultFoldingSetTrait<SCEV> {
170   static void Profile(const SCEV &X, FoldingSetNodeID &ID) { ID = X.FastID; }
171 
172   static bool Equals(const SCEV &X, const FoldingSetNodeID &ID, unsigned IDHash,
173                      FoldingSetNodeID &TempID) {
174     return ID == X.FastID;
175   }
176 
177   static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID) {
178     return X.FastID.ComputeHash();
179   }
180 };
181 
182 inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
183   S.print(OS);
184   return OS;
185 }
186 
187 /// An object of this class is returned by queries that could not be answered.
188 /// For example, if you ask for the number of iterations of a linked-list
189 /// traversal loop, you will get one of these.  None of the standard SCEV
190 /// operations are valid on this class, it is just a marker.
191 struct SCEVCouldNotCompute : public SCEV {
192   SCEVCouldNotCompute();
193 
194   /// Methods for support type inquiry through isa, cast, and dyn_cast:
195   static bool classof(const SCEV *S);
196 };
197 
198 /// This class represents an assumption made using SCEV expressions which can
199 /// be checked at run-time.
200 class SCEVPredicate : public FoldingSetNode {
201   friend struct FoldingSetTrait<SCEVPredicate>;
202 
203   /// A reference to an Interned FoldingSetNodeID for this node.  The
204   /// ScalarEvolution's BumpPtrAllocator holds the data.
205   FoldingSetNodeIDRef FastID;
206 
207 public:
208   enum SCEVPredicateKind { P_Union, P_Equal, P_Wrap };
209 
210 protected:
211   SCEVPredicateKind Kind;
212   ~SCEVPredicate() = default;
213   SCEVPredicate(const SCEVPredicate &) = default;
214   SCEVPredicate &operator=(const SCEVPredicate &) = default;
215 
216 public:
217   SCEVPredicate(const FoldingSetNodeIDRef ID, SCEVPredicateKind Kind);
218 
219   SCEVPredicateKind getKind() const { return Kind; }
220 
221   /// Returns the estimated complexity of this predicate.  This is roughly
222   /// measured in the number of run-time checks required.
223   virtual unsigned getComplexity() const { return 1; }
224 
225   /// Returns true if the predicate is always true. This means that no
226   /// assumptions were made and nothing needs to be checked at run-time.
227   virtual bool isAlwaysTrue() const = 0;
228 
229   /// Returns true if this predicate implies \p N.
230   virtual bool implies(const SCEVPredicate *N) const = 0;
231 
232   /// Prints a textual representation of this predicate with an indentation of
233   /// \p Depth.
234   virtual void print(raw_ostream &OS, unsigned Depth = 0) const = 0;
235 
236   /// Returns the SCEV to which this predicate applies, or nullptr if this is
237   /// a SCEVUnionPredicate.
238   virtual const SCEV *getExpr() const = 0;
239 };
240 
241 inline raw_ostream &operator<<(raw_ostream &OS, const SCEVPredicate &P) {
242   P.print(OS);
243   return OS;
244 }
245 
246 // Specialize FoldingSetTrait for SCEVPredicate to avoid needing to compute
247 // temporary FoldingSetNodeID values.
248 template <>
249 struct FoldingSetTrait<SCEVPredicate> : DefaultFoldingSetTrait<SCEVPredicate> {
250   static void Profile(const SCEVPredicate &X, FoldingSetNodeID &ID) {
251     ID = X.FastID;
252   }
253 
254   static bool Equals(const SCEVPredicate &X, const FoldingSetNodeID &ID,
255                      unsigned IDHash, FoldingSetNodeID &TempID) {
256     return ID == X.FastID;
257   }
258 
259   static unsigned ComputeHash(const SCEVPredicate &X,
260                               FoldingSetNodeID &TempID) {
261     return X.FastID.ComputeHash();
262   }
263 };
264 
265 /// This class represents an assumption that two SCEV expressions are equal,
266 /// and this can be checked at run-time.
267 class SCEVEqualPredicate final : public SCEVPredicate {
268   /// We assume that LHS == RHS.
269   const SCEV *LHS;
270   const SCEV *RHS;
271 
272 public:
273   SCEVEqualPredicate(const FoldingSetNodeIDRef ID, const SCEV *LHS,
274                      const SCEV *RHS);
275 
276   /// Implementation of the SCEVPredicate interface
277   bool implies(const SCEVPredicate *N) const override;
278   void print(raw_ostream &OS, unsigned Depth = 0) const override;
279   bool isAlwaysTrue() const override;
280   const SCEV *getExpr() const override;
281 
282   /// Returns the left hand side of the equality.
283   const SCEV *getLHS() const { return LHS; }
284 
285   /// Returns the right hand side of the equality.
286   const SCEV *getRHS() const { return RHS; }
287 
288   /// Methods for support type inquiry through isa, cast, and dyn_cast:
289   static bool classof(const SCEVPredicate *P) {
290     return P->getKind() == P_Equal;
291   }
292 };
293 
294 /// This class represents an assumption made on an AddRec expression. Given an
295 /// affine AddRec expression {a,+,b}, we assume that it has the nssw or nusw
296 /// flags (defined below) in the first X iterations of the loop, where X is a
297 /// SCEV expression returned by getPredicatedBackedgeTakenCount).
298 ///
299 /// Note that this does not imply that X is equal to the backedge taken
300 /// count. This means that if we have a nusw predicate for i32 {0,+,1} with a
301 /// predicated backedge taken count of X, we only guarantee that {0,+,1} has
302 /// nusw in the first X iterations. {0,+,1} may still wrap in the loop if we
303 /// have more than X iterations.
304 class SCEVWrapPredicate final : public SCEVPredicate {
305 public:
306   /// Similar to SCEV::NoWrapFlags, but with slightly different semantics
307   /// for FlagNUSW. The increment is considered to be signed, and a + b
308   /// (where b is the increment) is considered to wrap if:
309   ///    zext(a + b) != zext(a) + sext(b)
310   ///
311   /// If Signed is a function that takes an n-bit tuple and maps to the
312   /// integer domain as the tuples value interpreted as twos complement,
313   /// and Unsigned a function that takes an n-bit tuple and maps to the
314   /// integer domain as as the base two value of input tuple, then a + b
315   /// has IncrementNUSW iff:
316   ///
317   /// 0 <= Unsigned(a) + Signed(b) < 2^n
318   ///
319   /// The IncrementNSSW flag has identical semantics with SCEV::FlagNSW.
320   ///
321   /// Note that the IncrementNUSW flag is not commutative: if base + inc
322   /// has IncrementNUSW, then inc + base doesn't neccessarily have this
323   /// property. The reason for this is that this is used for sign/zero
324   /// extending affine AddRec SCEV expressions when a SCEVWrapPredicate is
325   /// assumed. A {base,+,inc} expression is already non-commutative with
326   /// regards to base and inc, since it is interpreted as:
327   ///     (((base + inc) + inc) + inc) ...
328   enum IncrementWrapFlags {
329     IncrementAnyWrap = 0,     // No guarantee.
330     IncrementNUSW = (1 << 0), // No unsigned with signed increment wrap.
331     IncrementNSSW = (1 << 1), // No signed with signed increment wrap
332                               // (equivalent with SCEV::NSW)
333     IncrementNoWrapMask = (1 << 2) - 1
334   };
335 
336   /// Convenient IncrementWrapFlags manipulation methods.
337   LLVM_NODISCARD static SCEVWrapPredicate::IncrementWrapFlags
338   clearFlags(SCEVWrapPredicate::IncrementWrapFlags Flags,
339              SCEVWrapPredicate::IncrementWrapFlags OffFlags) {
340     assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
341     assert((OffFlags & IncrementNoWrapMask) == OffFlags &&
342            "Invalid flags value!");
343     return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & ~OffFlags);
344   }
345 
346   LLVM_NODISCARD static SCEVWrapPredicate::IncrementWrapFlags
347   maskFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, int Mask) {
348     assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
349     assert((Mask & IncrementNoWrapMask) == Mask && "Invalid mask value!");
350 
351     return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & Mask);
352   }
353 
354   LLVM_NODISCARD static SCEVWrapPredicate::IncrementWrapFlags
355   setFlags(SCEVWrapPredicate::IncrementWrapFlags Flags,
356            SCEVWrapPredicate::IncrementWrapFlags OnFlags) {
357     assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
358     assert((OnFlags & IncrementNoWrapMask) == OnFlags &&
359            "Invalid flags value!");
360 
361     return (SCEVWrapPredicate::IncrementWrapFlags)(Flags | OnFlags);
362   }
363 
364   /// Returns the set of SCEVWrapPredicate no wrap flags implied by a
365   /// SCEVAddRecExpr.
366   LLVM_NODISCARD static SCEVWrapPredicate::IncrementWrapFlags
367   getImpliedFlags(const SCEVAddRecExpr *AR, ScalarEvolution &SE);
368 
369 private:
370   const SCEVAddRecExpr *AR;
371   IncrementWrapFlags Flags;
372 
373 public:
374   explicit SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
375                              const SCEVAddRecExpr *AR,
376                              IncrementWrapFlags Flags);
377 
378   /// Returns the set assumed no overflow flags.
379   IncrementWrapFlags getFlags() const { return Flags; }
380 
381   /// Implementation of the SCEVPredicate interface
382   const SCEV *getExpr() const override;
383   bool implies(const SCEVPredicate *N) const override;
384   void print(raw_ostream &OS, unsigned Depth = 0) const override;
385   bool isAlwaysTrue() const override;
386 
387   /// Methods for support type inquiry through isa, cast, and dyn_cast:
388   static bool classof(const SCEVPredicate *P) {
389     return P->getKind() == P_Wrap;
390   }
391 };
392 
393 /// This class represents a composition of other SCEV predicates, and is the
394 /// class that most clients will interact with.  This is equivalent to a
395 /// logical "AND" of all the predicates in the union.
396 ///
397 /// NB! Unlike other SCEVPredicate sub-classes this class does not live in the
398 /// ScalarEvolution::Preds folding set.  This is why the \c add function is sound.
399 class SCEVUnionPredicate final : public SCEVPredicate {
400 private:
401   using PredicateMap =
402       DenseMap<const SCEV *, SmallVector<const SCEVPredicate *, 4>>;
403 
404   /// Vector with references to all predicates in this union.
405   SmallVector<const SCEVPredicate *, 16> Preds;
406 
407   /// Maps SCEVs to predicates for quick look-ups.
408   PredicateMap SCEVToPreds;
409 
410 public:
411   SCEVUnionPredicate();
412 
413   const SmallVectorImpl<const SCEVPredicate *> &getPredicates() const {
414     return Preds;
415   }
416 
417   /// Adds a predicate to this union.
418   void add(const SCEVPredicate *N);
419 
420   /// Returns a reference to a vector containing all predicates which apply to
421   /// \p Expr.
422   ArrayRef<const SCEVPredicate *> getPredicatesForExpr(const SCEV *Expr);
423 
424   /// Implementation of the SCEVPredicate interface
425   bool isAlwaysTrue() const override;
426   bool implies(const SCEVPredicate *N) const override;
427   void print(raw_ostream &OS, unsigned Depth) const override;
428   const SCEV *getExpr() const override;
429 
430   /// We estimate the complexity of a union predicate as the size number of
431   /// predicates in the union.
432   unsigned getComplexity() const override { return Preds.size(); }
433 
434   /// Methods for support type inquiry through isa, cast, and dyn_cast:
435   static bool classof(const SCEVPredicate *P) {
436     return P->getKind() == P_Union;
437   }
438 };
439 
440 /// The main scalar evolution driver. Because client code (intentionally)
441 /// can't do much with the SCEV objects directly, they must ask this class
442 /// for services.
443 class ScalarEvolution {
444   friend class ScalarEvolutionsTest;
445 
446 public:
447   /// An enum describing the relationship between a SCEV and a loop.
448   enum LoopDisposition {
449     LoopVariant,   ///< The SCEV is loop-variant (unknown).
450     LoopInvariant, ///< The SCEV is loop-invariant.
451     LoopComputable ///< The SCEV varies predictably with the loop.
452   };
453 
454   /// An enum describing the relationship between a SCEV and a basic block.
455   enum BlockDisposition {
456     DoesNotDominateBlock,  ///< The SCEV does not dominate the block.
457     DominatesBlock,        ///< The SCEV dominates the block.
458     ProperlyDominatesBlock ///< The SCEV properly dominates the block.
459   };
460 
461   /// Convenient NoWrapFlags manipulation that hides enum casts and is
462   /// visible in the ScalarEvolution name space.
463   LLVM_NODISCARD static SCEV::NoWrapFlags maskFlags(SCEV::NoWrapFlags Flags,
464                                                     int Mask) {
465     return (SCEV::NoWrapFlags)(Flags & Mask);
466   }
467   LLVM_NODISCARD static SCEV::NoWrapFlags setFlags(SCEV::NoWrapFlags Flags,
468                                                    SCEV::NoWrapFlags OnFlags) {
469     return (SCEV::NoWrapFlags)(Flags | OnFlags);
470   }
471   LLVM_NODISCARD static SCEV::NoWrapFlags
472   clearFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OffFlags) {
473     return (SCEV::NoWrapFlags)(Flags & ~OffFlags);
474   }
475 
476   ScalarEvolution(Function &F, TargetLibraryInfo &TLI, AssumptionCache &AC,
477                   DominatorTree &DT, LoopInfo &LI);
478   ScalarEvolution(ScalarEvolution &&Arg);
479   ~ScalarEvolution();
480 
481   LLVMContext &getContext() const { return F.getContext(); }
482 
483   /// Test if values of the given type are analyzable within the SCEV
484   /// framework. This primarily includes integer types, and it can optionally
485   /// include pointer types if the ScalarEvolution class has access to
486   /// target-specific information.
487   bool isSCEVable(Type *Ty) const;
488 
489   /// Return the size in bits of the specified type, for which isSCEVable must
490   /// return true.
491   uint64_t getTypeSizeInBits(Type *Ty) const;
492 
493   /// Return a type with the same bitwidth as the given type and which
494   /// represents how SCEV will treat the given type, for which isSCEVable must
495   /// return true. For pointer types, this is the pointer-sized integer type.
496   Type *getEffectiveSCEVType(Type *Ty) const;
497 
498   // Returns a wider type among {Ty1, Ty2}.
499   Type *getWiderType(Type *Ty1, Type *Ty2) const;
500 
501   /// Return true if the SCEV is a scAddRecExpr or it contains
502   /// scAddRecExpr. The result will be cached in HasRecMap.
503   bool containsAddRecurrence(const SCEV *S);
504 
505   /// Erase Value from ValueExprMap and ExprValueMap.
506   void eraseValueFromMap(Value *V);
507 
508   /// Is operation \p BinOp between \p LHS and \p RHS provably does not have
509   /// a signed/unsigned overflow (\p Signed)?
510   bool willNotOverflow(Instruction::BinaryOps BinOp, bool Signed,
511                        const SCEV *LHS, const SCEV *RHS);
512 
513   /// Parse NSW/NUW flags from add/sub/mul IR binary operation \p Op into
514   /// SCEV no-wrap flags, and deduce flag[s] that aren't known yet.
515   /// Does not mutate the original instruction.
516   std::pair<SCEV::NoWrapFlags, bool /*Deduced*/>
517   getStrengthenedNoWrapFlagsFromBinOp(const OverflowingBinaryOperator *OBO);
518 
519   /// Return a SCEV expression for the full generality of the specified
520   /// expression.
521   const SCEV *getSCEV(Value *V);
522 
523   const SCEV *getConstant(ConstantInt *V);
524   const SCEV *getConstant(const APInt &Val);
525   const SCEV *getConstant(Type *Ty, uint64_t V, bool isSigned = false);
526   const SCEV *getLosslessPtrToIntExpr(const SCEV *Op, unsigned Depth = 0);
527   const SCEV *getPtrToIntExpr(const SCEV *Op, Type *Ty);
528   const SCEV *getTruncateExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0);
529   const SCEV *getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0);
530   const SCEV *getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0);
531   const SCEV *getAnyExtendExpr(const SCEV *Op, Type *Ty);
532   const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
533                          SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
534                          unsigned Depth = 0);
535   const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS,
536                          SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
537                          unsigned Depth = 0) {
538     SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
539     return getAddExpr(Ops, Flags, Depth);
540   }
541   const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
542                          SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
543                          unsigned Depth = 0) {
544     SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2};
545     return getAddExpr(Ops, Flags, Depth);
546   }
547   const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
548                          SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
549                          unsigned Depth = 0);
550   const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS,
551                          SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
552                          unsigned Depth = 0) {
553     SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
554     return getMulExpr(Ops, Flags, Depth);
555   }
556   const SCEV *getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
557                          SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
558                          unsigned Depth = 0) {
559     SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2};
560     return getMulExpr(Ops, Flags, Depth);
561   }
562   const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS);
563   const SCEV *getUDivExactExpr(const SCEV *LHS, const SCEV *RHS);
564   const SCEV *getURemExpr(const SCEV *LHS, const SCEV *RHS);
565   const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step, const Loop *L,
566                             SCEV::NoWrapFlags Flags);
567   const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
568                             const Loop *L, SCEV::NoWrapFlags Flags);
569   const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands,
570                             const Loop *L, SCEV::NoWrapFlags Flags) {
571     SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end());
572     return getAddRecExpr(NewOp, L, Flags);
573   }
574 
575   /// Checks if \p SymbolicPHI can be rewritten as an AddRecExpr under some
576   /// Predicates. If successful return these <AddRecExpr, Predicates>;
577   /// The function is intended to be called from PSCEV (the caller will decide
578   /// whether to actually add the predicates and carry out the rewrites).
579   Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
580   createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI);
581 
582   /// Returns an expression for a GEP
583   ///
584   /// \p GEP The GEP. The indices contained in the GEP itself are ignored,
585   /// instead we use IndexExprs.
586   /// \p IndexExprs The expressions for the indices.
587   const SCEV *getGEPExpr(GEPOperator *GEP,
588                          const SmallVectorImpl<const SCEV *> &IndexExprs);
589   const SCEV *getAbsExpr(const SCEV *Op, bool IsNSW);
590   const SCEV *getMinMaxExpr(SCEVTypes Kind,
591                             SmallVectorImpl<const SCEV *> &Operands);
592   const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS);
593   const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
594   const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS);
595   const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
596   const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS);
597   const SCEV *getSMinExpr(SmallVectorImpl<const SCEV *> &Operands);
598   const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS);
599   const SCEV *getUMinExpr(SmallVectorImpl<const SCEV *> &Operands);
600   const SCEV *getUnknown(Value *V);
601   const SCEV *getCouldNotCompute();
602 
603   /// Return a SCEV for the constant 0 of a specific type.
604   const SCEV *getZero(Type *Ty) { return getConstant(Ty, 0); }
605 
606   /// Return a SCEV for the constant 1 of a specific type.
607   const SCEV *getOne(Type *Ty) { return getConstant(Ty, 1); }
608 
609   /// Return a SCEV for the constant -1 of a specific type.
610   const SCEV *getMinusOne(Type *Ty) {
611     return getConstant(Ty, -1, /*isSigned=*/true);
612   }
613 
614   /// Return an expression for sizeof ScalableTy that is type IntTy, where
615   /// ScalableTy is a scalable vector type.
616   const SCEV *getSizeOfScalableVectorExpr(Type *IntTy,
617                                           ScalableVectorType *ScalableTy);
618 
619   /// Return an expression for the alloc size of AllocTy that is type IntTy
620   const SCEV *getSizeOfExpr(Type *IntTy, Type *AllocTy);
621 
622   /// Return an expression for the store size of StoreTy that is type IntTy
623   const SCEV *getStoreSizeOfExpr(Type *IntTy, Type *StoreTy);
624 
625   /// Return an expression for offsetof on the given field with type IntTy
626   const SCEV *getOffsetOfExpr(Type *IntTy, StructType *STy, unsigned FieldNo);
627 
628   /// Return the SCEV object corresponding to -V.
629   const SCEV *getNegativeSCEV(const SCEV *V,
630                               SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
631 
632   /// Return the SCEV object corresponding to ~V.
633   const SCEV *getNotSCEV(const SCEV *V);
634 
635   /// Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
636   ///
637   /// If the LHS and RHS are pointers which don't share a common base
638   /// (according to getPointerBase()), this returns a SCEVCouldNotCompute.
639   /// To compute the difference between two unrelated pointers, you can
640   /// explicitly convert the arguments using getPtrToIntExpr(), for pointer
641   /// types that support it.
642   const SCEV *getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
643                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
644                            unsigned Depth = 0);
645 
646   /// Compute ceil(N / D). N and D are treated as unsigned values.
647   ///
648   /// Since SCEV doesn't have native ceiling division, this generates a
649   /// SCEV expression of the following form:
650   ///
651   /// umin(N, 1) + floor((N - umin(N, 1)) / D)
652   ///
653   /// A denominator of zero or poison is handled the same way as getUDivExpr().
654   const SCEV *getUDivCeilSCEV(const SCEV *N, const SCEV *D);
655 
656   /// Return a SCEV corresponding to a conversion of the input value to the
657   /// specified type.  If the type must be extended, it is zero extended.
658   const SCEV *getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
659                                       unsigned Depth = 0);
660 
661   /// Return a SCEV corresponding to a conversion of the input value to the
662   /// specified type.  If the type must be extended, it is sign extended.
663   const SCEV *getTruncateOrSignExtend(const SCEV *V, Type *Ty,
664                                       unsigned Depth = 0);
665 
666   /// Return a SCEV corresponding to a conversion of the input value to the
667   /// specified type.  If the type must be extended, it is zero extended.  The
668   /// conversion must not be narrowing.
669   const SCEV *getNoopOrZeroExtend(const SCEV *V, Type *Ty);
670 
671   /// Return a SCEV corresponding to a conversion of the input value to the
672   /// specified type.  If the type must be extended, it is sign extended.  The
673   /// conversion must not be narrowing.
674   const SCEV *getNoopOrSignExtend(const SCEV *V, Type *Ty);
675 
676   /// Return a SCEV corresponding to a conversion of the input value to the
677   /// specified type. If the type must be extended, it is extended with
678   /// unspecified bits. The conversion must not be narrowing.
679   const SCEV *getNoopOrAnyExtend(const SCEV *V, Type *Ty);
680 
681   /// Return a SCEV corresponding to a conversion of the input value to the
682   /// specified type.  The conversion must not be widening.
683   const SCEV *getTruncateOrNoop(const SCEV *V, Type *Ty);
684 
685   /// Promote the operands to the wider of the types using zero-extension, and
686   /// then perform a umax operation with them.
687   const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS);
688 
689   /// Promote the operands to the wider of the types using zero-extension, and
690   /// then perform a umin operation with them.
691   const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS);
692 
693   /// Promote the operands to the wider of the types using zero-extension, and
694   /// then perform a umin operation with them. N-ary function.
695   const SCEV *getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV *> &Ops);
696 
697   /// Transitively follow the chain of pointer-type operands until reaching a
698   /// SCEV that does not have a single pointer operand. This returns a
699   /// SCEVUnknown pointer for well-formed pointer-type expressions, but corner
700   /// cases do exist.
701   const SCEV *getPointerBase(const SCEV *V);
702 
703   /// Return a SCEV expression for the specified value at the specified scope
704   /// in the program.  The L value specifies a loop nest to evaluate the
705   /// expression at, where null is the top-level or a specified loop is
706   /// immediately inside of the loop.
707   ///
708   /// This method can be used to compute the exit value for a variable defined
709   /// in a loop by querying what the value will hold in the parent loop.
710   ///
711   /// In the case that a relevant loop exit value cannot be computed, the
712   /// original value V is returned.
713   const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L);
714 
715   /// This is a convenience function which does getSCEVAtScope(getSCEV(V), L).
716   const SCEV *getSCEVAtScope(Value *V, const Loop *L);
717 
718   /// Test whether entry to the loop is protected by a conditional between LHS
719   /// and RHS.  This is used to help avoid max expressions in loop trip
720   /// counts, and to eliminate casts.
721   bool isLoopEntryGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
722                                 const SCEV *LHS, const SCEV *RHS);
723 
724   /// Test whether entry to the basic block is protected by a conditional
725   /// between LHS and RHS.
726   bool isBasicBlockEntryGuardedByCond(const BasicBlock *BB,
727                                       ICmpInst::Predicate Pred, const SCEV *LHS,
728                                       const SCEV *RHS);
729 
730   /// Test whether the backedge of the loop is protected by a conditional
731   /// between LHS and RHS.  This is used to eliminate casts.
732   bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
733                                    const SCEV *LHS, const SCEV *RHS);
734 
735   /// Convert from an "exit count" (i.e. "backedge taken count") to a "trip
736   /// count".  A "trip count" is the number of times the header of the loop
737   /// will execute if an exit is taken after the specified number of backedges
738   /// have been taken.  (e.g. TripCount = ExitCount + 1)  A zero result
739   /// must be interpreted as a loop having an unknown trip count.
740   const SCEV *getTripCountFromExitCount(const SCEV *ExitCount);
741 
742   /// Returns the exact trip count of the loop if we can compute it, and
743   /// the result is a small constant.  '0' is used to represent an unknown
744   /// or non-constant trip count.  Note that a trip count is simply one more
745   /// than the backedge taken count for the loop.
746   unsigned getSmallConstantTripCount(const Loop *L);
747 
748   /// Return the exact trip count for this loop if we exit through ExitingBlock.
749   /// '0' is used to represent an unknown or non-constant trip count.  Note
750   /// that a trip count is simply one more than the backedge taken count for
751   /// the same exit.
752   /// This "trip count" assumes that control exits via ExitingBlock. More
753   /// precisely, it is the number of times that control will reach ExitingBlock
754   /// before taking the branch. For loops with multiple exits, it may not be
755   /// the number times that the loop header executes if the loop exits
756   /// prematurely via another branch.
757   unsigned getSmallConstantTripCount(const Loop *L,
758                                      const BasicBlock *ExitingBlock);
759 
760   /// Returns the upper bound of the loop trip count as a normal unsigned
761   /// value.
762   /// Returns 0 if the trip count is unknown or not constant.
763   unsigned getSmallConstantMaxTripCount(const Loop *L);
764 
765   /// Returns the largest constant divisor of the trip count as a normal
766   /// unsigned value, if possible. This means that the actual trip count is
767   /// always a multiple of the returned value. Returns 1 if the trip count is
768   /// unknown or not guaranteed to be the multiple of a constant., Will also
769   /// return 1 if the trip count is very large (>= 2^32).
770   /// Note that the argument is an exit count for loop L, NOT a trip count.
771   unsigned getSmallConstantTripMultiple(const Loop *L,
772                                         const SCEV *ExitCount);
773 
774   /// Returns the largest constant divisor of the trip count of the
775   /// loop.  Will return 1 if no trip count could be computed, or if a
776   /// divisor could not be found.
777   unsigned getSmallConstantTripMultiple(const Loop *L);
778 
779   /// Returns the largest constant divisor of the trip count of this loop as a
780   /// normal unsigned value, if possible. This means that the actual trip
781   /// count is always a multiple of the returned value (don't forget the trip
782   /// count could very well be zero as well!). As explained in the comments
783   /// for getSmallConstantTripCount, this assumes that control exits the loop
784   /// via ExitingBlock.
785   unsigned getSmallConstantTripMultiple(const Loop *L,
786                                         const BasicBlock *ExitingBlock);
787 
788   /// The terms "backedge taken count" and "exit count" are used
789   /// interchangeably to refer to the number of times the backedge of a loop
790   /// has executed before the loop is exited.
791   enum ExitCountKind {
792     /// An expression exactly describing the number of times the backedge has
793     /// executed when a loop is exited.
794     Exact,
795     /// A constant which provides an upper bound on the exact trip count.
796     ConstantMaximum,
797     /// An expression which provides an upper bound on the exact trip count.
798     SymbolicMaximum,
799   };
800 
801   /// Return the number of times the backedge executes before the given exit
802   /// would be taken; if not exactly computable, return SCEVCouldNotCompute.
803   /// For a single exit loop, this value is equivelent to the result of
804   /// getBackedgeTakenCount.  The loop is guaranteed to exit (via *some* exit)
805   /// before the backedge is executed (ExitCount + 1) times.  Note that there
806   /// is no guarantee about *which* exit is taken on the exiting iteration.
807   const SCEV *getExitCount(const Loop *L, const BasicBlock *ExitingBlock,
808                            ExitCountKind Kind = Exact);
809 
810   /// If the specified loop has a predictable backedge-taken count, return it,
811   /// otherwise return a SCEVCouldNotCompute object. The backedge-taken count is
812   /// the number of times the loop header will be branched to from within the
813   /// loop, assuming there are no abnormal exists like exception throws. This is
814   /// one less than the trip count of the loop, since it doesn't count the first
815   /// iteration, when the header is branched to from outside the loop.
816   ///
817   /// Note that it is not valid to call this method on a loop without a
818   /// loop-invariant backedge-taken count (see
819   /// hasLoopInvariantBackedgeTakenCount).
820   const SCEV *getBackedgeTakenCount(const Loop *L, ExitCountKind Kind = Exact);
821 
822   /// Similar to getBackedgeTakenCount, except it will add a set of
823   /// SCEV predicates to Predicates that are required to be true in order for
824   /// the answer to be correct. Predicates can be checked with run-time
825   /// checks and can be used to perform loop versioning.
826   const SCEV *getPredicatedBackedgeTakenCount(const Loop *L,
827                                               SCEVUnionPredicate &Predicates);
828 
829   /// When successful, this returns a SCEVConstant that is greater than or equal
830   /// to (i.e. a "conservative over-approximation") of the value returend by
831   /// getBackedgeTakenCount.  If such a value cannot be computed, it returns the
832   /// SCEVCouldNotCompute object.
833   const SCEV *getConstantMaxBackedgeTakenCount(const Loop *L) {
834     return getBackedgeTakenCount(L, ConstantMaximum);
835   }
836 
837   /// When successful, this returns a SCEV that is greater than or equal
838   /// to (i.e. a "conservative over-approximation") of the value returend by
839   /// getBackedgeTakenCount.  If such a value cannot be computed, it returns the
840   /// SCEVCouldNotCompute object.
841   const SCEV *getSymbolicMaxBackedgeTakenCount(const Loop *L) {
842     return getBackedgeTakenCount(L, SymbolicMaximum);
843   }
844 
845   /// Return true if the backedge taken count is either the value returned by
846   /// getConstantMaxBackedgeTakenCount or zero.
847   bool isBackedgeTakenCountMaxOrZero(const Loop *L);
848 
849   /// Return true if the specified loop has an analyzable loop-invariant
850   /// backedge-taken count.
851   bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
852 
853   // This method should be called by the client when it made any change that
854   // would invalidate SCEV's answers, and the client wants to remove all loop
855   // information held internally by ScalarEvolution. This is intended to be used
856   // when the alternative to forget a loop is too expensive (i.e. large loop
857   // bodies).
858   void forgetAllLoops();
859 
860   /// This method should be called by the client when it has changed a loop in
861   /// a way that may effect ScalarEvolution's ability to compute a trip count,
862   /// or if the loop is deleted.  This call is potentially expensive for large
863   /// loop bodies.
864   void forgetLoop(const Loop *L);
865 
866   // This method invokes forgetLoop for the outermost loop of the given loop
867   // \p L, making ScalarEvolution forget about all this subtree. This needs to
868   // be done whenever we make a transform that may affect the parameters of the
869   // outer loop, such as exit counts for branches.
870   void forgetTopmostLoop(const Loop *L);
871 
872   /// This method should be called by the client when it has changed a value
873   /// in a way that may effect its value, or which may disconnect it from a
874   /// def-use chain linking it to a loop.
875   void forgetValue(Value *V);
876 
877   /// Called when the client has changed the disposition of values in
878   /// this loop.
879   ///
880   /// We don't have a way to invalidate per-loop dispositions. Clear and
881   /// recompute is simpler.
882   void forgetLoopDispositions(const Loop *L);
883 
884   /// Determine the minimum number of zero bits that S is guaranteed to end in
885   /// (at every loop iteration).  It is, at the same time, the minimum number
886   /// of times S is divisible by 2.  For example, given {4,+,8} it returns 2.
887   /// If S is guaranteed to be 0, it returns the bitwidth of S.
888   uint32_t GetMinTrailingZeros(const SCEV *S);
889 
890   /// Determine the unsigned range for a particular SCEV.
891   /// NOTE: This returns a copy of the reference returned by getRangeRef.
892   ConstantRange getUnsignedRange(const SCEV *S) {
893     return getRangeRef(S, HINT_RANGE_UNSIGNED);
894   }
895 
896   /// Determine the min of the unsigned range for a particular SCEV.
897   APInt getUnsignedRangeMin(const SCEV *S) {
898     return getRangeRef(S, HINT_RANGE_UNSIGNED).getUnsignedMin();
899   }
900 
901   /// Determine the max of the unsigned range for a particular SCEV.
902   APInt getUnsignedRangeMax(const SCEV *S) {
903     return getRangeRef(S, HINT_RANGE_UNSIGNED).getUnsignedMax();
904   }
905 
906   /// Determine the signed range for a particular SCEV.
907   /// NOTE: This returns a copy of the reference returned by getRangeRef.
908   ConstantRange getSignedRange(const SCEV *S) {
909     return getRangeRef(S, HINT_RANGE_SIGNED);
910   }
911 
912   /// Determine the min of the signed range for a particular SCEV.
913   APInt getSignedRangeMin(const SCEV *S) {
914     return getRangeRef(S, HINT_RANGE_SIGNED).getSignedMin();
915   }
916 
917   /// Determine the max of the signed range for a particular SCEV.
918   APInt getSignedRangeMax(const SCEV *S) {
919     return getRangeRef(S, HINT_RANGE_SIGNED).getSignedMax();
920   }
921 
922   /// Test if the given expression is known to be negative.
923   bool isKnownNegative(const SCEV *S);
924 
925   /// Test if the given expression is known to be positive.
926   bool isKnownPositive(const SCEV *S);
927 
928   /// Test if the given expression is known to be non-negative.
929   bool isKnownNonNegative(const SCEV *S);
930 
931   /// Test if the given expression is known to be non-positive.
932   bool isKnownNonPositive(const SCEV *S);
933 
934   /// Test if the given expression is known to be non-zero.
935   bool isKnownNonZero(const SCEV *S);
936 
937   /// Splits SCEV expression \p S into two SCEVs. One of them is obtained from
938   /// \p S by substitution of all AddRec sub-expression related to loop \p L
939   /// with initial value of that SCEV. The second is obtained from \p S by
940   /// substitution of all AddRec sub-expressions related to loop \p L with post
941   /// increment of this AddRec in the loop \p L. In both cases all other AddRec
942   /// sub-expressions (not related to \p L) remain the same.
943   /// If the \p S contains non-invariant unknown SCEV the function returns
944   /// CouldNotCompute SCEV in both values of std::pair.
945   /// For example, for SCEV S={0, +, 1}<L1> + {0, +, 1}<L2> and loop L=L1
946   /// the function returns pair:
947   /// first = {0, +, 1}<L2>
948   /// second = {1, +, 1}<L1> + {0, +, 1}<L2>
949   /// We can see that for the first AddRec sub-expression it was replaced with
950   /// 0 (initial value) for the first element and to {1, +, 1}<L1> (post
951   /// increment value) for the second one. In both cases AddRec expression
952   /// related to L2 remains the same.
953   std::pair<const SCEV *, const SCEV *> SplitIntoInitAndPostInc(const Loop *L,
954                                                                 const SCEV *S);
955 
956   /// We'd like to check the predicate on every iteration of the most dominated
957   /// loop between loops used in LHS and RHS.
958   /// To do this we use the following list of steps:
959   /// 1. Collect set S all loops on which either LHS or RHS depend.
960   /// 2. If S is non-empty
961   /// a. Let PD be the element of S which is dominated by all other elements.
962   /// b. Let E(LHS) be value of LHS on entry of PD.
963   ///    To get E(LHS), we should just take LHS and replace all AddRecs that are
964   ///    attached to PD on with their entry values.
965   ///    Define E(RHS) in the same way.
966   /// c. Let B(LHS) be value of L on backedge of PD.
967   ///    To get B(LHS), we should just take LHS and replace all AddRecs that are
968   ///    attached to PD on with their backedge values.
969   ///    Define B(RHS) in the same way.
970   /// d. Note that E(LHS) and E(RHS) are automatically available on entry of PD,
971   ///    so we can assert on that.
972   /// e. Return true if isLoopEntryGuardedByCond(Pred, E(LHS), E(RHS)) &&
973   ///                   isLoopBackedgeGuardedByCond(Pred, B(LHS), B(RHS))
974   bool isKnownViaInduction(ICmpInst::Predicate Pred, const SCEV *LHS,
975                            const SCEV *RHS);
976 
977   /// Test if the given expression is known to satisfy the condition described
978   /// by Pred, LHS, and RHS.
979   bool isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
980                         const SCEV *RHS);
981 
982   /// Check whether the condition described by Pred, LHS, and RHS is true or
983   /// false. If we know it, return the evaluation of this condition. If neither
984   /// is proved, return None.
985   Optional<bool> evaluatePredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
986                                    const SCEV *RHS);
987 
988   /// Test if the given expression is known to satisfy the condition described
989   /// by Pred, LHS, and RHS in the given Context.
990   bool isKnownPredicateAt(ICmpInst::Predicate Pred, const SCEV *LHS,
991                         const SCEV *RHS, const Instruction *Context);
992 
993   /// Check whether the condition described by Pred, LHS, and RHS is true or
994   /// false in the given \p Context. If we know it, return the evaluation of
995   /// this condition. If neither is proved, return None.
996   Optional<bool> evaluatePredicateAt(ICmpInst::Predicate Pred, const SCEV *LHS,
997                                      const SCEV *RHS,
998                                      const Instruction *Context);
999 
1000   /// Test if the condition described by Pred, LHS, RHS is known to be true on
1001   /// every iteration of the loop of the recurrency LHS.
1002   bool isKnownOnEveryIteration(ICmpInst::Predicate Pred,
1003                                const SCEVAddRecExpr *LHS, const SCEV *RHS);
1004 
1005   /// A predicate is said to be monotonically increasing if may go from being
1006   /// false to being true as the loop iterates, but never the other way
1007   /// around.  A predicate is said to be monotonically decreasing if may go
1008   /// from being true to being false as the loop iterates, but never the other
1009   /// way around.
1010   enum MonotonicPredicateType {
1011     MonotonicallyIncreasing,
1012     MonotonicallyDecreasing
1013   };
1014 
1015   /// If, for all loop invariant X, the predicate "LHS `Pred` X" is
1016   /// monotonically increasing or decreasing, returns
1017   /// Some(MonotonicallyIncreasing) and Some(MonotonicallyDecreasing)
1018   /// respectively. If we could not prove either of these facts, returns None.
1019   Optional<MonotonicPredicateType>
1020   getMonotonicPredicateType(const SCEVAddRecExpr *LHS,
1021                             ICmpInst::Predicate Pred);
1022 
1023   struct LoopInvariantPredicate {
1024     ICmpInst::Predicate Pred;
1025     const SCEV *LHS;
1026     const SCEV *RHS;
1027 
1028     LoopInvariantPredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
1029                            const SCEV *RHS)
1030         : Pred(Pred), LHS(LHS), RHS(RHS) {}
1031   };
1032   /// If the result of the predicate LHS `Pred` RHS is loop invariant with
1033   /// respect to L, return a LoopInvariantPredicate with LHS and RHS being
1034   /// invariants, available at L's entry. Otherwise, return None.
1035   Optional<LoopInvariantPredicate>
1036   getLoopInvariantPredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
1037                             const SCEV *RHS, const Loop *L);
1038 
1039   /// If the result of the predicate LHS `Pred` RHS is loop invariant with
1040   /// respect to L at given Context during at least first MaxIter iterations,
1041   /// return a LoopInvariantPredicate with LHS and RHS being invariants,
1042   /// available at L's entry. Otherwise, return None. The predicate should be
1043   /// the loop's exit condition.
1044   Optional<LoopInvariantPredicate>
1045   getLoopInvariantExitCondDuringFirstIterations(ICmpInst::Predicate Pred,
1046                                                 const SCEV *LHS,
1047                                                 const SCEV *RHS, const Loop *L,
1048                                                 const Instruction *Context,
1049                                                 const SCEV *MaxIter);
1050 
1051   /// Simplify LHS and RHS in a comparison with predicate Pred. Return true
1052   /// iff any changes were made. If the operands are provably equal or
1053   /// unequal, LHS and RHS are set to the same value and Pred is set to either
1054   /// ICMP_EQ or ICMP_NE.
1055   bool SimplifyICmpOperands(ICmpInst::Predicate &Pred, const SCEV *&LHS,
1056                             const SCEV *&RHS, unsigned Depth = 0);
1057 
1058   /// Return the "disposition" of the given SCEV with respect to the given
1059   /// loop.
1060   LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L);
1061 
1062   /// Return true if the value of the given SCEV is unchanging in the
1063   /// specified loop.
1064   bool isLoopInvariant(const SCEV *S, const Loop *L);
1065 
1066   /// Determine if the SCEV can be evaluated at loop's entry. It is true if it
1067   /// doesn't depend on a SCEVUnknown of an instruction which is dominated by
1068   /// the header of loop L.
1069   bool isAvailableAtLoopEntry(const SCEV *S, const Loop *L);
1070 
1071   /// Return true if the given SCEV changes value in a known way in the
1072   /// specified loop.  This property being true implies that the value is
1073   /// variant in the loop AND that we can emit an expression to compute the
1074   /// value of the expression at any particular loop iteration.
1075   bool hasComputableLoopEvolution(const SCEV *S, const Loop *L);
1076 
1077   /// Return the "disposition" of the given SCEV with respect to the given
1078   /// block.
1079   BlockDisposition getBlockDisposition(const SCEV *S, const BasicBlock *BB);
1080 
1081   /// Return true if elements that makes up the given SCEV dominate the
1082   /// specified basic block.
1083   bool dominates(const SCEV *S, const BasicBlock *BB);
1084 
1085   /// Return true if elements that makes up the given SCEV properly dominate
1086   /// the specified basic block.
1087   bool properlyDominates(const SCEV *S, const BasicBlock *BB);
1088 
1089   /// Test whether the given SCEV has Op as a direct or indirect operand.
1090   bool hasOperand(const SCEV *S, const SCEV *Op) const;
1091 
1092   /// Return the size of an element read or written by Inst.
1093   const SCEV *getElementSize(Instruction *Inst);
1094 
1095   /// Compute the array dimensions Sizes from the set of Terms extracted from
1096   /// the memory access function of this SCEVAddRecExpr (second step of
1097   /// delinearization).
1098   void findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
1099                            SmallVectorImpl<const SCEV *> &Sizes,
1100                            const SCEV *ElementSize);
1101 
1102   void print(raw_ostream &OS) const;
1103   void verify() const;
1104   bool invalidate(Function &F, const PreservedAnalyses &PA,
1105                   FunctionAnalysisManager::Invalidator &Inv);
1106 
1107   /// Collect parametric terms occurring in step expressions (first step of
1108   /// delinearization).
1109   void collectParametricTerms(const SCEV *Expr,
1110                               SmallVectorImpl<const SCEV *> &Terms);
1111 
1112   /// Return in Subscripts the access functions for each dimension in Sizes
1113   /// (third step of delinearization).
1114   void computeAccessFunctions(const SCEV *Expr,
1115                               SmallVectorImpl<const SCEV *> &Subscripts,
1116                               SmallVectorImpl<const SCEV *> &Sizes);
1117 
1118   /// Gathers the individual index expressions from a GEP instruction.
1119   ///
1120   /// This function optimistically assumes the GEP references into a fixed size
1121   /// array. If this is actually true, this function returns a list of array
1122   /// subscript expressions in \p Subscripts and a list of integers describing
1123   /// the size of the individual array dimensions in \p Sizes. Both lists have
1124   /// either equal length or the size list is one element shorter in case there
1125   /// is no known size available for the outermost array dimension. Returns true
1126   /// if successful and false otherwise.
1127   bool getIndexExpressionsFromGEP(const GetElementPtrInst *GEP,
1128                                   SmallVectorImpl<const SCEV *> &Subscripts,
1129                                   SmallVectorImpl<int> &Sizes);
1130 
1131   /// Split this SCEVAddRecExpr into two vectors of SCEVs representing the
1132   /// subscripts and sizes of an array access.
1133   ///
1134   /// The delinearization is a 3 step process: the first two steps compute the
1135   /// sizes of each subscript and the third step computes the access functions
1136   /// for the delinearized array:
1137   ///
1138   /// 1. Find the terms in the step functions
1139   /// 2. Compute the array size
1140   /// 3. Compute the access function: divide the SCEV by the array size
1141   ///    starting with the innermost dimensions found in step 2. The Quotient
1142   ///    is the SCEV to be divided in the next step of the recursion. The
1143   ///    Remainder is the subscript of the innermost dimension. Loop over all
1144   ///    array dimensions computed in step 2.
1145   ///
1146   /// To compute a uniform array size for several memory accesses to the same
1147   /// object, one can collect in step 1 all the step terms for all the memory
1148   /// accesses, and compute in step 2 a unique array shape. This guarantees
1149   /// that the array shape will be the same across all memory accesses.
1150   ///
1151   /// FIXME: We could derive the result of steps 1 and 2 from a description of
1152   /// the array shape given in metadata.
1153   ///
1154   /// Example:
1155   ///
1156   /// A[][n][m]
1157   ///
1158   /// for i
1159   ///   for j
1160   ///     for k
1161   ///       A[j+k][2i][5i] =
1162   ///
1163   /// The initial SCEV:
1164   ///
1165   /// A[{{{0,+,2*m+5}_i, +, n*m}_j, +, n*m}_k]
1166   ///
1167   /// 1. Find the different terms in the step functions:
1168   /// -> [2*m, 5, n*m, n*m]
1169   ///
1170   /// 2. Compute the array size: sort and unique them
1171   /// -> [n*m, 2*m, 5]
1172   /// find the GCD of all the terms = 1
1173   /// divide by the GCD and erase constant terms
1174   /// -> [n*m, 2*m]
1175   /// GCD = m
1176   /// divide by GCD -> [n, 2]
1177   /// remove constant terms
1178   /// -> [n]
1179   /// size of the array is A[unknown][n][m]
1180   ///
1181   /// 3. Compute the access function
1182   /// a. Divide {{{0,+,2*m+5}_i, +, n*m}_j, +, n*m}_k by the innermost size m
1183   /// Quotient: {{{0,+,2}_i, +, n}_j, +, n}_k
1184   /// Remainder: {{{0,+,5}_i, +, 0}_j, +, 0}_k
1185   /// The remainder is the subscript of the innermost array dimension: [5i].
1186   ///
1187   /// b. Divide Quotient: {{{0,+,2}_i, +, n}_j, +, n}_k by next outer size n
1188   /// Quotient: {{{0,+,0}_i, +, 1}_j, +, 1}_k
1189   /// Remainder: {{{0,+,2}_i, +, 0}_j, +, 0}_k
1190   /// The Remainder is the subscript of the next array dimension: [2i].
1191   ///
1192   /// The subscript of the outermost dimension is the Quotient: [j+k].
1193   ///
1194   /// Overall, we have: A[][n][m], and the access function: A[j+k][2i][5i].
1195   void delinearize(const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
1196                    SmallVectorImpl<const SCEV *> &Sizes,
1197                    const SCEV *ElementSize);
1198 
1199   /// Return the DataLayout associated with the module this SCEV instance is
1200   /// operating on.
1201   const DataLayout &getDataLayout() const {
1202     return F.getParent()->getDataLayout();
1203   }
1204 
1205   const SCEVPredicate *getEqualPredicate(const SCEV *LHS, const SCEV *RHS);
1206 
1207   const SCEVPredicate *
1208   getWrapPredicate(const SCEVAddRecExpr *AR,
1209                    SCEVWrapPredicate::IncrementWrapFlags AddedFlags);
1210 
1211   /// Re-writes the SCEV according to the Predicates in \p A.
1212   const SCEV *rewriteUsingPredicate(const SCEV *S, const Loop *L,
1213                                     SCEVUnionPredicate &A);
1214   /// Tries to convert the \p S expression to an AddRec expression,
1215   /// adding additional predicates to \p Preds as required.
1216   const SCEVAddRecExpr *convertSCEVToAddRecWithPredicates(
1217       const SCEV *S, const Loop *L,
1218       SmallPtrSetImpl<const SCEVPredicate *> &Preds);
1219 
1220   /// Compute \p LHS - \p RHS and returns the result as an APInt if it is a
1221   /// constant, and None if it isn't.
1222   ///
1223   /// This is intended to be a cheaper version of getMinusSCEV.  We can be
1224   /// frugal here since we just bail out of actually constructing and
1225   /// canonicalizing an expression in the cases where the result isn't going
1226   /// to be a constant.
1227   Optional<APInt> computeConstantDifference(const SCEV *LHS, const SCEV *RHS);
1228 
1229   /// Update no-wrap flags of an AddRec. This may drop the cached info about
1230   /// this AddRec (such as range info) in case if new flags may potentially
1231   /// sharpen it.
1232   void setNoWrapFlags(SCEVAddRecExpr *AddRec, SCEV::NoWrapFlags Flags);
1233 
1234   /// Try to apply information from loop guards for \p L to \p Expr.
1235   const SCEV *applyLoopGuards(const SCEV *Expr, const Loop *L);
1236 
1237 private:
1238   /// A CallbackVH to arrange for ScalarEvolution to be notified whenever a
1239   /// Value is deleted.
1240   class SCEVCallbackVH final : public CallbackVH {
1241     ScalarEvolution *SE;
1242 
1243     void deleted() override;
1244     void allUsesReplacedWith(Value *New) override;
1245 
1246   public:
1247     SCEVCallbackVH(Value *V, ScalarEvolution *SE = nullptr);
1248   };
1249 
1250   friend class SCEVCallbackVH;
1251   friend class SCEVExpander;
1252   friend class SCEVUnknown;
1253 
1254   /// The function we are analyzing.
1255   Function &F;
1256 
1257   /// Does the module have any calls to the llvm.experimental.guard intrinsic
1258   /// at all?  If this is false, we avoid doing work that will only help if
1259   /// thare are guards present in the IR.
1260   bool HasGuards;
1261 
1262   /// The target library information for the target we are targeting.
1263   TargetLibraryInfo &TLI;
1264 
1265   /// The tracker for \@llvm.assume intrinsics in this function.
1266   AssumptionCache &AC;
1267 
1268   /// The dominator tree.
1269   DominatorTree &DT;
1270 
1271   /// The loop information for the function we are currently analyzing.
1272   LoopInfo &LI;
1273 
1274   /// This SCEV is used to represent unknown trip counts and things.
1275   std::unique_ptr<SCEVCouldNotCompute> CouldNotCompute;
1276 
1277   /// The type for HasRecMap.
1278   using HasRecMapType = DenseMap<const SCEV *, bool>;
1279 
1280   /// This is a cache to record whether a SCEV contains any scAddRecExpr.
1281   HasRecMapType HasRecMap;
1282 
1283   /// The type for ExprValueMap.
1284   using ValueOffsetPair = std::pair<Value *, ConstantInt *>;
1285   using ValueOffsetPairSetVector = SmallSetVector<ValueOffsetPair, 4>;
1286   using ExprValueMapType = DenseMap<const SCEV *, ValueOffsetPairSetVector>;
1287 
1288   /// ExprValueMap -- This map records the original values from which
1289   /// the SCEV expr is generated from.
1290   ///
1291   /// We want to represent the mapping as SCEV -> ValueOffsetPair instead
1292   /// of SCEV -> Value:
1293   /// Suppose we know S1 expands to V1, and
1294   ///  S1 = S2 + C_a
1295   ///  S3 = S2 + C_b
1296   /// where C_a and C_b are different SCEVConstants. Then we'd like to
1297   /// expand S3 as V1 - C_a + C_b instead of expanding S2 literally.
1298   /// It is helpful when S2 is a complex SCEV expr.
1299   ///
1300   /// In order to do that, we represent ExprValueMap as a mapping from
1301   /// SCEV to ValueOffsetPair. We will save both S1->{V1, 0} and
1302   /// S2->{V1, C_a} into the map when we create SCEV for V1. When S3
1303   /// is expanded, it will first expand S2 to V1 - C_a because of
1304   /// S2->{V1, C_a} in the map, then expand S3 to V1 - C_a + C_b.
1305   ///
1306   /// Note: S->{V, Offset} in the ExprValueMap means S can be expanded
1307   /// to V - Offset.
1308   ExprValueMapType ExprValueMap;
1309 
1310   /// The type for ValueExprMap.
1311   using ValueExprMapType =
1312       DenseMap<SCEVCallbackVH, const SCEV *, DenseMapInfo<Value *>>;
1313 
1314   /// This is a cache of the values we have analyzed so far.
1315   ValueExprMapType ValueExprMap;
1316 
1317   /// Mark predicate values currently being processed by isImpliedCond.
1318   SmallPtrSet<const Value *, 6> PendingLoopPredicates;
1319 
1320   /// Mark SCEVUnknown Phis currently being processed by getRangeRef.
1321   SmallPtrSet<const PHINode *, 6> PendingPhiRanges;
1322 
1323   // Mark SCEVUnknown Phis currently being processed by isImpliedViaMerge.
1324   SmallPtrSet<const PHINode *, 6> PendingMerges;
1325 
1326   /// Set to true by isLoopBackedgeGuardedByCond when we're walking the set of
1327   /// conditions dominating the backedge of a loop.
1328   bool WalkingBEDominatingConds = false;
1329 
1330   /// Set to true by isKnownPredicateViaSplitting when we're trying to prove a
1331   /// predicate by splitting it into a set of independent predicates.
1332   bool ProvingSplitPredicate = false;
1333 
1334   /// Memoized values for the GetMinTrailingZeros
1335   DenseMap<const SCEV *, uint32_t> MinTrailingZerosCache;
1336 
1337   /// Return the Value set from which the SCEV expr is generated.
1338   ValueOffsetPairSetVector *getSCEVValues(const SCEV *S);
1339 
1340   /// Private helper method for the GetMinTrailingZeros method
1341   uint32_t GetMinTrailingZerosImpl(const SCEV *S);
1342 
1343   /// Information about the number of loop iterations for which a loop exit's
1344   /// branch condition evaluates to the not-taken path.  This is a temporary
1345   /// pair of exact and max expressions that are eventually summarized in
1346   /// ExitNotTakenInfo and BackedgeTakenInfo.
1347   struct ExitLimit {
1348     const SCEV *ExactNotTaken; // The exit is not taken exactly this many times
1349     const SCEV *MaxNotTaken; // The exit is not taken at most this many times
1350 
1351     // Not taken either exactly MaxNotTaken or zero times
1352     bool MaxOrZero = false;
1353 
1354     /// A set of predicate guards for this ExitLimit. The result is only valid
1355     /// if all of the predicates in \c Predicates evaluate to 'true' at
1356     /// run-time.
1357     SmallPtrSet<const SCEVPredicate *, 4> Predicates;
1358 
1359     void addPredicate(const SCEVPredicate *P) {
1360       assert(!isa<SCEVUnionPredicate>(P) && "Only add leaf predicates here!");
1361       Predicates.insert(P);
1362     }
1363 
1364     /// Construct either an exact exit limit from a constant, or an unknown
1365     /// one from a SCEVCouldNotCompute.  No other types of SCEVs are allowed
1366     /// as arguments and asserts enforce that internally.
1367     /*implicit*/ ExitLimit(const SCEV *E);
1368 
1369     ExitLimit(
1370         const SCEV *E, const SCEV *M, bool MaxOrZero,
1371         ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList);
1372 
1373     ExitLimit(const SCEV *E, const SCEV *M, bool MaxOrZero,
1374               const SmallPtrSetImpl<const SCEVPredicate *> &PredSet);
1375 
1376     ExitLimit(const SCEV *E, const SCEV *M, bool MaxOrZero);
1377 
1378     /// Test whether this ExitLimit contains any computed information, or
1379     /// whether it's all SCEVCouldNotCompute values.
1380     bool hasAnyInfo() const {
1381       return !isa<SCEVCouldNotCompute>(ExactNotTaken) ||
1382              !isa<SCEVCouldNotCompute>(MaxNotTaken);
1383     }
1384 
1385     /// Test whether this ExitLimit contains all information.
1386     bool hasFullInfo() const {
1387       return !isa<SCEVCouldNotCompute>(ExactNotTaken);
1388     }
1389   };
1390 
1391   /// Information about the number of times a particular loop exit may be
1392   /// reached before exiting the loop.
1393   struct ExitNotTakenInfo {
1394     PoisoningVH<BasicBlock> ExitingBlock;
1395     const SCEV *ExactNotTaken;
1396     const SCEV *MaxNotTaken;
1397     std::unique_ptr<SCEVUnionPredicate> Predicate;
1398 
1399     explicit ExitNotTakenInfo(PoisoningVH<BasicBlock> ExitingBlock,
1400                               const SCEV *ExactNotTaken,
1401                               const SCEV *MaxNotTaken,
1402                               std::unique_ptr<SCEVUnionPredicate> Predicate)
1403       : ExitingBlock(ExitingBlock), ExactNotTaken(ExactNotTaken),
1404         MaxNotTaken(ExactNotTaken), Predicate(std::move(Predicate)) {}
1405 
1406     bool hasAlwaysTruePredicate() const {
1407       return !Predicate || Predicate->isAlwaysTrue();
1408     }
1409   };
1410 
1411   /// Information about the backedge-taken count of a loop. This currently
1412   /// includes an exact count and a maximum count.
1413   ///
1414   class BackedgeTakenInfo {
1415     /// A list of computable exits and their not-taken counts.  Loops almost
1416     /// never have more than one computable exit.
1417     SmallVector<ExitNotTakenInfo, 1> ExitNotTaken;
1418 
1419     /// Expression indicating the least constant maximum backedge-taken count of
1420     /// the loop that is known, or a SCEVCouldNotCompute. This expression is
1421     /// only valid if the redicates associated with all loop exits are true.
1422     const SCEV *ConstantMax;
1423 
1424     /// Indicating if \c ExitNotTaken has an element for every exiting block in
1425     /// the loop.
1426     bool IsComplete;
1427 
1428     /// Expression indicating the least maximum backedge-taken count of the loop
1429     /// that is known, or a SCEVCouldNotCompute. Lazily computed on first query.
1430     const SCEV *SymbolicMax = nullptr;
1431 
1432     /// True iff the backedge is taken either exactly Max or zero times.
1433     bool MaxOrZero = false;
1434 
1435     /// SCEV expressions used in any of the ExitNotTakenInfo counts.
1436     SmallPtrSet<const SCEV *, 4> Operands;
1437 
1438     bool isComplete() const { return IsComplete; }
1439     const SCEV *getConstantMax() const { return ConstantMax; }
1440 
1441   public:
1442     BackedgeTakenInfo() : ConstantMax(nullptr), IsComplete(false) {}
1443     BackedgeTakenInfo(BackedgeTakenInfo &&) = default;
1444     BackedgeTakenInfo &operator=(BackedgeTakenInfo &&) = default;
1445 
1446     using EdgeExitInfo = std::pair<BasicBlock *, ExitLimit>;
1447 
1448     /// Initialize BackedgeTakenInfo from a list of exact exit counts.
1449     BackedgeTakenInfo(ArrayRef<EdgeExitInfo> ExitCounts, bool IsComplete,
1450                       const SCEV *ConstantMax, bool MaxOrZero);
1451 
1452     /// Test whether this BackedgeTakenInfo contains any computed information,
1453     /// or whether it's all SCEVCouldNotCompute values.
1454     bool hasAnyInfo() const {
1455       return !ExitNotTaken.empty() ||
1456              !isa<SCEVCouldNotCompute>(getConstantMax());
1457     }
1458 
1459     /// Test whether this BackedgeTakenInfo contains complete information.
1460     bool hasFullInfo() const { return isComplete(); }
1461 
1462     /// Return an expression indicating the exact *backedge-taken*
1463     /// count of the loop if it is known or SCEVCouldNotCompute
1464     /// otherwise.  If execution makes it to the backedge on every
1465     /// iteration (i.e. there are no abnormal exists like exception
1466     /// throws and thread exits) then this is the number of times the
1467     /// loop header will execute minus one.
1468     ///
1469     /// If the SCEV predicate associated with the answer can be different
1470     /// from AlwaysTrue, we must add a (non null) Predicates argument.
1471     /// The SCEV predicate associated with the answer will be added to
1472     /// Predicates. A run-time check needs to be emitted for the SCEV
1473     /// predicate in order for the answer to be valid.
1474     ///
1475     /// Note that we should always know if we need to pass a predicate
1476     /// argument or not from the way the ExitCounts vector was computed.
1477     /// If we allowed SCEV predicates to be generated when populating this
1478     /// vector, this information can contain them and therefore a
1479     /// SCEVPredicate argument should be added to getExact.
1480     const SCEV *getExact(const Loop *L, ScalarEvolution *SE,
1481                          SCEVUnionPredicate *Predicates = nullptr) const;
1482 
1483     /// Return the number of times this loop exit may fall through to the back
1484     /// edge, or SCEVCouldNotCompute. The loop is guaranteed not to exit via
1485     /// this block before this number of iterations, but may exit via another
1486     /// block.
1487     const SCEV *getExact(const BasicBlock *ExitingBlock,
1488                          ScalarEvolution *SE) const;
1489 
1490     /// Get the constant max backedge taken count for the loop.
1491     const SCEV *getConstantMax(ScalarEvolution *SE) const;
1492 
1493     /// Get the constant max backedge taken count for the particular loop exit.
1494     const SCEV *getConstantMax(const BasicBlock *ExitingBlock,
1495                                ScalarEvolution *SE) const;
1496 
1497     /// Get the symbolic max backedge taken count for the loop.
1498     const SCEV *getSymbolicMax(const Loop *L, ScalarEvolution *SE);
1499 
1500     /// Return true if the number of times this backedge is taken is either the
1501     /// value returned by getConstantMax or zero.
1502     bool isConstantMaxOrZero(ScalarEvolution *SE) const;
1503 
1504     /// Return true if any backedge taken count expressions refer to the given
1505     /// subexpression.
1506     bool hasOperand(const SCEV *S) const;
1507   };
1508 
1509   /// Cache the backedge-taken count of the loops for this function as they
1510   /// are computed.
1511   DenseMap<const Loop *, BackedgeTakenInfo> BackedgeTakenCounts;
1512 
1513   /// Cache the predicated backedge-taken count of the loops for this
1514   /// function as they are computed.
1515   DenseMap<const Loop *, BackedgeTakenInfo> PredicatedBackedgeTakenCounts;
1516 
1517   /// This map contains entries for all of the PHI instructions that we
1518   /// attempt to compute constant evolutions for.  This allows us to avoid
1519   /// potentially expensive recomputation of these properties.  An instruction
1520   /// maps to null if we are unable to compute its exit value.
1521   DenseMap<PHINode *, Constant *> ConstantEvolutionLoopExitValue;
1522 
1523   /// This map contains entries for all the expressions that we attempt to
1524   /// compute getSCEVAtScope information for, which can be expensive in
1525   /// extreme cases.
1526   DenseMap<const SCEV *, SmallVector<std::pair<const Loop *, const SCEV *>, 2>>
1527       ValuesAtScopes;
1528 
1529   /// Memoized computeLoopDisposition results.
1530   DenseMap<const SCEV *,
1531            SmallVector<PointerIntPair<const Loop *, 2, LoopDisposition>, 2>>
1532       LoopDispositions;
1533 
1534   struct LoopProperties {
1535     /// Set to true if the loop contains no instruction that can have side
1536     /// effects (i.e. via throwing an exception, volatile or atomic access).
1537     bool HasNoAbnormalExits;
1538 
1539     /// Set to true if the loop contains no instruction that can abnormally exit
1540     /// the loop (i.e. via throwing an exception, by terminating the thread
1541     /// cleanly or by infinite looping in a called function).  Strictly
1542     /// speaking, the last one is not leaving the loop, but is identical to
1543     /// leaving the loop for reasoning about undefined behavior.
1544     bool HasNoSideEffects;
1545   };
1546 
1547   /// Cache for \c getLoopProperties.
1548   DenseMap<const Loop *, LoopProperties> LoopPropertiesCache;
1549 
1550   /// Return a \c LoopProperties instance for \p L, creating one if necessary.
1551   LoopProperties getLoopProperties(const Loop *L);
1552 
1553   bool loopHasNoSideEffects(const Loop *L) {
1554     return getLoopProperties(L).HasNoSideEffects;
1555   }
1556 
1557   bool loopHasNoAbnormalExits(const Loop *L) {
1558     return getLoopProperties(L).HasNoAbnormalExits;
1559   }
1560 
1561   /// Return true if this loop is finite by assumption.  That is,
1562   /// to be infinite, it must also be undefined.
1563   bool loopIsFiniteByAssumption(const Loop *L);
1564 
1565   /// Compute a LoopDisposition value.
1566   LoopDisposition computeLoopDisposition(const SCEV *S, const Loop *L);
1567 
1568   /// Memoized computeBlockDisposition results.
1569   DenseMap<
1570       const SCEV *,
1571       SmallVector<PointerIntPair<const BasicBlock *, 2, BlockDisposition>, 2>>
1572       BlockDispositions;
1573 
1574   /// Compute a BlockDisposition value.
1575   BlockDisposition computeBlockDisposition(const SCEV *S, const BasicBlock *BB);
1576 
1577   /// Memoized results from getRange
1578   DenseMap<const SCEV *, ConstantRange> UnsignedRanges;
1579 
1580   /// Memoized results from getRange
1581   DenseMap<const SCEV *, ConstantRange> SignedRanges;
1582 
1583   /// Used to parameterize getRange
1584   enum RangeSignHint { HINT_RANGE_UNSIGNED, HINT_RANGE_SIGNED };
1585 
1586   /// Set the memoized range for the given SCEV.
1587   const ConstantRange &setRange(const SCEV *S, RangeSignHint Hint,
1588                                 ConstantRange CR) {
1589     DenseMap<const SCEV *, ConstantRange> &Cache =
1590         Hint == HINT_RANGE_UNSIGNED ? UnsignedRanges : SignedRanges;
1591 
1592     auto Pair = Cache.try_emplace(S, std::move(CR));
1593     if (!Pair.second)
1594       Pair.first->second = std::move(CR);
1595     return Pair.first->second;
1596   }
1597 
1598   /// Determine the range for a particular SCEV.
1599   /// NOTE: This returns a reference to an entry in a cache. It must be
1600   /// copied if its needed for longer.
1601   const ConstantRange &getRangeRef(const SCEV *S, RangeSignHint Hint);
1602 
1603   /// Determines the range for the affine SCEVAddRecExpr {\p Start,+,\p Stop}.
1604   /// Helper for \c getRange.
1605   ConstantRange getRangeForAffineAR(const SCEV *Start, const SCEV *Stop,
1606                                     const SCEV *MaxBECount, unsigned BitWidth);
1607 
1608   /// Determines the range for the affine non-self-wrapping SCEVAddRecExpr {\p
1609   /// Start,+,\p Stop}<nw>.
1610   ConstantRange getRangeForAffineNoSelfWrappingAR(const SCEVAddRecExpr *AddRec,
1611                                                   const SCEV *MaxBECount,
1612                                                   unsigned BitWidth,
1613                                                   RangeSignHint SignHint);
1614 
1615   /// Try to compute a range for the affine SCEVAddRecExpr {\p Start,+,\p
1616   /// Stop} by "factoring out" a ternary expression from the add recurrence.
1617   /// Helper called by \c getRange.
1618   ConstantRange getRangeViaFactoring(const SCEV *Start, const SCEV *Stop,
1619                                      const SCEV *MaxBECount, unsigned BitWidth);
1620 
1621   /// If the unknown expression U corresponds to a simple recurrence, return
1622   /// a constant range which represents the entire recurrence.  Note that
1623   /// *add* recurrences with loop invariant steps aren't represented by
1624   /// SCEVUnknowns and thus don't use this mechanism.
1625   ConstantRange getRangeForUnknownRecurrence(const SCEVUnknown *U);
1626 
1627   /// We know that there is no SCEV for the specified value.  Analyze the
1628   /// expression.
1629   const SCEV *createSCEV(Value *V);
1630 
1631   /// Provide the special handling we need to analyze PHI SCEVs.
1632   const SCEV *createNodeForPHI(PHINode *PN);
1633 
1634   /// Helper function called from createNodeForPHI.
1635   const SCEV *createAddRecFromPHI(PHINode *PN);
1636 
1637   /// A helper function for createAddRecFromPHI to handle simple cases.
1638   const SCEV *createSimpleAffineAddRec(PHINode *PN, Value *BEValueV,
1639                                             Value *StartValueV);
1640 
1641   /// Helper function called from createNodeForPHI.
1642   const SCEV *createNodeFromSelectLikePHI(PHINode *PN);
1643 
1644   /// Provide special handling for a select-like instruction (currently this
1645   /// is either a select instruction or a phi node).  \p I is the instruction
1646   /// being processed, and it is assumed equivalent to "Cond ? TrueVal :
1647   /// FalseVal".
1648   const SCEV *createNodeForSelectOrPHI(Instruction *I, Value *Cond,
1649                                        Value *TrueVal, Value *FalseVal);
1650 
1651   /// Provide the special handling we need to analyze GEP SCEVs.
1652   const SCEV *createNodeForGEP(GEPOperator *GEP);
1653 
1654   /// Implementation code for getSCEVAtScope; called at most once for each
1655   /// SCEV+Loop pair.
1656   const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L);
1657 
1658   /// This looks up computed SCEV values for all instructions that depend on
1659   /// the given instruction and removes them from the ValueExprMap map if they
1660   /// reference SymName. This is used during PHI resolution.
1661   void forgetSymbolicName(Instruction *I, const SCEV *SymName);
1662 
1663   /// Return the BackedgeTakenInfo for the given loop, lazily computing new
1664   /// values if the loop hasn't been analyzed yet. The returned result is
1665   /// guaranteed not to be predicated.
1666   BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
1667 
1668   /// Similar to getBackedgeTakenInfo, but will add predicates as required
1669   /// with the purpose of returning complete information.
1670   const BackedgeTakenInfo &getPredicatedBackedgeTakenInfo(const Loop *L);
1671 
1672   /// Compute the number of times the specified loop will iterate.
1673   /// If AllowPredicates is set, we will create new SCEV predicates as
1674   /// necessary in order to return an exact answer.
1675   BackedgeTakenInfo computeBackedgeTakenCount(const Loop *L,
1676                                               bool AllowPredicates = false);
1677 
1678   /// Compute the number of times the backedge of the specified loop will
1679   /// execute if it exits via the specified block. If AllowPredicates is set,
1680   /// this call will try to use a minimal set of SCEV predicates in order to
1681   /// return an exact answer.
1682   ExitLimit computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
1683                              bool AllowPredicates = false);
1684 
1685   /// Compute the number of times the backedge of the specified loop will
1686   /// execute if its exit condition were a conditional branch of ExitCond.
1687   ///
1688   /// \p ControlsExit is true if ExitCond directly controls the exit
1689   /// branch. In this case, we can assume that the loop exits only if the
1690   /// condition is true and can infer that failing to meet the condition prior
1691   /// to integer wraparound results in undefined behavior.
1692   ///
1693   /// If \p AllowPredicates is set, this call will try to use a minimal set of
1694   /// SCEV predicates in order to return an exact answer.
1695   ExitLimit computeExitLimitFromCond(const Loop *L, Value *ExitCond,
1696                                      bool ExitIfTrue, bool ControlsExit,
1697                                      bool AllowPredicates = false);
1698 
1699   /// Return a symbolic upper bound for the backedge taken count of the loop.
1700   /// This is more general than getConstantMaxBackedgeTakenCount as it returns
1701   /// an arbitrary expression as opposed to only constants.
1702   const SCEV *computeSymbolicMaxBackedgeTakenCount(const Loop *L);
1703 
1704   // Helper functions for computeExitLimitFromCond to avoid exponential time
1705   // complexity.
1706 
1707   class ExitLimitCache {
1708     // It may look like we need key on the whole (L, ExitIfTrue, ControlsExit,
1709     // AllowPredicates) tuple, but recursive calls to
1710     // computeExitLimitFromCondCached from computeExitLimitFromCondImpl only
1711     // vary the in \c ExitCond and \c ControlsExit parameters.  We remember the
1712     // initial values of the other values to assert our assumption.
1713     SmallDenseMap<PointerIntPair<Value *, 1>, ExitLimit> TripCountMap;
1714 
1715     const Loop *L;
1716     bool ExitIfTrue;
1717     bool AllowPredicates;
1718 
1719   public:
1720     ExitLimitCache(const Loop *L, bool ExitIfTrue, bool AllowPredicates)
1721         : L(L), ExitIfTrue(ExitIfTrue), AllowPredicates(AllowPredicates) {}
1722 
1723     Optional<ExitLimit> find(const Loop *L, Value *ExitCond, bool ExitIfTrue,
1724                              bool ControlsExit, bool AllowPredicates);
1725 
1726     void insert(const Loop *L, Value *ExitCond, bool ExitIfTrue,
1727                 bool ControlsExit, bool AllowPredicates, const ExitLimit &EL);
1728   };
1729 
1730   using ExitLimitCacheTy = ExitLimitCache;
1731 
1732   ExitLimit computeExitLimitFromCondCached(ExitLimitCacheTy &Cache,
1733                                            const Loop *L, Value *ExitCond,
1734                                            bool ExitIfTrue,
1735                                            bool ControlsExit,
1736                                            bool AllowPredicates);
1737   ExitLimit computeExitLimitFromCondImpl(ExitLimitCacheTy &Cache, const Loop *L,
1738                                          Value *ExitCond, bool ExitIfTrue,
1739                                          bool ControlsExit,
1740                                          bool AllowPredicates);
1741   Optional<ScalarEvolution::ExitLimit>
1742   computeExitLimitFromCondFromBinOp(ExitLimitCacheTy &Cache, const Loop *L,
1743                                     Value *ExitCond, bool ExitIfTrue,
1744                                     bool ControlsExit, bool AllowPredicates);
1745 
1746   /// Compute the number of times the backedge of the specified loop will
1747   /// execute if its exit condition were a conditional branch of the ICmpInst
1748   /// ExitCond and ExitIfTrue. If AllowPredicates is set, this call will try
1749   /// to use a minimal set of SCEV predicates in order to return an exact
1750   /// answer.
1751   ExitLimit computeExitLimitFromICmp(const Loop *L, ICmpInst *ExitCond,
1752                                      bool ExitIfTrue,
1753                                      bool IsSubExpr,
1754                                      bool AllowPredicates = false);
1755 
1756   /// Compute the number of times the backedge of the specified loop will
1757   /// execute if its exit condition were a switch with a single exiting case
1758   /// to ExitingBB.
1759   ExitLimit computeExitLimitFromSingleExitSwitch(const Loop *L,
1760                                                  SwitchInst *Switch,
1761                                                  BasicBlock *ExitingBB,
1762                                                  bool IsSubExpr);
1763 
1764   /// Given an exit condition of 'icmp op load X, cst', try to see if we can
1765   /// compute the backedge-taken count.
1766   ExitLimit computeLoadConstantCompareExitLimit(LoadInst *LI, Constant *RHS,
1767                                                 const Loop *L,
1768                                                 ICmpInst::Predicate p);
1769 
1770   /// Compute the exit limit of a loop that is controlled by a
1771   /// "(IV >> 1) != 0" type comparison.  We cannot compute the exact trip
1772   /// count in these cases (since SCEV has no way of expressing them), but we
1773   /// can still sometimes compute an upper bound.
1774   ///
1775   /// Return an ExitLimit for a loop whose backedge is guarded by `LHS Pred
1776   /// RHS`.
1777   ExitLimit computeShiftCompareExitLimit(Value *LHS, Value *RHS, const Loop *L,
1778                                          ICmpInst::Predicate Pred);
1779 
1780   /// If the loop is known to execute a constant number of times (the
1781   /// condition evolves only from constants), try to evaluate a few iterations
1782   /// of the loop until we get the exit condition gets a value of ExitWhen
1783   /// (true or false).  If we cannot evaluate the exit count of the loop,
1784   /// return CouldNotCompute.
1785   const SCEV *computeExitCountExhaustively(const Loop *L, Value *Cond,
1786                                            bool ExitWhen);
1787 
1788   /// Return the number of times an exit condition comparing the specified
1789   /// value to zero will execute.  If not computable, return CouldNotCompute.
1790   /// If AllowPredicates is set, this call will try to use a minimal set of
1791   /// SCEV predicates in order to return an exact answer.
1792   ExitLimit howFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr,
1793                          bool AllowPredicates = false);
1794 
1795   /// Return the number of times an exit condition checking the specified
1796   /// value for nonzero will execute.  If not computable, return
1797   /// CouldNotCompute.
1798   ExitLimit howFarToNonZero(const SCEV *V, const Loop *L);
1799 
1800   /// Return the number of times an exit condition containing the specified
1801   /// less-than comparison will execute.  If not computable, return
1802   /// CouldNotCompute.
1803   ///
1804   /// \p isSigned specifies whether the less-than is signed.
1805   ///
1806   /// \p ControlsExit is true when the LHS < RHS condition directly controls
1807   /// the branch (loops exits only if condition is true). In this case, we can
1808   /// use NoWrapFlags to skip overflow checks.
1809   ///
1810   /// If \p AllowPredicates is set, this call will try to use a minimal set of
1811   /// SCEV predicates in order to return an exact answer.
1812   ExitLimit howManyLessThans(const SCEV *LHS, const SCEV *RHS, const Loop *L,
1813                              bool isSigned, bool ControlsExit,
1814                              bool AllowPredicates = false);
1815 
1816   ExitLimit howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, const Loop *L,
1817                                 bool isSigned, bool IsSubExpr,
1818                                 bool AllowPredicates = false);
1819 
1820   /// Return a predecessor of BB (which may not be an immediate predecessor)
1821   /// which has exactly one successor from which BB is reachable, or null if
1822   /// no such block is found.
1823   std::pair<const BasicBlock *, const BasicBlock *>
1824   getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) const;
1825 
1826   /// Test whether the condition described by Pred, LHS, and RHS is true
1827   /// whenever the given FoundCondValue value evaluates to true in given
1828   /// Context. If Context is nullptr, then the found predicate is true
1829   /// everywhere. LHS and FoundLHS may have different type width.
1830   bool isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
1831                      const Value *FoundCondValue, bool Inverse,
1832                      const Instruction *Context = nullptr);
1833 
1834   /// Test whether the condition described by Pred, LHS, and RHS is true
1835   /// whenever the given FoundCondValue value evaluates to true in given
1836   /// Context. If Context is nullptr, then the found predicate is true
1837   /// everywhere. LHS and FoundLHS must have same type width.
1838   bool isImpliedCondBalancedTypes(ICmpInst::Predicate Pred, const SCEV *LHS,
1839                                   const SCEV *RHS,
1840                                   ICmpInst::Predicate FoundPred,
1841                                   const SCEV *FoundLHS, const SCEV *FoundRHS,
1842                                   const Instruction *Context);
1843 
1844   /// Test whether the condition described by Pred, LHS, and RHS is true
1845   /// whenever the condition described by FoundPred, FoundLHS, FoundRHS is
1846   /// true in given Context. If Context is nullptr, then the found predicate is
1847   /// true everywhere.
1848   bool isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
1849                      ICmpInst::Predicate FoundPred, const SCEV *FoundLHS,
1850                      const SCEV *FoundRHS,
1851                      const Instruction *Context = nullptr);
1852 
1853   /// Test whether the condition described by Pred, LHS, and RHS is true
1854   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1855   /// true in given Context. If Context is nullptr, then the found predicate is
1856   /// true everywhere.
1857   bool isImpliedCondOperands(ICmpInst::Predicate Pred, const SCEV *LHS,
1858                              const SCEV *RHS, const SCEV *FoundLHS,
1859                              const SCEV *FoundRHS,
1860                              const Instruction *Context = nullptr);
1861 
1862   /// Test whether the condition described by Pred, LHS, and RHS is true
1863   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1864   /// true. Here LHS is an operation that includes FoundLHS as one of its
1865   /// arguments.
1866   bool isImpliedViaOperations(ICmpInst::Predicate Pred,
1867                               const SCEV *LHS, const SCEV *RHS,
1868                               const SCEV *FoundLHS, const SCEV *FoundRHS,
1869                               unsigned Depth = 0);
1870 
1871   /// Test whether the condition described by Pred, LHS, and RHS is true.
1872   /// Use only simple non-recursive types of checks, such as range analysis etc.
1873   bool isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
1874                                        const SCEV *LHS, const SCEV *RHS);
1875 
1876   /// Test whether the condition described by Pred, LHS, and RHS is true
1877   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1878   /// true.
1879   bool isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, const SCEV *LHS,
1880                                    const SCEV *RHS, const SCEV *FoundLHS,
1881                                    const SCEV *FoundRHS);
1882 
1883   /// Test whether the condition described by Pred, LHS, and RHS is true
1884   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1885   /// true.  Utility function used by isImpliedCondOperands.  Tries to get
1886   /// cases like "X `sgt` 0 => X - 1 `sgt` -1".
1887   bool isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, const SCEV *LHS,
1888                                       const SCEV *RHS, const SCEV *FoundLHS,
1889                                       const SCEV *FoundRHS);
1890 
1891   /// Return true if the condition denoted by \p LHS \p Pred \p RHS is implied
1892   /// by a call to @llvm.experimental.guard in \p BB.
1893   bool isImpliedViaGuard(const BasicBlock *BB, ICmpInst::Predicate Pred,
1894                          const SCEV *LHS, const SCEV *RHS);
1895 
1896   /// Test whether the condition described by Pred, LHS, and RHS is true
1897   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1898   /// true.
1899   ///
1900   /// This routine tries to rule out certain kinds of integer overflow, and
1901   /// then tries to reason about arithmetic properties of the predicates.
1902   bool isImpliedCondOperandsViaNoOverflow(ICmpInst::Predicate Pred,
1903                                           const SCEV *LHS, const SCEV *RHS,
1904                                           const SCEV *FoundLHS,
1905                                           const SCEV *FoundRHS);
1906 
1907   /// Test whether the condition described by Pred, LHS, and RHS is true
1908   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1909   /// true.
1910   ///
1911   /// This routine tries to weaken the known condition basing on fact that
1912   /// FoundLHS is an AddRec.
1913   bool isImpliedCondOperandsViaAddRecStart(ICmpInst::Predicate Pred,
1914                                            const SCEV *LHS, const SCEV *RHS,
1915                                            const SCEV *FoundLHS,
1916                                            const SCEV *FoundRHS,
1917                                            const Instruction *Context);
1918 
1919   /// Test whether the condition described by Pred, LHS, and RHS is true
1920   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1921   /// true.
1922   ///
1923   /// This routine tries to figure out predicate for Phis which are SCEVUnknown
1924   /// if it is true for every possible incoming value from their respective
1925   /// basic blocks.
1926   bool isImpliedViaMerge(ICmpInst::Predicate Pred,
1927                          const SCEV *LHS, const SCEV *RHS,
1928                          const SCEV *FoundLHS, const SCEV *FoundRHS,
1929                          unsigned Depth);
1930 
1931   /// If we know that the specified Phi is in the header of its containing
1932   /// loop, we know the loop executes a constant number of times, and the PHI
1933   /// node is just a recurrence involving constants, fold it.
1934   Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt &BEs,
1935                                               const Loop *L);
1936 
1937   /// Test if the given expression is known to satisfy the condition described
1938   /// by Pred and the known constant ranges of LHS and RHS.
1939   bool isKnownPredicateViaConstantRanges(ICmpInst::Predicate Pred,
1940                                          const SCEV *LHS, const SCEV *RHS);
1941 
1942   /// Try to prove the condition described by "LHS Pred RHS" by ruling out
1943   /// integer overflow.
1944   ///
1945   /// For instance, this will return true for "A s< (A + C)<nsw>" if C is
1946   /// positive.
1947   bool isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, const SCEV *LHS,
1948                                      const SCEV *RHS);
1949 
1950   /// Try to split Pred LHS RHS into logical conjunctions (and's) and try to
1951   /// prove them individually.
1952   bool isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, const SCEV *LHS,
1953                                     const SCEV *RHS);
1954 
1955   /// Try to match the Expr as "(L + R)<Flags>".
1956   bool splitBinaryAdd(const SCEV *Expr, const SCEV *&L, const SCEV *&R,
1957                       SCEV::NoWrapFlags &Flags);
1958 
1959   /// Drop memoized information computed for S.
1960   void forgetMemoizedResults(const SCEV *S);
1961 
1962   /// Return an existing SCEV for V if there is one, otherwise return nullptr.
1963   const SCEV *getExistingSCEV(Value *V);
1964 
1965   /// Return false iff given SCEV contains a SCEVUnknown with NULL value-
1966   /// pointer.
1967   bool checkValidity(const SCEV *S) const;
1968 
1969   /// Return true if `ExtendOpTy`({`Start`,+,`Step`}) can be proved to be
1970   /// equal to {`ExtendOpTy`(`Start`),+,`ExtendOpTy`(`Step`)}.  This is
1971   /// equivalent to proving no signed (resp. unsigned) wrap in
1972   /// {`Start`,+,`Step`} if `ExtendOpTy` is `SCEVSignExtendExpr`
1973   /// (resp. `SCEVZeroExtendExpr`).
1974   template <typename ExtendOpTy>
1975   bool proveNoWrapByVaryingStart(const SCEV *Start, const SCEV *Step,
1976                                  const Loop *L);
1977 
1978   /// Try to prove NSW or NUW on \p AR relying on ConstantRange manipulation.
1979   SCEV::NoWrapFlags proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR);
1980 
1981   /// Try to prove NSW on \p AR by proving facts about conditions known  on
1982   /// entry and backedge.
1983   SCEV::NoWrapFlags proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR);
1984 
1985   /// Try to prove NUW on \p AR by proving facts about conditions known on
1986   /// entry and backedge.
1987   SCEV::NoWrapFlags proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR);
1988 
1989   Optional<MonotonicPredicateType>
1990   getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS,
1991                                 ICmpInst::Predicate Pred);
1992 
1993   /// Return SCEV no-wrap flags that can be proven based on reasoning about
1994   /// how poison produced from no-wrap flags on this value (e.g. a nuw add)
1995   /// would trigger undefined behavior on overflow.
1996   SCEV::NoWrapFlags getNoWrapFlagsFromUB(const Value *V);
1997 
1998   /// Return true if the SCEV corresponding to \p I is never poison.  Proving
1999   /// this is more complex than proving that just \p I is never poison, since
2000   /// SCEV commons expressions across control flow, and you can have cases
2001   /// like:
2002   ///
2003   ///   idx0 = a + b;
2004   ///   ptr[idx0] = 100;
2005   ///   if (<condition>) {
2006   ///     idx1 = a +nsw b;
2007   ///     ptr[idx1] = 200;
2008   ///   }
2009   ///
2010   /// where the SCEV expression (+ a b) is guaranteed to not be poison (and
2011   /// hence not sign-overflow) only if "<condition>" is true.  Since both
2012   /// `idx0` and `idx1` will be mapped to the same SCEV expression, (+ a b),
2013   /// it is not okay to annotate (+ a b) with <nsw> in the above example.
2014   bool isSCEVExprNeverPoison(const Instruction *I);
2015 
2016   /// This is like \c isSCEVExprNeverPoison but it specifically works for
2017   /// instructions that will get mapped to SCEV add recurrences.  Return true
2018   /// if \p I will never generate poison under the assumption that \p I is an
2019   /// add recurrence on the loop \p L.
2020   bool isAddRecNeverPoison(const Instruction *I, const Loop *L);
2021 
2022   /// Similar to createAddRecFromPHI, but with the additional flexibility of
2023   /// suggesting runtime overflow checks in case casts are encountered.
2024   /// If successful, the analysis records that for this loop, \p SymbolicPHI,
2025   /// which is the UnknownSCEV currently representing the PHI, can be rewritten
2026   /// into an AddRec, assuming some predicates; The function then returns the
2027   /// AddRec and the predicates as a pair, and caches this pair in
2028   /// PredicatedSCEVRewrites.
2029   /// If the analysis is not successful, a mapping from the \p SymbolicPHI to
2030   /// itself (with no predicates) is recorded, and a nullptr with an empty
2031   /// predicates vector is returned as a pair.
2032   Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
2033   createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI);
2034 
2035   /// Compute the maximum backedge count based on the range of values
2036   /// permitted by Start, End, and Stride. This is for loops of the form
2037   /// {Start, +, Stride} LT End.
2038   ///
2039   /// Precondition: the induction variable is known to be positive.  We *don't*
2040   /// assert these preconditions so please be careful.
2041   const SCEV *computeMaxBECountForLT(const SCEV *Start, const SCEV *Stride,
2042                                      const SCEV *End, unsigned BitWidth,
2043                                      bool IsSigned);
2044 
2045   /// Verify if an linear IV with positive stride can overflow when in a
2046   /// less-than comparison, knowing the invariant term of the comparison,
2047   /// the stride.
2048   bool canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, bool IsSigned);
2049 
2050   /// Verify if an linear IV with negative stride can overflow when in a
2051   /// greater-than comparison, knowing the invariant term of the comparison,
2052   /// the stride.
2053   bool canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, bool IsSigned);
2054 
2055   /// Get add expr already created or create a new one.
2056   const SCEV *getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2057                                  SCEV::NoWrapFlags Flags);
2058 
2059   /// Get mul expr already created or create a new one.
2060   const SCEV *getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
2061                                  SCEV::NoWrapFlags Flags);
2062 
2063   // Get addrec expr already created or create a new one.
2064   const SCEV *getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
2065                                     const Loop *L, SCEV::NoWrapFlags Flags);
2066 
2067   /// Return x if \p Val is f(x) where f is a 1-1 function.
2068   const SCEV *stripInjectiveFunctions(const SCEV *Val) const;
2069 
2070   /// Find all of the loops transitively used in \p S, and fill \p LoopsUsed.
2071   /// A loop is considered "used" by an expression if it contains
2072   /// an add rec on said loop.
2073   void getUsedLoops(const SCEV *S, SmallPtrSetImpl<const Loop *> &LoopsUsed);
2074 
2075   /// Find all of the loops transitively used in \p S, and update \c LoopUsers
2076   /// accordingly.
2077   void addToLoopUseLists(const SCEV *S);
2078 
2079   /// Try to match the pattern generated by getURemExpr(A, B). If successful,
2080   /// Assign A and B to LHS and RHS, respectively.
2081   bool matchURem(const SCEV *Expr, const SCEV *&LHS, const SCEV *&RHS);
2082 
2083   /// Look for a SCEV expression with type `SCEVType` and operands `Ops` in
2084   /// `UniqueSCEVs`.
2085   ///
2086   /// The first component of the returned tuple is the SCEV if found and null
2087   /// otherwise.  The second component is the `FoldingSetNodeID` that was
2088   /// constructed to look up the SCEV and the third component is the insertion
2089   /// point.
2090   std::tuple<SCEV *, FoldingSetNodeID, void *>
2091   findExistingSCEVInCache(SCEVTypes SCEVType, ArrayRef<const SCEV *> Ops);
2092 
2093   FoldingSet<SCEV> UniqueSCEVs;
2094   FoldingSet<SCEVPredicate> UniquePreds;
2095   BumpPtrAllocator SCEVAllocator;
2096 
2097   /// This maps loops to a list of SCEV expressions that (transitively) use said
2098   /// loop.
2099   DenseMap<const Loop *, SmallVector<const SCEV *, 4>> LoopUsers;
2100 
2101   /// Cache tentative mappings from UnknownSCEVs in a Loop, to a SCEV expression
2102   /// they can be rewritten into under certain predicates.
2103   DenseMap<std::pair<const SCEVUnknown *, const Loop *>,
2104            std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
2105       PredicatedSCEVRewrites;
2106 
2107   /// The head of a linked list of all SCEVUnknown values that have been
2108   /// allocated. This is used by releaseMemory to locate them all and call
2109   /// their destructors.
2110   SCEVUnknown *FirstUnknown = nullptr;
2111 };
2112 
2113 /// Analysis pass that exposes the \c ScalarEvolution for a function.
2114 class ScalarEvolutionAnalysis
2115     : public AnalysisInfoMixin<ScalarEvolutionAnalysis> {
2116   friend AnalysisInfoMixin<ScalarEvolutionAnalysis>;
2117 
2118   static AnalysisKey Key;
2119 
2120 public:
2121   using Result = ScalarEvolution;
2122 
2123   ScalarEvolution run(Function &F, FunctionAnalysisManager &AM);
2124 };
2125 
2126 /// Verifier pass for the \c ScalarEvolutionAnalysis results.
2127 class ScalarEvolutionVerifierPass
2128     : public PassInfoMixin<ScalarEvolutionVerifierPass> {
2129 public:
2130   PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
2131 };
2132 
2133 /// Printer pass for the \c ScalarEvolutionAnalysis results.
2134 class ScalarEvolutionPrinterPass
2135     : public PassInfoMixin<ScalarEvolutionPrinterPass> {
2136   raw_ostream &OS;
2137 
2138 public:
2139   explicit ScalarEvolutionPrinterPass(raw_ostream &OS) : OS(OS) {}
2140 
2141   PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
2142 };
2143 
2144 class ScalarEvolutionWrapperPass : public FunctionPass {
2145   std::unique_ptr<ScalarEvolution> SE;
2146 
2147 public:
2148   static char ID;
2149 
2150   ScalarEvolutionWrapperPass();
2151 
2152   ScalarEvolution &getSE() { return *SE; }
2153   const ScalarEvolution &getSE() const { return *SE; }
2154 
2155   bool runOnFunction(Function &F) override;
2156   void releaseMemory() override;
2157   void getAnalysisUsage(AnalysisUsage &AU) const override;
2158   void print(raw_ostream &OS, const Module * = nullptr) const override;
2159   void verifyAnalysis() const override;
2160 };
2161 
2162 /// An interface layer with SCEV used to manage how we see SCEV expressions
2163 /// for values in the context of existing predicates. We can add new
2164 /// predicates, but we cannot remove them.
2165 ///
2166 /// This layer has multiple purposes:
2167 ///   - provides a simple interface for SCEV versioning.
2168 ///   - guarantees that the order of transformations applied on a SCEV
2169 ///     expression for a single Value is consistent across two different
2170 ///     getSCEV calls. This means that, for example, once we've obtained
2171 ///     an AddRec expression for a certain value through expression
2172 ///     rewriting, we will continue to get an AddRec expression for that
2173 ///     Value.
2174 ///   - lowers the number of expression rewrites.
2175 class PredicatedScalarEvolution {
2176 public:
2177   PredicatedScalarEvolution(ScalarEvolution &SE, Loop &L);
2178 
2179   const SCEVUnionPredicate &getUnionPredicate() const;
2180 
2181   /// Returns the SCEV expression of V, in the context of the current SCEV
2182   /// predicate.  The order of transformations applied on the expression of V
2183   /// returned by ScalarEvolution is guaranteed to be preserved, even when
2184   /// adding new predicates.
2185   const SCEV *getSCEV(Value *V);
2186 
2187   /// Get the (predicated) backedge count for the analyzed loop.
2188   const SCEV *getBackedgeTakenCount();
2189 
2190   /// Adds a new predicate.
2191   void addPredicate(const SCEVPredicate &Pred);
2192 
2193   /// Attempts to produce an AddRecExpr for V by adding additional SCEV
2194   /// predicates. If we can't transform the expression into an AddRecExpr we
2195   /// return nullptr and not add additional SCEV predicates to the current
2196   /// context.
2197   const SCEVAddRecExpr *getAsAddRec(Value *V);
2198 
2199   /// Proves that V doesn't overflow by adding SCEV predicate.
2200   void setNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags);
2201 
2202   /// Returns true if we've proved that V doesn't wrap by means of a SCEV
2203   /// predicate.
2204   bool hasNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags);
2205 
2206   /// Returns the ScalarEvolution analysis used.
2207   ScalarEvolution *getSE() const { return &SE; }
2208 
2209   /// We need to explicitly define the copy constructor because of FlagsMap.
2210   PredicatedScalarEvolution(const PredicatedScalarEvolution &);
2211 
2212   /// Print the SCEV mappings done by the Predicated Scalar Evolution.
2213   /// The printed text is indented by \p Depth.
2214   void print(raw_ostream &OS, unsigned Depth) const;
2215 
2216   /// Check if \p AR1 and \p AR2 are equal, while taking into account
2217   /// Equal predicates in Preds.
2218   bool areAddRecsEqualWithPreds(const SCEVAddRecExpr *AR1,
2219                                 const SCEVAddRecExpr *AR2) const;
2220 
2221 private:
2222   /// Increments the version number of the predicate.  This needs to be called
2223   /// every time the SCEV predicate changes.
2224   void updateGeneration();
2225 
2226   /// Holds a SCEV and the version number of the SCEV predicate used to
2227   /// perform the rewrite of the expression.
2228   using RewriteEntry = std::pair<unsigned, const SCEV *>;
2229 
2230   /// Maps a SCEV to the rewrite result of that SCEV at a certain version
2231   /// number. If this number doesn't match the current Generation, we will
2232   /// need to do a rewrite. To preserve the transformation order of previous
2233   /// rewrites, we will rewrite the previous result instead of the original
2234   /// SCEV.
2235   DenseMap<const SCEV *, RewriteEntry> RewriteMap;
2236 
2237   /// Records what NoWrap flags we've added to a Value *.
2238   ValueMap<Value *, SCEVWrapPredicate::IncrementWrapFlags> FlagsMap;
2239 
2240   /// The ScalarEvolution analysis.
2241   ScalarEvolution &SE;
2242 
2243   /// The analyzed Loop.
2244   const Loop &L;
2245 
2246   /// The SCEVPredicate that forms our context. We will rewrite all
2247   /// expressions assuming that this predicate true.
2248   SCEVUnionPredicate Preds;
2249 
2250   /// Marks the version of the SCEV predicate used. When rewriting a SCEV
2251   /// expression we mark it with the version of the predicate. We use this to
2252   /// figure out if the predicate has changed from the last rewrite of the
2253   /// SCEV. If so, we need to perform a new rewrite.
2254   unsigned Generation = 0;
2255 
2256   /// The backedge taken count.
2257   const SCEV *BackedgeCount = nullptr;
2258 };
2259 
2260 } // end namespace llvm
2261 
2262 #endif // LLVM_ANALYSIS_SCALAREVOLUTION_H
2263