1 //===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The ScalarEvolution class is an LLVM pass which can be used to analyze and
10 // categorize scalar expressions in loops.  It specializes in recognizing
11 // general induction variables, representing them with the abstract and opaque
12 // SCEV class.  Given this analysis, trip counts of loops and other important
13 // properties can be obtained.
14 //
15 // This analysis is primarily useful for induction variable substitution and
16 // strength reduction.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
21 #define LLVM_ANALYSIS_SCALAREVOLUTION_H
22 
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/ADT/ArrayRef.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/DenseMapInfo.h"
27 #include "llvm/ADT/FoldingSet.h"
28 #include "llvm/ADT/Hashing.h"
29 #include "llvm/ADT/Optional.h"
30 #include "llvm/ADT/PointerIntPair.h"
31 #include "llvm/ADT/SetVector.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/Analysis/LoopInfo.h"
35 #include "llvm/IR/ConstantRange.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/InstrTypes.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/IR/PassManager.h"
41 #include "llvm/IR/ValueHandle.h"
42 #include "llvm/IR/ValueMap.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/Allocator.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/Compiler.h"
47 #include <algorithm>
48 #include <cassert>
49 #include <cstdint>
50 #include <memory>
51 #include <utility>
52 
53 namespace llvm {
54 
55 class AssumptionCache;
56 class BasicBlock;
57 class Constant;
58 class ConstantInt;
59 class DataLayout;
60 class DominatorTree;
61 class GEPOperator;
62 class Instruction;
63 class LLVMContext;
64 class raw_ostream;
65 class ScalarEvolution;
66 class SCEVAddRecExpr;
67 class SCEVUnknown;
68 class StructType;
69 class TargetLibraryInfo;
70 class Type;
71 class Value;
72 
73 /// This class represents an analyzed expression in the program.  These are
74 /// opaque objects that the client is not allowed to do much with directly.
75 ///
76 class SCEV : public FoldingSetNode {
77   friend struct FoldingSetTrait<SCEV>;
78 
79   /// A reference to an Interned FoldingSetNodeID for this node.  The
80   /// ScalarEvolution's BumpPtrAllocator holds the data.
81   FoldingSetNodeIDRef FastID;
82 
83   // The SCEV baseclass this node corresponds to
84   const unsigned short SCEVType;
85 
86 protected:
87   // Estimated complexity of this node's expression tree size.
88   const unsigned short ExpressionSize;
89 
90   /// This field is initialized to zero and may be used in subclasses to store
91   /// miscellaneous information.
92   unsigned short SubclassData = 0;
93 
94 public:
95   /// NoWrapFlags are bitfield indices into SubclassData.
96   ///
97   /// Add and Mul expressions may have no-unsigned-wrap <NUW> or
98   /// no-signed-wrap <NSW> properties, which are derived from the IR
99   /// operator. NSW is a misnomer that we use to mean no signed overflow or
100   /// underflow.
101   ///
102   /// AddRec expressions may have a no-self-wraparound <NW> property if, in
103   /// the integer domain, abs(step) * max-iteration(loop) <=
104   /// unsigned-max(bitwidth).  This means that the recurrence will never reach
105   /// its start value if the step is non-zero.  Computing the same value on
106   /// each iteration is not considered wrapping, and recurrences with step = 0
107   /// are trivially <NW>.  <NW> is independent of the sign of step and the
108   /// value the add recurrence starts with.
109   ///
110   /// Note that NUW and NSW are also valid properties of a recurrence, and
111   /// either implies NW. For convenience, NW will be set for a recurrence
112   /// whenever either NUW or NSW are set.
113   enum NoWrapFlags {
114     FlagAnyWrap = 0,    // No guarantee.
115     FlagNW = (1 << 0),  // No self-wrap.
116     FlagNUW = (1 << 1), // No unsigned wrap.
117     FlagNSW = (1 << 2), // No signed wrap.
118     NoWrapMask = (1 << 3) - 1
119   };
120 
121   explicit SCEV(const FoldingSetNodeIDRef ID, unsigned SCEVTy,
122                 unsigned short ExpressionSize)
123       : FastID(ID), SCEVType(SCEVTy), ExpressionSize(ExpressionSize) {}
124   SCEV(const SCEV &) = delete;
125   SCEV &operator=(const SCEV &) = delete;
126 
127   unsigned getSCEVType() const { return SCEVType; }
128 
129   /// Return the LLVM type of this SCEV expression.
130   Type *getType() const;
131 
132   /// Return true if the expression is a constant zero.
133   bool isZero() const;
134 
135   /// Return true if the expression is a constant one.
136   bool isOne() const;
137 
138   /// Return true if the expression is a constant all-ones value.
139   bool isAllOnesValue() const;
140 
141   /// Return true if the specified scev is negated, but not a constant.
142   bool isNonConstantNegative() const;
143 
144   // Returns estimated size of the mathematical expression represented by this
145   // SCEV. The rules of its calculation are following:
146   // 1) Size of a SCEV without operands (like constants and SCEVUnknown) is 1;
147   // 2) Size SCEV with operands Op1, Op2, ..., OpN is calculated by formula:
148   //    (1 + Size(Op1) + ... + Size(OpN)).
149   // This value gives us an estimation of time we need to traverse through this
150   // SCEV and all its operands recursively. We may use it to avoid performing
151   // heavy transformations on SCEVs of excessive size for sake of saving the
152   // compilation time.
153   unsigned short getExpressionSize() const {
154     return ExpressionSize;
155   }
156 
157   /// Print out the internal representation of this scalar to the specified
158   /// stream.  This should really only be used for debugging purposes.
159   void print(raw_ostream &OS) const;
160 
161   /// This method is used for debugging.
162   void dump() const;
163 };
164 
165 // Specialize FoldingSetTrait for SCEV to avoid needing to compute
166 // temporary FoldingSetNodeID values.
167 template <> struct FoldingSetTrait<SCEV> : DefaultFoldingSetTrait<SCEV> {
168   static void Profile(const SCEV &X, FoldingSetNodeID &ID) { ID = X.FastID; }
169 
170   static bool Equals(const SCEV &X, const FoldingSetNodeID &ID, unsigned IDHash,
171                      FoldingSetNodeID &TempID) {
172     return ID == X.FastID;
173   }
174 
175   static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID) {
176     return X.FastID.ComputeHash();
177   }
178 };
179 
180 inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
181   S.print(OS);
182   return OS;
183 }
184 
185 /// An object of this class is returned by queries that could not be answered.
186 /// For example, if you ask for the number of iterations of a linked-list
187 /// traversal loop, you will get one of these.  None of the standard SCEV
188 /// operations are valid on this class, it is just a marker.
189 struct SCEVCouldNotCompute : public SCEV {
190   SCEVCouldNotCompute();
191 
192   /// Methods for support type inquiry through isa, cast, and dyn_cast:
193   static bool classof(const SCEV *S);
194 };
195 
196 /// This class represents an assumption made using SCEV expressions which can
197 /// be checked at run-time.
198 class SCEVPredicate : public FoldingSetNode {
199   friend struct FoldingSetTrait<SCEVPredicate>;
200 
201   /// A reference to an Interned FoldingSetNodeID for this node.  The
202   /// ScalarEvolution's BumpPtrAllocator holds the data.
203   FoldingSetNodeIDRef FastID;
204 
205 public:
206   enum SCEVPredicateKind { P_Union, P_Equal, P_Wrap };
207 
208 protected:
209   SCEVPredicateKind Kind;
210   ~SCEVPredicate() = default;
211   SCEVPredicate(const SCEVPredicate &) = default;
212   SCEVPredicate &operator=(const SCEVPredicate &) = default;
213 
214 public:
215   SCEVPredicate(const FoldingSetNodeIDRef ID, SCEVPredicateKind Kind);
216 
217   SCEVPredicateKind getKind() const { return Kind; }
218 
219   /// Returns the estimated complexity of this predicate.  This is roughly
220   /// measured in the number of run-time checks required.
221   virtual unsigned getComplexity() const { return 1; }
222 
223   /// Returns true if the predicate is always true. This means that no
224   /// assumptions were made and nothing needs to be checked at run-time.
225   virtual bool isAlwaysTrue() const = 0;
226 
227   /// Returns true if this predicate implies \p N.
228   virtual bool implies(const SCEVPredicate *N) const = 0;
229 
230   /// Prints a textual representation of this predicate with an indentation of
231   /// \p Depth.
232   virtual void print(raw_ostream &OS, unsigned Depth = 0) const = 0;
233 
234   /// Returns the SCEV to which this predicate applies, or nullptr if this is
235   /// a SCEVUnionPredicate.
236   virtual const SCEV *getExpr() const = 0;
237 };
238 
239 inline raw_ostream &operator<<(raw_ostream &OS, const SCEVPredicate &P) {
240   P.print(OS);
241   return OS;
242 }
243 
244 // Specialize FoldingSetTrait for SCEVPredicate to avoid needing to compute
245 // temporary FoldingSetNodeID values.
246 template <>
247 struct FoldingSetTrait<SCEVPredicate> : DefaultFoldingSetTrait<SCEVPredicate> {
248   static void Profile(const SCEVPredicate &X, FoldingSetNodeID &ID) {
249     ID = X.FastID;
250   }
251 
252   static bool Equals(const SCEVPredicate &X, const FoldingSetNodeID &ID,
253                      unsigned IDHash, FoldingSetNodeID &TempID) {
254     return ID == X.FastID;
255   }
256 
257   static unsigned ComputeHash(const SCEVPredicate &X,
258                               FoldingSetNodeID &TempID) {
259     return X.FastID.ComputeHash();
260   }
261 };
262 
263 /// This class represents an assumption that two SCEV expressions are equal,
264 /// and this can be checked at run-time.
265 class SCEVEqualPredicate final : public SCEVPredicate {
266   /// We assume that LHS == RHS.
267   const SCEV *LHS;
268   const SCEV *RHS;
269 
270 public:
271   SCEVEqualPredicate(const FoldingSetNodeIDRef ID, const SCEV *LHS,
272                      const SCEV *RHS);
273 
274   /// Implementation of the SCEVPredicate interface
275   bool implies(const SCEVPredicate *N) const override;
276   void print(raw_ostream &OS, unsigned Depth = 0) const override;
277   bool isAlwaysTrue() const override;
278   const SCEV *getExpr() const override;
279 
280   /// Returns the left hand side of the equality.
281   const SCEV *getLHS() const { return LHS; }
282 
283   /// Returns the right hand side of the equality.
284   const SCEV *getRHS() const { return RHS; }
285 
286   /// Methods for support type inquiry through isa, cast, and dyn_cast:
287   static bool classof(const SCEVPredicate *P) {
288     return P->getKind() == P_Equal;
289   }
290 };
291 
292 /// This class represents an assumption made on an AddRec expression. Given an
293 /// affine AddRec expression {a,+,b}, we assume that it has the nssw or nusw
294 /// flags (defined below) in the first X iterations of the loop, where X is a
295 /// SCEV expression returned by getPredicatedBackedgeTakenCount).
296 ///
297 /// Note that this does not imply that X is equal to the backedge taken
298 /// count. This means that if we have a nusw predicate for i32 {0,+,1} with a
299 /// predicated backedge taken count of X, we only guarantee that {0,+,1} has
300 /// nusw in the first X iterations. {0,+,1} may still wrap in the loop if we
301 /// have more than X iterations.
302 class SCEVWrapPredicate final : public SCEVPredicate {
303 public:
304   /// Similar to SCEV::NoWrapFlags, but with slightly different semantics
305   /// for FlagNUSW. The increment is considered to be signed, and a + b
306   /// (where b is the increment) is considered to wrap if:
307   ///    zext(a + b) != zext(a) + sext(b)
308   ///
309   /// If Signed is a function that takes an n-bit tuple and maps to the
310   /// integer domain as the tuples value interpreted as twos complement,
311   /// and Unsigned a function that takes an n-bit tuple and maps to the
312   /// integer domain as as the base two value of input tuple, then a + b
313   /// has IncrementNUSW iff:
314   ///
315   /// 0 <= Unsigned(a) + Signed(b) < 2^n
316   ///
317   /// The IncrementNSSW flag has identical semantics with SCEV::FlagNSW.
318   ///
319   /// Note that the IncrementNUSW flag is not commutative: if base + inc
320   /// has IncrementNUSW, then inc + base doesn't neccessarily have this
321   /// property. The reason for this is that this is used for sign/zero
322   /// extending affine AddRec SCEV expressions when a SCEVWrapPredicate is
323   /// assumed. A {base,+,inc} expression is already non-commutative with
324   /// regards to base and inc, since it is interpreted as:
325   ///     (((base + inc) + inc) + inc) ...
326   enum IncrementWrapFlags {
327     IncrementAnyWrap = 0,     // No guarantee.
328     IncrementNUSW = (1 << 0), // No unsigned with signed increment wrap.
329     IncrementNSSW = (1 << 1), // No signed with signed increment wrap
330                               // (equivalent with SCEV::NSW)
331     IncrementNoWrapMask = (1 << 2) - 1
332   };
333 
334   /// Convenient IncrementWrapFlags manipulation methods.
335   LLVM_NODISCARD static SCEVWrapPredicate::IncrementWrapFlags
336   clearFlags(SCEVWrapPredicate::IncrementWrapFlags Flags,
337              SCEVWrapPredicate::IncrementWrapFlags OffFlags) {
338     assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
339     assert((OffFlags & IncrementNoWrapMask) == OffFlags &&
340            "Invalid flags value!");
341     return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & ~OffFlags);
342   }
343 
344   LLVM_NODISCARD static SCEVWrapPredicate::IncrementWrapFlags
345   maskFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, int Mask) {
346     assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
347     assert((Mask & IncrementNoWrapMask) == Mask && "Invalid mask value!");
348 
349     return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & Mask);
350   }
351 
352   LLVM_NODISCARD static SCEVWrapPredicate::IncrementWrapFlags
353   setFlags(SCEVWrapPredicate::IncrementWrapFlags Flags,
354            SCEVWrapPredicate::IncrementWrapFlags OnFlags) {
355     assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
356     assert((OnFlags & IncrementNoWrapMask) == OnFlags &&
357            "Invalid flags value!");
358 
359     return (SCEVWrapPredicate::IncrementWrapFlags)(Flags | OnFlags);
360   }
361 
362   /// Returns the set of SCEVWrapPredicate no wrap flags implied by a
363   /// SCEVAddRecExpr.
364   LLVM_NODISCARD static SCEVWrapPredicate::IncrementWrapFlags
365   getImpliedFlags(const SCEVAddRecExpr *AR, ScalarEvolution &SE);
366 
367 private:
368   const SCEVAddRecExpr *AR;
369   IncrementWrapFlags Flags;
370 
371 public:
372   explicit SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
373                              const SCEVAddRecExpr *AR,
374                              IncrementWrapFlags Flags);
375 
376   /// Returns the set assumed no overflow flags.
377   IncrementWrapFlags getFlags() const { return Flags; }
378 
379   /// Implementation of the SCEVPredicate interface
380   const SCEV *getExpr() const override;
381   bool implies(const SCEVPredicate *N) const override;
382   void print(raw_ostream &OS, unsigned Depth = 0) const override;
383   bool isAlwaysTrue() const override;
384 
385   /// Methods for support type inquiry through isa, cast, and dyn_cast:
386   static bool classof(const SCEVPredicate *P) {
387     return P->getKind() == P_Wrap;
388   }
389 };
390 
391 /// This class represents a composition of other SCEV predicates, and is the
392 /// class that most clients will interact with.  This is equivalent to a
393 /// logical "AND" of all the predicates in the union.
394 ///
395 /// NB! Unlike other SCEVPredicate sub-classes this class does not live in the
396 /// ScalarEvolution::Preds folding set.  This is why the \c add function is sound.
397 class SCEVUnionPredicate final : public SCEVPredicate {
398 private:
399   using PredicateMap =
400       DenseMap<const SCEV *, SmallVector<const SCEVPredicate *, 4>>;
401 
402   /// Vector with references to all predicates in this union.
403   SmallVector<const SCEVPredicate *, 16> Preds;
404 
405   /// Maps SCEVs to predicates for quick look-ups.
406   PredicateMap SCEVToPreds;
407 
408 public:
409   SCEVUnionPredicate();
410 
411   const SmallVectorImpl<const SCEVPredicate *> &getPredicates() const {
412     return Preds;
413   }
414 
415   /// Adds a predicate to this union.
416   void add(const SCEVPredicate *N);
417 
418   /// Returns a reference to a vector containing all predicates which apply to
419   /// \p Expr.
420   ArrayRef<const SCEVPredicate *> getPredicatesForExpr(const SCEV *Expr);
421 
422   /// Implementation of the SCEVPredicate interface
423   bool isAlwaysTrue() const override;
424   bool implies(const SCEVPredicate *N) const override;
425   void print(raw_ostream &OS, unsigned Depth) const override;
426   const SCEV *getExpr() const override;
427 
428   /// We estimate the complexity of a union predicate as the size number of
429   /// predicates in the union.
430   unsigned getComplexity() const override { return Preds.size(); }
431 
432   /// Methods for support type inquiry through isa, cast, and dyn_cast:
433   static bool classof(const SCEVPredicate *P) {
434     return P->getKind() == P_Union;
435   }
436 };
437 
438 /// The main scalar evolution driver. Because client code (intentionally)
439 /// can't do much with the SCEV objects directly, they must ask this class
440 /// for services.
441 class ScalarEvolution {
442   friend class ScalarEvolutionsTest;
443 
444 public:
445   /// An enum describing the relationship between a SCEV and a loop.
446   enum LoopDisposition {
447     LoopVariant,   ///< The SCEV is loop-variant (unknown).
448     LoopInvariant, ///< The SCEV is loop-invariant.
449     LoopComputable ///< The SCEV varies predictably with the loop.
450   };
451 
452   /// An enum describing the relationship between a SCEV and a basic block.
453   enum BlockDisposition {
454     DoesNotDominateBlock,  ///< The SCEV does not dominate the block.
455     DominatesBlock,        ///< The SCEV dominates the block.
456     ProperlyDominatesBlock ///< The SCEV properly dominates the block.
457   };
458 
459   /// Convenient NoWrapFlags manipulation that hides enum casts and is
460   /// visible in the ScalarEvolution name space.
461   LLVM_NODISCARD static SCEV::NoWrapFlags maskFlags(SCEV::NoWrapFlags Flags,
462                                                     int Mask) {
463     return (SCEV::NoWrapFlags)(Flags & Mask);
464   }
465   LLVM_NODISCARD static SCEV::NoWrapFlags setFlags(SCEV::NoWrapFlags Flags,
466                                                    SCEV::NoWrapFlags OnFlags) {
467     return (SCEV::NoWrapFlags)(Flags | OnFlags);
468   }
469   LLVM_NODISCARD static SCEV::NoWrapFlags
470   clearFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OffFlags) {
471     return (SCEV::NoWrapFlags)(Flags & ~OffFlags);
472   }
473 
474   ScalarEvolution(Function &F, TargetLibraryInfo &TLI, AssumptionCache &AC,
475                   DominatorTree &DT, LoopInfo &LI);
476   ScalarEvolution(ScalarEvolution &&Arg);
477   ~ScalarEvolution();
478 
479   LLVMContext &getContext() const { return F.getContext(); }
480 
481   /// Test if values of the given type are analyzable within the SCEV
482   /// framework. This primarily includes integer types, and it can optionally
483   /// include pointer types if the ScalarEvolution class has access to
484   /// target-specific information.
485   bool isSCEVable(Type *Ty) const;
486 
487   /// Return the size in bits of the specified type, for which isSCEVable must
488   /// return true.
489   uint64_t getTypeSizeInBits(Type *Ty) const;
490 
491   /// Return a type with the same bitwidth as the given type and which
492   /// represents how SCEV will treat the given type, for which isSCEVable must
493   /// return true. For pointer types, this is the pointer-sized integer type.
494   Type *getEffectiveSCEVType(Type *Ty) const;
495 
496   // Returns a wider type among {Ty1, Ty2}.
497   Type *getWiderType(Type *Ty1, Type *Ty2) const;
498 
499   /// Return true if the SCEV is a scAddRecExpr or it contains
500   /// scAddRecExpr. The result will be cached in HasRecMap.
501   bool containsAddRecurrence(const SCEV *S);
502 
503   /// Erase Value from ValueExprMap and ExprValueMap.
504   void eraseValueFromMap(Value *V);
505 
506   /// Return a SCEV expression for the full generality of the specified
507   /// expression.
508   const SCEV *getSCEV(Value *V);
509 
510   const SCEV *getConstant(ConstantInt *V);
511   const SCEV *getConstant(const APInt &Val);
512   const SCEV *getConstant(Type *Ty, uint64_t V, bool isSigned = false);
513   const SCEV *getTruncateExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0);
514   const SCEV *getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0);
515   const SCEV *getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0);
516   const SCEV *getAnyExtendExpr(const SCEV *Op, Type *Ty);
517   const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
518                          SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
519                          unsigned Depth = 0);
520   const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS,
521                          SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
522                          unsigned Depth = 0) {
523     SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
524     return getAddExpr(Ops, Flags, Depth);
525   }
526   const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
527                          SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
528                          unsigned Depth = 0) {
529     SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2};
530     return getAddExpr(Ops, Flags, Depth);
531   }
532   const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
533                          SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
534                          unsigned Depth = 0);
535   const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS,
536                          SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
537                          unsigned Depth = 0) {
538     SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
539     return getMulExpr(Ops, Flags, Depth);
540   }
541   const SCEV *getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
542                          SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
543                          unsigned Depth = 0) {
544     SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2};
545     return getMulExpr(Ops, Flags, Depth);
546   }
547   const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS);
548   const SCEV *getUDivExactExpr(const SCEV *LHS, const SCEV *RHS);
549   const SCEV *getURemExpr(const SCEV *LHS, const SCEV *RHS);
550   const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step, const Loop *L,
551                             SCEV::NoWrapFlags Flags);
552   const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
553                             const Loop *L, SCEV::NoWrapFlags Flags);
554   const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands,
555                             const Loop *L, SCEV::NoWrapFlags Flags) {
556     SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end());
557     return getAddRecExpr(NewOp, L, Flags);
558   }
559 
560   /// Checks if \p SymbolicPHI can be rewritten as an AddRecExpr under some
561   /// Predicates. If successful return these <AddRecExpr, Predicates>;
562   /// The function is intended to be called from PSCEV (the caller will decide
563   /// whether to actually add the predicates and carry out the rewrites).
564   Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
565   createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI);
566 
567   /// Returns an expression for a GEP
568   ///
569   /// \p GEP The GEP. The indices contained in the GEP itself are ignored,
570   /// instead we use IndexExprs.
571   /// \p IndexExprs The expressions for the indices.
572   const SCEV *getGEPExpr(GEPOperator *GEP,
573                          const SmallVectorImpl<const SCEV *> &IndexExprs);
574   const SCEV *getMinMaxExpr(unsigned Kind,
575                             SmallVectorImpl<const SCEV *> &Operands);
576   const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS);
577   const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
578   const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS);
579   const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
580   const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS);
581   const SCEV *getSMinExpr(SmallVectorImpl<const SCEV *> &Operands);
582   const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS);
583   const SCEV *getUMinExpr(SmallVectorImpl<const SCEV *> &Operands);
584   const SCEV *getUnknown(Value *V);
585   const SCEV *getCouldNotCompute();
586 
587   /// Return a SCEV for the constant 0 of a specific type.
588   const SCEV *getZero(Type *Ty) { return getConstant(Ty, 0); }
589 
590   /// Return a SCEV for the constant 1 of a specific type.
591   const SCEV *getOne(Type *Ty) { return getConstant(Ty, 1); }
592 
593   /// Return an expression for sizeof AllocTy that is type IntTy
594   const SCEV *getSizeOfExpr(Type *IntTy, Type *AllocTy);
595 
596   /// Return an expression for offsetof on the given field with type IntTy
597   const SCEV *getOffsetOfExpr(Type *IntTy, StructType *STy, unsigned FieldNo);
598 
599   /// Return the SCEV object corresponding to -V.
600   const SCEV *getNegativeSCEV(const SCEV *V,
601                               SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
602 
603   /// Return the SCEV object corresponding to ~V.
604   const SCEV *getNotSCEV(const SCEV *V);
605 
606   /// Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
607   const SCEV *getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
608                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
609                            unsigned Depth = 0);
610 
611   /// Return a SCEV corresponding to a conversion of the input value to the
612   /// specified type.  If the type must be extended, it is zero extended.
613   const SCEV *getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
614                                       unsigned Depth = 0);
615 
616   /// Return a SCEV corresponding to a conversion of the input value to the
617   /// specified type.  If the type must be extended, it is sign extended.
618   const SCEV *getTruncateOrSignExtend(const SCEV *V, Type *Ty,
619                                       unsigned Depth = 0);
620 
621   /// Return a SCEV corresponding to a conversion of the input value to the
622   /// specified type.  If the type must be extended, it is zero extended.  The
623   /// conversion must not be narrowing.
624   const SCEV *getNoopOrZeroExtend(const SCEV *V, Type *Ty);
625 
626   /// Return a SCEV corresponding to a conversion of the input value to the
627   /// specified type.  If the type must be extended, it is sign extended.  The
628   /// conversion must not be narrowing.
629   const SCEV *getNoopOrSignExtend(const SCEV *V, Type *Ty);
630 
631   /// Return a SCEV corresponding to a conversion of the input value to the
632   /// specified type. If the type must be extended, it is extended with
633   /// unspecified bits. The conversion must not be narrowing.
634   const SCEV *getNoopOrAnyExtend(const SCEV *V, Type *Ty);
635 
636   /// Return a SCEV corresponding to a conversion of the input value to the
637   /// specified type.  The conversion must not be widening.
638   const SCEV *getTruncateOrNoop(const SCEV *V, Type *Ty);
639 
640   /// Promote the operands to the wider of the types using zero-extension, and
641   /// then perform a umax operation with them.
642   const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS);
643 
644   /// Promote the operands to the wider of the types using zero-extension, and
645   /// then perform a umin operation with them.
646   const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS);
647 
648   /// Promote the operands to the wider of the types using zero-extension, and
649   /// then perform a umin operation with them. N-ary function.
650   const SCEV *getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV *> &Ops);
651 
652   /// Transitively follow the chain of pointer-type operands until reaching a
653   /// SCEV that does not have a single pointer operand. This returns a
654   /// SCEVUnknown pointer for well-formed pointer-type expressions, but corner
655   /// cases do exist.
656   const SCEV *getPointerBase(const SCEV *V);
657 
658   /// Return a SCEV expression for the specified value at the specified scope
659   /// in the program.  The L value specifies a loop nest to evaluate the
660   /// expression at, where null is the top-level or a specified loop is
661   /// immediately inside of the loop.
662   ///
663   /// This method can be used to compute the exit value for a variable defined
664   /// in a loop by querying what the value will hold in the parent loop.
665   ///
666   /// In the case that a relevant loop exit value cannot be computed, the
667   /// original value V is returned.
668   const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L);
669 
670   /// This is a convenience function which does getSCEVAtScope(getSCEV(V), L).
671   const SCEV *getSCEVAtScope(Value *V, const Loop *L);
672 
673   /// Test whether entry to the loop is protected by a conditional between LHS
674   /// and RHS.  This is used to help avoid max expressions in loop trip
675   /// counts, and to eliminate casts.
676   bool isLoopEntryGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
677                                 const SCEV *LHS, const SCEV *RHS);
678 
679   /// Test whether the backedge of the loop is protected by a conditional
680   /// between LHS and RHS.  This is used to eliminate casts.
681   bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
682                                    const SCEV *LHS, const SCEV *RHS);
683 
684   /// Returns the maximum trip count of the loop if it is a single-exit
685   /// loop and we can compute a small maximum for that loop.
686   ///
687   /// Implemented in terms of the \c getSmallConstantTripCount overload with
688   /// the single exiting block passed to it. See that routine for details.
689   unsigned getSmallConstantTripCount(const Loop *L);
690 
691   /// Returns the maximum trip count of this loop as a normal unsigned
692   /// value. Returns 0 if the trip count is unknown or not constant. This
693   /// "trip count" assumes that control exits via ExitingBlock. More
694   /// precisely, it is the number of times that control may reach ExitingBlock
695   /// before taking the branch. For loops with multiple exits, it may not be
696   /// the number times that the loop header executes if the loop exits
697   /// prematurely via another branch.
698   unsigned getSmallConstantTripCount(const Loop *L, BasicBlock *ExitingBlock);
699 
700   /// Returns the upper bound of the loop trip count as a normal unsigned
701   /// value.
702   /// Returns 0 if the trip count is unknown or not constant.
703   unsigned getSmallConstantMaxTripCount(const Loop *L);
704 
705   /// Returns the largest constant divisor of the trip count of the
706   /// loop if it is a single-exit loop and we can compute a small maximum for
707   /// that loop.
708   ///
709   /// Implemented in terms of the \c getSmallConstantTripMultiple overload with
710   /// the single exiting block passed to it. See that routine for details.
711   unsigned getSmallConstantTripMultiple(const Loop *L);
712 
713   /// Returns the largest constant divisor of the trip count of this loop as a
714   /// normal unsigned value, if possible. This means that the actual trip
715   /// count is always a multiple of the returned value (don't forget the trip
716   /// count could very well be zero as well!). As explained in the comments
717   /// for getSmallConstantTripCount, this assumes that control exits the loop
718   /// via ExitingBlock.
719   unsigned getSmallConstantTripMultiple(const Loop *L,
720                                         BasicBlock *ExitingBlock);
721 
722 
723   /// The terms "backedge taken count" and "exit count" are used
724   /// interchangeably to refer to the number of times the backedge of a loop
725   /// has executed before the loop is exited.
726   enum ExitCountKind {
727     /// An expression exactly describing the number of times the backedge has
728     /// executed when a loop is exited.
729     Exact,
730     /// A constant which provides an upper bound on the exact trip count.
731     ConstantMaximum,
732   };
733 
734   /// Return the number of times the backedge executes before the given exit
735   /// would be taken; if not exactly computable, return SCEVCouldNotCompute.
736   /// For a single exit loop, this value is equivelent to the result of
737   /// getBackedgeTakenCount.  The loop is guaranteed to exit (via *some* exit)
738   /// before the backedge is executed (ExitCount + 1) times.  Note that there
739   /// is no guarantee about *which* exit is taken on the exiting iteration.
740   const SCEV *getExitCount(const Loop *L, BasicBlock *ExitingBlock,
741                            ExitCountKind Kind = Exact);
742 
743   /// If the specified loop has a predictable backedge-taken count, return it,
744   /// otherwise return a SCEVCouldNotCompute object. The backedge-taken count is
745   /// the number of times the loop header will be branched to from within the
746   /// loop, assuming there are no abnormal exists like exception throws. This is
747   /// one less than the trip count of the loop, since it doesn't count the first
748   /// iteration, when the header is branched to from outside the loop.
749   ///
750   /// Note that it is not valid to call this method on a loop without a
751   /// loop-invariant backedge-taken count (see
752   /// hasLoopInvariantBackedgeTakenCount).
753   const SCEV *getBackedgeTakenCount(const Loop *L, ExitCountKind Kind = Exact);
754 
755   /// Similar to getBackedgeTakenCount, except it will add a set of
756   /// SCEV predicates to Predicates that are required to be true in order for
757   /// the answer to be correct. Predicates can be checked with run-time
758   /// checks and can be used to perform loop versioning.
759   const SCEV *getPredicatedBackedgeTakenCount(const Loop *L,
760                                               SCEVUnionPredicate &Predicates);
761 
762   /// When successful, this returns a SCEVConstant that is greater than or equal
763   /// to (i.e. a "conservative over-approximation") of the value returend by
764   /// getBackedgeTakenCount.  If such a value cannot be computed, it returns the
765   /// SCEVCouldNotCompute object.
766   const SCEV *getConstantMaxBackedgeTakenCount(const Loop *L) {
767     return getBackedgeTakenCount(L, ConstantMaximum);
768   }
769 
770   /// Return true if the backedge taken count is either the value returned by
771   /// getConstantMaxBackedgeTakenCount or zero.
772   bool isBackedgeTakenCountMaxOrZero(const Loop *L);
773 
774   /// Return true if the specified loop has an analyzable loop-invariant
775   /// backedge-taken count.
776   bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
777 
778   // This method should be called by the client when it made any change that
779   // would invalidate SCEV's answers, and the client wants to remove all loop
780   // information held internally by ScalarEvolution. This is intended to be used
781   // when the alternative to forget a loop is too expensive (i.e. large loop
782   // bodies).
783   void forgetAllLoops();
784 
785   /// This method should be called by the client when it has changed a loop in
786   /// a way that may effect ScalarEvolution's ability to compute a trip count,
787   /// or if the loop is deleted.  This call is potentially expensive for large
788   /// loop bodies.
789   void forgetLoop(const Loop *L);
790 
791   // This method invokes forgetLoop for the outermost loop of the given loop
792   // \p L, making ScalarEvolution forget about all this subtree. This needs to
793   // be done whenever we make a transform that may affect the parameters of the
794   // outer loop, such as exit counts for branches.
795   void forgetTopmostLoop(const Loop *L);
796 
797   /// This method should be called by the client when it has changed a value
798   /// in a way that may effect its value, or which may disconnect it from a
799   /// def-use chain linking it to a loop.
800   void forgetValue(Value *V);
801 
802   /// Called when the client has changed the disposition of values in
803   /// this loop.
804   ///
805   /// We don't have a way to invalidate per-loop dispositions. Clear and
806   /// recompute is simpler.
807   void forgetLoopDispositions(const Loop *L) { LoopDispositions.clear(); }
808 
809   /// Determine the minimum number of zero bits that S is guaranteed to end in
810   /// (at every loop iteration).  It is, at the same time, the minimum number
811   /// of times S is divisible by 2.  For example, given {4,+,8} it returns 2.
812   /// If S is guaranteed to be 0, it returns the bitwidth of S.
813   uint32_t GetMinTrailingZeros(const SCEV *S);
814 
815   /// Determine the unsigned range for a particular SCEV.
816   /// NOTE: This returns a copy of the reference returned by getRangeRef.
817   ConstantRange getUnsignedRange(const SCEV *S) {
818     return getRangeRef(S, HINT_RANGE_UNSIGNED);
819   }
820 
821   /// Determine the min of the unsigned range for a particular SCEV.
822   APInt getUnsignedRangeMin(const SCEV *S) {
823     return getRangeRef(S, HINT_RANGE_UNSIGNED).getUnsignedMin();
824   }
825 
826   /// Determine the max of the unsigned range for a particular SCEV.
827   APInt getUnsignedRangeMax(const SCEV *S) {
828     return getRangeRef(S, HINT_RANGE_UNSIGNED).getUnsignedMax();
829   }
830 
831   /// Determine the signed range for a particular SCEV.
832   /// NOTE: This returns a copy of the reference returned by getRangeRef.
833   ConstantRange getSignedRange(const SCEV *S) {
834     return getRangeRef(S, HINT_RANGE_SIGNED);
835   }
836 
837   /// Determine the min of the signed range for a particular SCEV.
838   APInt getSignedRangeMin(const SCEV *S) {
839     return getRangeRef(S, HINT_RANGE_SIGNED).getSignedMin();
840   }
841 
842   /// Determine the max of the signed range for a particular SCEV.
843   APInt getSignedRangeMax(const SCEV *S) {
844     return getRangeRef(S, HINT_RANGE_SIGNED).getSignedMax();
845   }
846 
847   /// Test if the given expression is known to be negative.
848   bool isKnownNegative(const SCEV *S);
849 
850   /// Test if the given expression is known to be positive.
851   bool isKnownPositive(const SCEV *S);
852 
853   /// Test if the given expression is known to be non-negative.
854   bool isKnownNonNegative(const SCEV *S);
855 
856   /// Test if the given expression is known to be non-positive.
857   bool isKnownNonPositive(const SCEV *S);
858 
859   /// Test if the given expression is known to be non-zero.
860   bool isKnownNonZero(const SCEV *S);
861 
862   /// Splits SCEV expression \p S into two SCEVs. One of them is obtained from
863   /// \p S by substitution of all AddRec sub-expression related to loop \p L
864   /// with initial value of that SCEV. The second is obtained from \p S by
865   /// substitution of all AddRec sub-expressions related to loop \p L with post
866   /// increment of this AddRec in the loop \p L. In both cases all other AddRec
867   /// sub-expressions (not related to \p L) remain the same.
868   /// If the \p S contains non-invariant unknown SCEV the function returns
869   /// CouldNotCompute SCEV in both values of std::pair.
870   /// For example, for SCEV S={0, +, 1}<L1> + {0, +, 1}<L2> and loop L=L1
871   /// the function returns pair:
872   /// first = {0, +, 1}<L2>
873   /// second = {1, +, 1}<L1> + {0, +, 1}<L2>
874   /// We can see that for the first AddRec sub-expression it was replaced with
875   /// 0 (initial value) for the first element and to {1, +, 1}<L1> (post
876   /// increment value) for the second one. In both cases AddRec expression
877   /// related to L2 remains the same.
878   std::pair<const SCEV *, const SCEV *> SplitIntoInitAndPostInc(const Loop *L,
879                                                                 const SCEV *S);
880 
881   /// We'd like to check the predicate on every iteration of the most dominated
882   /// loop between loops used in LHS and RHS.
883   /// To do this we use the following list of steps:
884   /// 1. Collect set S all loops on which either LHS or RHS depend.
885   /// 2. If S is non-empty
886   /// a. Let PD be the element of S which is dominated by all other elements.
887   /// b. Let E(LHS) be value of LHS on entry of PD.
888   ///    To get E(LHS), we should just take LHS and replace all AddRecs that are
889   ///    attached to PD on with their entry values.
890   ///    Define E(RHS) in the same way.
891   /// c. Let B(LHS) be value of L on backedge of PD.
892   ///    To get B(LHS), we should just take LHS and replace all AddRecs that are
893   ///    attached to PD on with their backedge values.
894   ///    Define B(RHS) in the same way.
895   /// d. Note that E(LHS) and E(RHS) are automatically available on entry of PD,
896   ///    so we can assert on that.
897   /// e. Return true if isLoopEntryGuardedByCond(Pred, E(LHS), E(RHS)) &&
898   ///                   isLoopBackedgeGuardedByCond(Pred, B(LHS), B(RHS))
899   bool isKnownViaInduction(ICmpInst::Predicate Pred, const SCEV *LHS,
900                            const SCEV *RHS);
901 
902   /// Test if the given expression is known to satisfy the condition described
903   /// by Pred, LHS, and RHS.
904   bool isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
905                         const SCEV *RHS);
906 
907   /// Test if the condition described by Pred, LHS, RHS is known to be true on
908   /// every iteration of the loop of the recurrency LHS.
909   bool isKnownOnEveryIteration(ICmpInst::Predicate Pred,
910                                const SCEVAddRecExpr *LHS, const SCEV *RHS);
911 
912   /// Return true if, for all loop invariant X, the predicate "LHS `Pred` X"
913   /// is monotonically increasing or decreasing.  In the former case set
914   /// `Increasing` to true and in the latter case set `Increasing` to false.
915   ///
916   /// A predicate is said to be monotonically increasing if may go from being
917   /// false to being true as the loop iterates, but never the other way
918   /// around.  A predicate is said to be monotonically decreasing if may go
919   /// from being true to being false as the loop iterates, but never the other
920   /// way around.
921   bool isMonotonicPredicate(const SCEVAddRecExpr *LHS, ICmpInst::Predicate Pred,
922                             bool &Increasing);
923 
924   /// Return true if the result of the predicate LHS `Pred` RHS is loop
925   /// invariant with respect to L.  Set InvariantPred, InvariantLHS and
926   /// InvariantLHS so that InvariantLHS `InvariantPred` InvariantRHS is the
927   /// loop invariant form of LHS `Pred` RHS.
928   bool isLoopInvariantPredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
929                                 const SCEV *RHS, const Loop *L,
930                                 ICmpInst::Predicate &InvariantPred,
931                                 const SCEV *&InvariantLHS,
932                                 const SCEV *&InvariantRHS);
933 
934   /// Simplify LHS and RHS in a comparison with predicate Pred. Return true
935   /// iff any changes were made. If the operands are provably equal or
936   /// unequal, LHS and RHS are set to the same value and Pred is set to either
937   /// ICMP_EQ or ICMP_NE.
938   bool SimplifyICmpOperands(ICmpInst::Predicate &Pred, const SCEV *&LHS,
939                             const SCEV *&RHS, unsigned Depth = 0);
940 
941   /// Return the "disposition" of the given SCEV with respect to the given
942   /// loop.
943   LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L);
944 
945   /// Return true if the value of the given SCEV is unchanging in the
946   /// specified loop.
947   bool isLoopInvariant(const SCEV *S, const Loop *L);
948 
949   /// Determine if the SCEV can be evaluated at loop's entry. It is true if it
950   /// doesn't depend on a SCEVUnknown of an instruction which is dominated by
951   /// the header of loop L.
952   bool isAvailableAtLoopEntry(const SCEV *S, const Loop *L);
953 
954   /// Return true if the given SCEV changes value in a known way in the
955   /// specified loop.  This property being true implies that the value is
956   /// variant in the loop AND that we can emit an expression to compute the
957   /// value of the expression at any particular loop iteration.
958   bool hasComputableLoopEvolution(const SCEV *S, const Loop *L);
959 
960   /// Return the "disposition" of the given SCEV with respect to the given
961   /// block.
962   BlockDisposition getBlockDisposition(const SCEV *S, const BasicBlock *BB);
963 
964   /// Return true if elements that makes up the given SCEV dominate the
965   /// specified basic block.
966   bool dominates(const SCEV *S, const BasicBlock *BB);
967 
968   /// Return true if elements that makes up the given SCEV properly dominate
969   /// the specified basic block.
970   bool properlyDominates(const SCEV *S, const BasicBlock *BB);
971 
972   /// Test whether the given SCEV has Op as a direct or indirect operand.
973   bool hasOperand(const SCEV *S, const SCEV *Op) const;
974 
975   /// Return the size of an element read or written by Inst.
976   const SCEV *getElementSize(Instruction *Inst);
977 
978   /// Compute the array dimensions Sizes from the set of Terms extracted from
979   /// the memory access function of this SCEVAddRecExpr (second step of
980   /// delinearization).
981   void findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
982                            SmallVectorImpl<const SCEV *> &Sizes,
983                            const SCEV *ElementSize);
984 
985   void print(raw_ostream &OS) const;
986   void verify() const;
987   bool invalidate(Function &F, const PreservedAnalyses &PA,
988                   FunctionAnalysisManager::Invalidator &Inv);
989 
990   /// Collect parametric terms occurring in step expressions (first step of
991   /// delinearization).
992   void collectParametricTerms(const SCEV *Expr,
993                               SmallVectorImpl<const SCEV *> &Terms);
994 
995   /// Return in Subscripts the access functions for each dimension in Sizes
996   /// (third step of delinearization).
997   void computeAccessFunctions(const SCEV *Expr,
998                               SmallVectorImpl<const SCEV *> &Subscripts,
999                               SmallVectorImpl<const SCEV *> &Sizes);
1000 
1001   /// Split this SCEVAddRecExpr into two vectors of SCEVs representing the
1002   /// subscripts and sizes of an array access.
1003   ///
1004   /// The delinearization is a 3 step process: the first two steps compute the
1005   /// sizes of each subscript and the third step computes the access functions
1006   /// for the delinearized array:
1007   ///
1008   /// 1. Find the terms in the step functions
1009   /// 2. Compute the array size
1010   /// 3. Compute the access function: divide the SCEV by the array size
1011   ///    starting with the innermost dimensions found in step 2. The Quotient
1012   ///    is the SCEV to be divided in the next step of the recursion. The
1013   ///    Remainder is the subscript of the innermost dimension. Loop over all
1014   ///    array dimensions computed in step 2.
1015   ///
1016   /// To compute a uniform array size for several memory accesses to the same
1017   /// object, one can collect in step 1 all the step terms for all the memory
1018   /// accesses, and compute in step 2 a unique array shape. This guarantees
1019   /// that the array shape will be the same across all memory accesses.
1020   ///
1021   /// FIXME: We could derive the result of steps 1 and 2 from a description of
1022   /// the array shape given in metadata.
1023   ///
1024   /// Example:
1025   ///
1026   /// A[][n][m]
1027   ///
1028   /// for i
1029   ///   for j
1030   ///     for k
1031   ///       A[j+k][2i][5i] =
1032   ///
1033   /// The initial SCEV:
1034   ///
1035   /// A[{{{0,+,2*m+5}_i, +, n*m}_j, +, n*m}_k]
1036   ///
1037   /// 1. Find the different terms in the step functions:
1038   /// -> [2*m, 5, n*m, n*m]
1039   ///
1040   /// 2. Compute the array size: sort and unique them
1041   /// -> [n*m, 2*m, 5]
1042   /// find the GCD of all the terms = 1
1043   /// divide by the GCD and erase constant terms
1044   /// -> [n*m, 2*m]
1045   /// GCD = m
1046   /// divide by GCD -> [n, 2]
1047   /// remove constant terms
1048   /// -> [n]
1049   /// size of the array is A[unknown][n][m]
1050   ///
1051   /// 3. Compute the access function
1052   /// a. Divide {{{0,+,2*m+5}_i, +, n*m}_j, +, n*m}_k by the innermost size m
1053   /// Quotient: {{{0,+,2}_i, +, n}_j, +, n}_k
1054   /// Remainder: {{{0,+,5}_i, +, 0}_j, +, 0}_k
1055   /// The remainder is the subscript of the innermost array dimension: [5i].
1056   ///
1057   /// b. Divide Quotient: {{{0,+,2}_i, +, n}_j, +, n}_k by next outer size n
1058   /// Quotient: {{{0,+,0}_i, +, 1}_j, +, 1}_k
1059   /// Remainder: {{{0,+,2}_i, +, 0}_j, +, 0}_k
1060   /// The Remainder is the subscript of the next array dimension: [2i].
1061   ///
1062   /// The subscript of the outermost dimension is the Quotient: [j+k].
1063   ///
1064   /// Overall, we have: A[][n][m], and the access function: A[j+k][2i][5i].
1065   void delinearize(const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
1066                    SmallVectorImpl<const SCEV *> &Sizes,
1067                    const SCEV *ElementSize);
1068 
1069   /// Return the DataLayout associated with the module this SCEV instance is
1070   /// operating on.
1071   const DataLayout &getDataLayout() const {
1072     return F.getParent()->getDataLayout();
1073   }
1074 
1075   const SCEVPredicate *getEqualPredicate(const SCEV *LHS, const SCEV *RHS);
1076 
1077   const SCEVPredicate *
1078   getWrapPredicate(const SCEVAddRecExpr *AR,
1079                    SCEVWrapPredicate::IncrementWrapFlags AddedFlags);
1080 
1081   /// Re-writes the SCEV according to the Predicates in \p A.
1082   const SCEV *rewriteUsingPredicate(const SCEV *S, const Loop *L,
1083                                     SCEVUnionPredicate &A);
1084   /// Tries to convert the \p S expression to an AddRec expression,
1085   /// adding additional predicates to \p Preds as required.
1086   const SCEVAddRecExpr *convertSCEVToAddRecWithPredicates(
1087       const SCEV *S, const Loop *L,
1088       SmallPtrSetImpl<const SCEVPredicate *> &Preds);
1089 
1090 private:
1091   /// A CallbackVH to arrange for ScalarEvolution to be notified whenever a
1092   /// Value is deleted.
1093   class SCEVCallbackVH final : public CallbackVH {
1094     ScalarEvolution *SE;
1095 
1096     void deleted() override;
1097     void allUsesReplacedWith(Value *New) override;
1098 
1099   public:
1100     SCEVCallbackVH(Value *V, ScalarEvolution *SE = nullptr);
1101   };
1102 
1103   friend class SCEVCallbackVH;
1104   friend class SCEVExpander;
1105   friend class SCEVUnknown;
1106 
1107   /// The function we are analyzing.
1108   Function &F;
1109 
1110   /// Does the module have any calls to the llvm.experimental.guard intrinsic
1111   /// at all?  If this is false, we avoid doing work that will only help if
1112   /// thare are guards present in the IR.
1113   bool HasGuards;
1114 
1115   /// The target library information for the target we are targeting.
1116   TargetLibraryInfo &TLI;
1117 
1118   /// The tracker for \@llvm.assume intrinsics in this function.
1119   AssumptionCache &AC;
1120 
1121   /// The dominator tree.
1122   DominatorTree &DT;
1123 
1124   /// The loop information for the function we are currently analyzing.
1125   LoopInfo &LI;
1126 
1127   /// This SCEV is used to represent unknown trip counts and things.
1128   std::unique_ptr<SCEVCouldNotCompute> CouldNotCompute;
1129 
1130   /// The type for HasRecMap.
1131   using HasRecMapType = DenseMap<const SCEV *, bool>;
1132 
1133   /// This is a cache to record whether a SCEV contains any scAddRecExpr.
1134   HasRecMapType HasRecMap;
1135 
1136   /// The type for ExprValueMap.
1137   using ValueOffsetPair = std::pair<Value *, ConstantInt *>;
1138   using ExprValueMapType = DenseMap<const SCEV *, SetVector<ValueOffsetPair>>;
1139 
1140   /// ExprValueMap -- This map records the original values from which
1141   /// the SCEV expr is generated from.
1142   ///
1143   /// We want to represent the mapping as SCEV -> ValueOffsetPair instead
1144   /// of SCEV -> Value:
1145   /// Suppose we know S1 expands to V1, and
1146   ///  S1 = S2 + C_a
1147   ///  S3 = S2 + C_b
1148   /// where C_a and C_b are different SCEVConstants. Then we'd like to
1149   /// expand S3 as V1 - C_a + C_b instead of expanding S2 literally.
1150   /// It is helpful when S2 is a complex SCEV expr.
1151   ///
1152   /// In order to do that, we represent ExprValueMap as a mapping from
1153   /// SCEV to ValueOffsetPair. We will save both S1->{V1, 0} and
1154   /// S2->{V1, C_a} into the map when we create SCEV for V1. When S3
1155   /// is expanded, it will first expand S2 to V1 - C_a because of
1156   /// S2->{V1, C_a} in the map, then expand S3 to V1 - C_a + C_b.
1157   ///
1158   /// Note: S->{V, Offset} in the ExprValueMap means S can be expanded
1159   /// to V - Offset.
1160   ExprValueMapType ExprValueMap;
1161 
1162   /// The type for ValueExprMap.
1163   using ValueExprMapType =
1164       DenseMap<SCEVCallbackVH, const SCEV *, DenseMapInfo<Value *>>;
1165 
1166   /// This is a cache of the values we have analyzed so far.
1167   ValueExprMapType ValueExprMap;
1168 
1169   /// Mark predicate values currently being processed by isImpliedCond.
1170   SmallPtrSet<Value *, 6> PendingLoopPredicates;
1171 
1172   /// Mark SCEVUnknown Phis currently being processed by getRangeRef.
1173   SmallPtrSet<const PHINode *, 6> PendingPhiRanges;
1174 
1175   // Mark SCEVUnknown Phis currently being processed by isImpliedViaMerge.
1176   SmallPtrSet<const PHINode *, 6> PendingMerges;
1177 
1178   /// Set to true by isLoopBackedgeGuardedByCond when we're walking the set of
1179   /// conditions dominating the backedge of a loop.
1180   bool WalkingBEDominatingConds = false;
1181 
1182   /// Set to true by isKnownPredicateViaSplitting when we're trying to prove a
1183   /// predicate by splitting it into a set of independent predicates.
1184   bool ProvingSplitPredicate = false;
1185 
1186   /// Memoized values for the GetMinTrailingZeros
1187   DenseMap<const SCEV *, uint32_t> MinTrailingZerosCache;
1188 
1189   /// Return the Value set from which the SCEV expr is generated.
1190   SetVector<ValueOffsetPair> *getSCEVValues(const SCEV *S);
1191 
1192   /// Private helper method for the GetMinTrailingZeros method
1193   uint32_t GetMinTrailingZerosImpl(const SCEV *S);
1194 
1195   /// Information about the number of loop iterations for which a loop exit's
1196   /// branch condition evaluates to the not-taken path.  This is a temporary
1197   /// pair of exact and max expressions that are eventually summarized in
1198   /// ExitNotTakenInfo and BackedgeTakenInfo.
1199   struct ExitLimit {
1200     const SCEV *ExactNotTaken; // The exit is not taken exactly this many times
1201     const SCEV *MaxNotTaken; // The exit is not taken at most this many times
1202 
1203     // Not taken either exactly MaxNotTaken or zero times
1204     bool MaxOrZero = false;
1205 
1206     /// A set of predicate guards for this ExitLimit. The result is only valid
1207     /// if all of the predicates in \c Predicates evaluate to 'true' at
1208     /// run-time.
1209     SmallPtrSet<const SCEVPredicate *, 4> Predicates;
1210 
1211     void addPredicate(const SCEVPredicate *P) {
1212       assert(!isa<SCEVUnionPredicate>(P) && "Only add leaf predicates here!");
1213       Predicates.insert(P);
1214     }
1215 
1216     /// Construct either an exact exit limit from a constant, or an unknown
1217     /// one from a SCEVCouldNotCompute.  No other types of SCEVs are allowed
1218     /// as arguments and asserts enforce that internally.
1219     /*implicit*/ ExitLimit(const SCEV *E);
1220 
1221     ExitLimit(
1222         const SCEV *E, const SCEV *M, bool MaxOrZero,
1223         ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList);
1224 
1225     ExitLimit(const SCEV *E, const SCEV *M, bool MaxOrZero,
1226               const SmallPtrSetImpl<const SCEVPredicate *> &PredSet);
1227 
1228     ExitLimit(const SCEV *E, const SCEV *M, bool MaxOrZero);
1229 
1230     /// Test whether this ExitLimit contains any computed information, or
1231     /// whether it's all SCEVCouldNotCompute values.
1232     bool hasAnyInfo() const {
1233       return !isa<SCEVCouldNotCompute>(ExactNotTaken) ||
1234              !isa<SCEVCouldNotCompute>(MaxNotTaken);
1235     }
1236 
1237     bool hasOperand(const SCEV *S) const;
1238 
1239     /// Test whether this ExitLimit contains all information.
1240     bool hasFullInfo() const {
1241       return !isa<SCEVCouldNotCompute>(ExactNotTaken);
1242     }
1243   };
1244 
1245   /// Information about the number of times a particular loop exit may be
1246   /// reached before exiting the loop.
1247   struct ExitNotTakenInfo {
1248     PoisoningVH<BasicBlock> ExitingBlock;
1249     const SCEV *ExactNotTaken;
1250     const SCEV *MaxNotTaken;
1251     std::unique_ptr<SCEVUnionPredicate> Predicate;
1252 
1253     explicit ExitNotTakenInfo(PoisoningVH<BasicBlock> ExitingBlock,
1254                               const SCEV *ExactNotTaken,
1255                               const SCEV *MaxNotTaken,
1256                               std::unique_ptr<SCEVUnionPredicate> Predicate)
1257       : ExitingBlock(ExitingBlock), ExactNotTaken(ExactNotTaken),
1258         MaxNotTaken(ExactNotTaken), Predicate(std::move(Predicate)) {}
1259 
1260     bool hasAlwaysTruePredicate() const {
1261       return !Predicate || Predicate->isAlwaysTrue();
1262     }
1263   };
1264 
1265   /// Information about the backedge-taken count of a loop. This currently
1266   /// includes an exact count and a maximum count.
1267   ///
1268   class BackedgeTakenInfo {
1269     /// A list of computable exits and their not-taken counts.  Loops almost
1270     /// never have more than one computable exit.
1271     SmallVector<ExitNotTakenInfo, 1> ExitNotTaken;
1272 
1273     /// The pointer part of \c MaxAndComplete is an expression indicating the
1274     /// least maximum backedge-taken count of the loop that is known, or a
1275     /// SCEVCouldNotCompute. This expression is only valid if the predicates
1276     /// associated with all loop exits are true.
1277     ///
1278     /// The integer part of \c MaxAndComplete is a boolean indicating if \c
1279     /// ExitNotTaken has an element for every exiting block in the loop.
1280     PointerIntPair<const SCEV *, 1> MaxAndComplete;
1281 
1282     /// True iff the backedge is taken either exactly Max or zero times.
1283     bool MaxOrZero = false;
1284 
1285     /// \name Helper projection functions on \c MaxAndComplete.
1286     /// @{
1287     bool isComplete() const { return MaxAndComplete.getInt(); }
1288     const SCEV *getMax() const { return MaxAndComplete.getPointer(); }
1289     /// @}
1290 
1291   public:
1292     BackedgeTakenInfo() : MaxAndComplete(nullptr, 0) {}
1293     BackedgeTakenInfo(BackedgeTakenInfo &&) = default;
1294     BackedgeTakenInfo &operator=(BackedgeTakenInfo &&) = default;
1295 
1296     using EdgeExitInfo = std::pair<BasicBlock *, ExitLimit>;
1297 
1298     /// Initialize BackedgeTakenInfo from a list of exact exit counts.
1299     BackedgeTakenInfo(ArrayRef<EdgeExitInfo> ExitCounts, bool Complete,
1300                       const SCEV *MaxCount, bool MaxOrZero);
1301 
1302     /// Test whether this BackedgeTakenInfo contains any computed information,
1303     /// or whether it's all SCEVCouldNotCompute values.
1304     bool hasAnyInfo() const {
1305       return !ExitNotTaken.empty() || !isa<SCEVCouldNotCompute>(getMax());
1306     }
1307 
1308     /// Test whether this BackedgeTakenInfo contains complete information.
1309     bool hasFullInfo() const { return isComplete(); }
1310 
1311     /// Return an expression indicating the exact *backedge-taken*
1312     /// count of the loop if it is known or SCEVCouldNotCompute
1313     /// otherwise.  If execution makes it to the backedge on every
1314     /// iteration (i.e. there are no abnormal exists like exception
1315     /// throws and thread exits) then this is the number of times the
1316     /// loop header will execute minus one.
1317     ///
1318     /// If the SCEV predicate associated with the answer can be different
1319     /// from AlwaysTrue, we must add a (non null) Predicates argument.
1320     /// The SCEV predicate associated with the answer will be added to
1321     /// Predicates. A run-time check needs to be emitted for the SCEV
1322     /// predicate in order for the answer to be valid.
1323     ///
1324     /// Note that we should always know if we need to pass a predicate
1325     /// argument or not from the way the ExitCounts vector was computed.
1326     /// If we allowed SCEV predicates to be generated when populating this
1327     /// vector, this information can contain them and therefore a
1328     /// SCEVPredicate argument should be added to getExact.
1329     const SCEV *getExact(const Loop *L, ScalarEvolution *SE,
1330                          SCEVUnionPredicate *Predicates = nullptr) const;
1331 
1332     /// Return the number of times this loop exit may fall through to the back
1333     /// edge, or SCEVCouldNotCompute. The loop is guaranteed not to exit via
1334     /// this block before this number of iterations, but may exit via another
1335     /// block.
1336     const SCEV *getExact(BasicBlock *ExitingBlock, ScalarEvolution *SE) const;
1337 
1338     /// Get the max backedge taken count for the loop.
1339     const SCEV *getMax(ScalarEvolution *SE) const;
1340 
1341     /// Get the max backedge taken count for the particular loop exit.
1342     const SCEV *getMax(BasicBlock *ExitingBlock, ScalarEvolution *SE) const;
1343 
1344     /// Return true if the number of times this backedge is taken is either the
1345     /// value returned by getMax or zero.
1346     bool isMaxOrZero(ScalarEvolution *SE) const;
1347 
1348     /// Return true if any backedge taken count expressions refer to the given
1349     /// subexpression.
1350     bool hasOperand(const SCEV *S, ScalarEvolution *SE) const;
1351 
1352     /// Invalidate this result and free associated memory.
1353     void clear();
1354   };
1355 
1356   /// Cache the backedge-taken count of the loops for this function as they
1357   /// are computed.
1358   DenseMap<const Loop *, BackedgeTakenInfo> BackedgeTakenCounts;
1359 
1360   /// Cache the predicated backedge-taken count of the loops for this
1361   /// function as they are computed.
1362   DenseMap<const Loop *, BackedgeTakenInfo> PredicatedBackedgeTakenCounts;
1363 
1364   /// This map contains entries for all of the PHI instructions that we
1365   /// attempt to compute constant evolutions for.  This allows us to avoid
1366   /// potentially expensive recomputation of these properties.  An instruction
1367   /// maps to null if we are unable to compute its exit value.
1368   DenseMap<PHINode *, Constant *> ConstantEvolutionLoopExitValue;
1369 
1370   /// This map contains entries for all the expressions that we attempt to
1371   /// compute getSCEVAtScope information for, which can be expensive in
1372   /// extreme cases.
1373   DenseMap<const SCEV *, SmallVector<std::pair<const Loop *, const SCEV *>, 2>>
1374       ValuesAtScopes;
1375 
1376   /// Memoized computeLoopDisposition results.
1377   DenseMap<const SCEV *,
1378            SmallVector<PointerIntPair<const Loop *, 2, LoopDisposition>, 2>>
1379       LoopDispositions;
1380 
1381   struct LoopProperties {
1382     /// Set to true if the loop contains no instruction that can have side
1383     /// effects (i.e. via throwing an exception, volatile or atomic access).
1384     bool HasNoAbnormalExits;
1385 
1386     /// Set to true if the loop contains no instruction that can abnormally exit
1387     /// the loop (i.e. via throwing an exception, by terminating the thread
1388     /// cleanly or by infinite looping in a called function).  Strictly
1389     /// speaking, the last one is not leaving the loop, but is identical to
1390     /// leaving the loop for reasoning about undefined behavior.
1391     bool HasNoSideEffects;
1392   };
1393 
1394   /// Cache for \c getLoopProperties.
1395   DenseMap<const Loop *, LoopProperties> LoopPropertiesCache;
1396 
1397   /// Return a \c LoopProperties instance for \p L, creating one if necessary.
1398   LoopProperties getLoopProperties(const Loop *L);
1399 
1400   bool loopHasNoSideEffects(const Loop *L) {
1401     return getLoopProperties(L).HasNoSideEffects;
1402   }
1403 
1404   bool loopHasNoAbnormalExits(const Loop *L) {
1405     return getLoopProperties(L).HasNoAbnormalExits;
1406   }
1407 
1408   /// Compute a LoopDisposition value.
1409   LoopDisposition computeLoopDisposition(const SCEV *S, const Loop *L);
1410 
1411   /// Memoized computeBlockDisposition results.
1412   DenseMap<
1413       const SCEV *,
1414       SmallVector<PointerIntPair<const BasicBlock *, 2, BlockDisposition>, 2>>
1415       BlockDispositions;
1416 
1417   /// Compute a BlockDisposition value.
1418   BlockDisposition computeBlockDisposition(const SCEV *S, const BasicBlock *BB);
1419 
1420   /// Memoized results from getRange
1421   DenseMap<const SCEV *, ConstantRange> UnsignedRanges;
1422 
1423   /// Memoized results from getRange
1424   DenseMap<const SCEV *, ConstantRange> SignedRanges;
1425 
1426   /// Used to parameterize getRange
1427   enum RangeSignHint { HINT_RANGE_UNSIGNED, HINT_RANGE_SIGNED };
1428 
1429   /// Set the memoized range for the given SCEV.
1430   const ConstantRange &setRange(const SCEV *S, RangeSignHint Hint,
1431                                 ConstantRange CR) {
1432     DenseMap<const SCEV *, ConstantRange> &Cache =
1433         Hint == HINT_RANGE_UNSIGNED ? UnsignedRanges : SignedRanges;
1434 
1435     auto Pair = Cache.try_emplace(S, std::move(CR));
1436     if (!Pair.second)
1437       Pair.first->second = std::move(CR);
1438     return Pair.first->second;
1439   }
1440 
1441   /// Determine the range for a particular SCEV.
1442   /// NOTE: This returns a reference to an entry in a cache. It must be
1443   /// copied if its needed for longer.
1444   const ConstantRange &getRangeRef(const SCEV *S, RangeSignHint Hint);
1445 
1446   /// Determines the range for the affine SCEVAddRecExpr {\p Start,+,\p Stop}.
1447   /// Helper for \c getRange.
1448   ConstantRange getRangeForAffineAR(const SCEV *Start, const SCEV *Stop,
1449                                     const SCEV *MaxBECount, unsigned BitWidth);
1450 
1451   /// Try to compute a range for the affine SCEVAddRecExpr {\p Start,+,\p
1452   /// Stop} by "factoring out" a ternary expression from the add recurrence.
1453   /// Helper called by \c getRange.
1454   ConstantRange getRangeViaFactoring(const SCEV *Start, const SCEV *Stop,
1455                                      const SCEV *MaxBECount, unsigned BitWidth);
1456 
1457   /// We know that there is no SCEV for the specified value.  Analyze the
1458   /// expression.
1459   const SCEV *createSCEV(Value *V);
1460 
1461   /// Provide the special handling we need to analyze PHI SCEVs.
1462   const SCEV *createNodeForPHI(PHINode *PN);
1463 
1464   /// Helper function called from createNodeForPHI.
1465   const SCEV *createAddRecFromPHI(PHINode *PN);
1466 
1467   /// A helper function for createAddRecFromPHI to handle simple cases.
1468   const SCEV *createSimpleAffineAddRec(PHINode *PN, Value *BEValueV,
1469                                             Value *StartValueV);
1470 
1471   /// Helper function called from createNodeForPHI.
1472   const SCEV *createNodeFromSelectLikePHI(PHINode *PN);
1473 
1474   /// Provide special handling for a select-like instruction (currently this
1475   /// is either a select instruction or a phi node).  \p I is the instruction
1476   /// being processed, and it is assumed equivalent to "Cond ? TrueVal :
1477   /// FalseVal".
1478   const SCEV *createNodeForSelectOrPHI(Instruction *I, Value *Cond,
1479                                        Value *TrueVal, Value *FalseVal);
1480 
1481   /// Provide the special handling we need to analyze GEP SCEVs.
1482   const SCEV *createNodeForGEP(GEPOperator *GEP);
1483 
1484   /// Implementation code for getSCEVAtScope; called at most once for each
1485   /// SCEV+Loop pair.
1486   const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L);
1487 
1488   /// This looks up computed SCEV values for all instructions that depend on
1489   /// the given instruction and removes them from the ValueExprMap map if they
1490   /// reference SymName. This is used during PHI resolution.
1491   void forgetSymbolicName(Instruction *I, const SCEV *SymName);
1492 
1493   /// Return the BackedgeTakenInfo for the given loop, lazily computing new
1494   /// values if the loop hasn't been analyzed yet. The returned result is
1495   /// guaranteed not to be predicated.
1496   const BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
1497 
1498   /// Similar to getBackedgeTakenInfo, but will add predicates as required
1499   /// with the purpose of returning complete information.
1500   const BackedgeTakenInfo &getPredicatedBackedgeTakenInfo(const Loop *L);
1501 
1502   /// Compute the number of times the specified loop will iterate.
1503   /// If AllowPredicates is set, we will create new SCEV predicates as
1504   /// necessary in order to return an exact answer.
1505   BackedgeTakenInfo computeBackedgeTakenCount(const Loop *L,
1506                                               bool AllowPredicates = false);
1507 
1508   /// Compute the number of times the backedge of the specified loop will
1509   /// execute if it exits via the specified block. If AllowPredicates is set,
1510   /// this call will try to use a minimal set of SCEV predicates in order to
1511   /// return an exact answer.
1512   ExitLimit computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
1513                              bool AllowPredicates = false);
1514 
1515   /// Compute the number of times the backedge of the specified loop will
1516   /// execute if its exit condition were a conditional branch of ExitCond.
1517   ///
1518   /// \p ControlsExit is true if ExitCond directly controls the exit
1519   /// branch. In this case, we can assume that the loop exits only if the
1520   /// condition is true and can infer that failing to meet the condition prior
1521   /// to integer wraparound results in undefined behavior.
1522   ///
1523   /// If \p AllowPredicates is set, this call will try to use a minimal set of
1524   /// SCEV predicates in order to return an exact answer.
1525   ExitLimit computeExitLimitFromCond(const Loop *L, Value *ExitCond,
1526                                      bool ExitIfTrue, bool ControlsExit,
1527                                      bool AllowPredicates = false);
1528 
1529   // Helper functions for computeExitLimitFromCond to avoid exponential time
1530   // complexity.
1531 
1532   class ExitLimitCache {
1533     // It may look like we need key on the whole (L, ExitIfTrue, ControlsExit,
1534     // AllowPredicates) tuple, but recursive calls to
1535     // computeExitLimitFromCondCached from computeExitLimitFromCondImpl only
1536     // vary the in \c ExitCond and \c ControlsExit parameters.  We remember the
1537     // initial values of the other values to assert our assumption.
1538     SmallDenseMap<PointerIntPair<Value *, 1>, ExitLimit> TripCountMap;
1539 
1540     const Loop *L;
1541     bool ExitIfTrue;
1542     bool AllowPredicates;
1543 
1544   public:
1545     ExitLimitCache(const Loop *L, bool ExitIfTrue, bool AllowPredicates)
1546         : L(L), ExitIfTrue(ExitIfTrue), AllowPredicates(AllowPredicates) {}
1547 
1548     Optional<ExitLimit> find(const Loop *L, Value *ExitCond, bool ExitIfTrue,
1549                              bool ControlsExit, bool AllowPredicates);
1550 
1551     void insert(const Loop *L, Value *ExitCond, bool ExitIfTrue,
1552                 bool ControlsExit, bool AllowPredicates, const ExitLimit &EL);
1553   };
1554 
1555   using ExitLimitCacheTy = ExitLimitCache;
1556 
1557   ExitLimit computeExitLimitFromCondCached(ExitLimitCacheTy &Cache,
1558                                            const Loop *L, Value *ExitCond,
1559                                            bool ExitIfTrue,
1560                                            bool ControlsExit,
1561                                            bool AllowPredicates);
1562   ExitLimit computeExitLimitFromCondImpl(ExitLimitCacheTy &Cache, const Loop *L,
1563                                          Value *ExitCond, bool ExitIfTrue,
1564                                          bool ControlsExit,
1565                                          bool AllowPredicates);
1566 
1567   /// Compute the number of times the backedge of the specified loop will
1568   /// execute if its exit condition were a conditional branch of the ICmpInst
1569   /// ExitCond and ExitIfTrue. If AllowPredicates is set, this call will try
1570   /// to use a minimal set of SCEV predicates in order to return an exact
1571   /// answer.
1572   ExitLimit computeExitLimitFromICmp(const Loop *L, ICmpInst *ExitCond,
1573                                      bool ExitIfTrue,
1574                                      bool IsSubExpr,
1575                                      bool AllowPredicates = false);
1576 
1577   /// Compute the number of times the backedge of the specified loop will
1578   /// execute if its exit condition were a switch with a single exiting case
1579   /// to ExitingBB.
1580   ExitLimit computeExitLimitFromSingleExitSwitch(const Loop *L,
1581                                                  SwitchInst *Switch,
1582                                                  BasicBlock *ExitingBB,
1583                                                  bool IsSubExpr);
1584 
1585   /// Given an exit condition of 'icmp op load X, cst', try to see if we can
1586   /// compute the backedge-taken count.
1587   ExitLimit computeLoadConstantCompareExitLimit(LoadInst *LI, Constant *RHS,
1588                                                 const Loop *L,
1589                                                 ICmpInst::Predicate p);
1590 
1591   /// Compute the exit limit of a loop that is controlled by a
1592   /// "(IV >> 1) != 0" type comparison.  We cannot compute the exact trip
1593   /// count in these cases (since SCEV has no way of expressing them), but we
1594   /// can still sometimes compute an upper bound.
1595   ///
1596   /// Return an ExitLimit for a loop whose backedge is guarded by `LHS Pred
1597   /// RHS`.
1598   ExitLimit computeShiftCompareExitLimit(Value *LHS, Value *RHS, const Loop *L,
1599                                          ICmpInst::Predicate Pred);
1600 
1601   /// If the loop is known to execute a constant number of times (the
1602   /// condition evolves only from constants), try to evaluate a few iterations
1603   /// of the loop until we get the exit condition gets a value of ExitWhen
1604   /// (true or false).  If we cannot evaluate the exit count of the loop,
1605   /// return CouldNotCompute.
1606   const SCEV *computeExitCountExhaustively(const Loop *L, Value *Cond,
1607                                            bool ExitWhen);
1608 
1609   /// Return the number of times an exit condition comparing the specified
1610   /// value to zero will execute.  If not computable, return CouldNotCompute.
1611   /// If AllowPredicates is set, this call will try to use a minimal set of
1612   /// SCEV predicates in order to return an exact answer.
1613   ExitLimit howFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr,
1614                          bool AllowPredicates = false);
1615 
1616   /// Return the number of times an exit condition checking the specified
1617   /// value for nonzero will execute.  If not computable, return
1618   /// CouldNotCompute.
1619   ExitLimit howFarToNonZero(const SCEV *V, const Loop *L);
1620 
1621   /// Return the number of times an exit condition containing the specified
1622   /// less-than comparison will execute.  If not computable, return
1623   /// CouldNotCompute.
1624   ///
1625   /// \p isSigned specifies whether the less-than is signed.
1626   ///
1627   /// \p ControlsExit is true when the LHS < RHS condition directly controls
1628   /// the branch (loops exits only if condition is true). In this case, we can
1629   /// use NoWrapFlags to skip overflow checks.
1630   ///
1631   /// If \p AllowPredicates is set, this call will try to use a minimal set of
1632   /// SCEV predicates in order to return an exact answer.
1633   ExitLimit howManyLessThans(const SCEV *LHS, const SCEV *RHS, const Loop *L,
1634                              bool isSigned, bool ControlsExit,
1635                              bool AllowPredicates = false);
1636 
1637   ExitLimit howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, const Loop *L,
1638                                 bool isSigned, bool IsSubExpr,
1639                                 bool AllowPredicates = false);
1640 
1641   /// Return a predecessor of BB (which may not be an immediate predecessor)
1642   /// which has exactly one successor from which BB is reachable, or null if
1643   /// no such block is found.
1644   std::pair<BasicBlock *, BasicBlock *>
1645   getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB);
1646 
1647   /// Test whether the condition described by Pred, LHS, and RHS is true
1648   /// whenever the given FoundCondValue value evaluates to true.
1649   bool isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
1650                      Value *FoundCondValue, bool Inverse);
1651 
1652   /// Test whether the condition described by Pred, LHS, and RHS is true
1653   /// whenever the condition described by FoundPred, FoundLHS, FoundRHS is
1654   /// true.
1655   bool isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
1656                      ICmpInst::Predicate FoundPred, const SCEV *FoundLHS,
1657                      const SCEV *FoundRHS);
1658 
1659   /// Test whether the condition described by Pred, LHS, and RHS is true
1660   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1661   /// true.
1662   bool isImpliedCondOperands(ICmpInst::Predicate Pred, const SCEV *LHS,
1663                              const SCEV *RHS, const SCEV *FoundLHS,
1664                              const SCEV *FoundRHS);
1665 
1666   /// Test whether the condition described by Pred, LHS, and RHS is true
1667   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1668   /// true. Here LHS is an operation that includes FoundLHS as one of its
1669   /// arguments.
1670   bool isImpliedViaOperations(ICmpInst::Predicate Pred,
1671                               const SCEV *LHS, const SCEV *RHS,
1672                               const SCEV *FoundLHS, const SCEV *FoundRHS,
1673                               unsigned Depth = 0);
1674 
1675   /// Test whether the condition described by Pred, LHS, and RHS is true.
1676   /// Use only simple non-recursive types of checks, such as range analysis etc.
1677   bool isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
1678                                        const SCEV *LHS, const SCEV *RHS);
1679 
1680   /// Test whether the condition described by Pred, LHS, and RHS is true
1681   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1682   /// true.
1683   bool isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, const SCEV *LHS,
1684                                    const SCEV *RHS, const SCEV *FoundLHS,
1685                                    const SCEV *FoundRHS);
1686 
1687   /// Test whether the condition described by Pred, LHS, and RHS is true
1688   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1689   /// true.  Utility function used by isImpliedCondOperands.  Tries to get
1690   /// cases like "X `sgt` 0 => X - 1 `sgt` -1".
1691   bool isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, const SCEV *LHS,
1692                                       const SCEV *RHS, const SCEV *FoundLHS,
1693                                       const SCEV *FoundRHS);
1694 
1695   /// Return true if the condition denoted by \p LHS \p Pred \p RHS is implied
1696   /// by a call to \c @llvm.experimental.guard in \p BB.
1697   bool isImpliedViaGuard(BasicBlock *BB, ICmpInst::Predicate Pred,
1698                          const SCEV *LHS, const SCEV *RHS);
1699 
1700   /// Test whether the condition described by Pred, LHS, and RHS is true
1701   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1702   /// true.
1703   ///
1704   /// This routine tries to rule out certain kinds of integer overflow, and
1705   /// then tries to reason about arithmetic properties of the predicates.
1706   bool isImpliedCondOperandsViaNoOverflow(ICmpInst::Predicate Pred,
1707                                           const SCEV *LHS, const SCEV *RHS,
1708                                           const SCEV *FoundLHS,
1709                                           const SCEV *FoundRHS);
1710 
1711   /// Test whether the condition described by Pred, LHS, and RHS is true
1712   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1713   /// true.
1714   ///
1715   /// This routine tries to figure out predicate for Phis which are SCEVUnknown
1716   /// if it is true for every possible incoming value from their respective
1717   /// basic blocks.
1718   bool isImpliedViaMerge(ICmpInst::Predicate Pred,
1719                          const SCEV *LHS, const SCEV *RHS,
1720                          const SCEV *FoundLHS, const SCEV *FoundRHS,
1721                          unsigned Depth);
1722 
1723   /// If we know that the specified Phi is in the header of its containing
1724   /// loop, we know the loop executes a constant number of times, and the PHI
1725   /// node is just a recurrence involving constants, fold it.
1726   Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt &BEs,
1727                                               const Loop *L);
1728 
1729   /// Test if the given expression is known to satisfy the condition described
1730   /// by Pred and the known constant ranges of LHS and RHS.
1731   bool isKnownPredicateViaConstantRanges(ICmpInst::Predicate Pred,
1732                                          const SCEV *LHS, const SCEV *RHS);
1733 
1734   /// Try to prove the condition described by "LHS Pred RHS" by ruling out
1735   /// integer overflow.
1736   ///
1737   /// For instance, this will return true for "A s< (A + C)<nsw>" if C is
1738   /// positive.
1739   bool isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, const SCEV *LHS,
1740                                      const SCEV *RHS);
1741 
1742   /// Try to split Pred LHS RHS into logical conjunctions (and's) and try to
1743   /// prove them individually.
1744   bool isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, const SCEV *LHS,
1745                                     const SCEV *RHS);
1746 
1747   /// Try to match the Expr as "(L + R)<Flags>".
1748   bool splitBinaryAdd(const SCEV *Expr, const SCEV *&L, const SCEV *&R,
1749                       SCEV::NoWrapFlags &Flags);
1750 
1751   /// Compute \p LHS - \p RHS and returns the result as an APInt if it is a
1752   /// constant, and None if it isn't.
1753   ///
1754   /// This is intended to be a cheaper version of getMinusSCEV.  We can be
1755   /// frugal here since we just bail out of actually constructing and
1756   /// canonicalizing an expression in the cases where the result isn't going
1757   /// to be a constant.
1758   Optional<APInt> computeConstantDifference(const SCEV *LHS, const SCEV *RHS);
1759 
1760   /// Drop memoized information computed for S.
1761   void forgetMemoizedResults(const SCEV *S);
1762 
1763   /// Return an existing SCEV for V if there is one, otherwise return nullptr.
1764   const SCEV *getExistingSCEV(Value *V);
1765 
1766   /// Return false iff given SCEV contains a SCEVUnknown with NULL value-
1767   /// pointer.
1768   bool checkValidity(const SCEV *S) const;
1769 
1770   /// Return true if `ExtendOpTy`({`Start`,+,`Step`}) can be proved to be
1771   /// equal to {`ExtendOpTy`(`Start`),+,`ExtendOpTy`(`Step`)}.  This is
1772   /// equivalent to proving no signed (resp. unsigned) wrap in
1773   /// {`Start`,+,`Step`} if `ExtendOpTy` is `SCEVSignExtendExpr`
1774   /// (resp. `SCEVZeroExtendExpr`).
1775   template <typename ExtendOpTy>
1776   bool proveNoWrapByVaryingStart(const SCEV *Start, const SCEV *Step,
1777                                  const Loop *L);
1778 
1779   /// Try to prove NSW or NUW on \p AR relying on ConstantRange manipulation.
1780   SCEV::NoWrapFlags proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR);
1781 
1782   bool isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
1783                                 ICmpInst::Predicate Pred, bool &Increasing);
1784 
1785   /// Return SCEV no-wrap flags that can be proven based on reasoning about
1786   /// how poison produced from no-wrap flags on this value (e.g. a nuw add)
1787   /// would trigger undefined behavior on overflow.
1788   SCEV::NoWrapFlags getNoWrapFlagsFromUB(const Value *V);
1789 
1790   /// Return true if the SCEV corresponding to \p I is never poison.  Proving
1791   /// this is more complex than proving that just \p I is never poison, since
1792   /// SCEV commons expressions across control flow, and you can have cases
1793   /// like:
1794   ///
1795   ///   idx0 = a + b;
1796   ///   ptr[idx0] = 100;
1797   ///   if (<condition>) {
1798   ///     idx1 = a +nsw b;
1799   ///     ptr[idx1] = 200;
1800   ///   }
1801   ///
1802   /// where the SCEV expression (+ a b) is guaranteed to not be poison (and
1803   /// hence not sign-overflow) only if "<condition>" is true.  Since both
1804   /// `idx0` and `idx1` will be mapped to the same SCEV expression, (+ a b),
1805   /// it is not okay to annotate (+ a b) with <nsw> in the above example.
1806   bool isSCEVExprNeverPoison(const Instruction *I);
1807 
1808   /// This is like \c isSCEVExprNeverPoison but it specifically works for
1809   /// instructions that will get mapped to SCEV add recurrences.  Return true
1810   /// if \p I will never generate poison under the assumption that \p I is an
1811   /// add recurrence on the loop \p L.
1812   bool isAddRecNeverPoison(const Instruction *I, const Loop *L);
1813 
1814   /// Similar to createAddRecFromPHI, but with the additional flexibility of
1815   /// suggesting runtime overflow checks in case casts are encountered.
1816   /// If successful, the analysis records that for this loop, \p SymbolicPHI,
1817   /// which is the UnknownSCEV currently representing the PHI, can be rewritten
1818   /// into an AddRec, assuming some predicates; The function then returns the
1819   /// AddRec and the predicates as a pair, and caches this pair in
1820   /// PredicatedSCEVRewrites.
1821   /// If the analysis is not successful, a mapping from the \p SymbolicPHI to
1822   /// itself (with no predicates) is recorded, and a nullptr with an empty
1823   /// predicates vector is returned as a pair.
1824   Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
1825   createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI);
1826 
1827   /// Compute the backedge taken count knowing the interval difference, the
1828   /// stride and presence of the equality in the comparison.
1829   const SCEV *computeBECount(const SCEV *Delta, const SCEV *Stride,
1830                              bool Equality);
1831 
1832   /// Compute the maximum backedge count based on the range of values
1833   /// permitted by Start, End, and Stride. This is for loops of the form
1834   /// {Start, +, Stride} LT End.
1835   ///
1836   /// Precondition: the induction variable is known to be positive.  We *don't*
1837   /// assert these preconditions so please be careful.
1838   const SCEV *computeMaxBECountForLT(const SCEV *Start, const SCEV *Stride,
1839                                      const SCEV *End, unsigned BitWidth,
1840                                      bool IsSigned);
1841 
1842   /// Verify if an linear IV with positive stride can overflow when in a
1843   /// less-than comparison, knowing the invariant term of the comparison,
1844   /// the stride and the knowledge of NSW/NUW flags on the recurrence.
1845   bool doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, bool IsSigned,
1846                           bool NoWrap);
1847 
1848   /// Verify if an linear IV with negative stride can overflow when in a
1849   /// greater-than comparison, knowing the invariant term of the comparison,
1850   /// the stride and the knowledge of NSW/NUW flags on the recurrence.
1851   bool doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, bool IsSigned,
1852                           bool NoWrap);
1853 
1854   /// Get add expr already created or create a new one.
1855   const SCEV *getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
1856                                  SCEV::NoWrapFlags Flags);
1857 
1858   /// Get mul expr already created or create a new one.
1859   const SCEV *getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
1860                                  SCEV::NoWrapFlags Flags);
1861 
1862   // Get addrec expr already created or create a new one.
1863   const SCEV *getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
1864                                     const Loop *L, SCEV::NoWrapFlags Flags);
1865 
1866   /// Return x if \p Val is f(x) where f is a 1-1 function.
1867   const SCEV *stripInjectiveFunctions(const SCEV *Val) const;
1868 
1869   /// Find all of the loops transitively used in \p S, and fill \p LoopsUsed.
1870   /// A loop is considered "used" by an expression if it contains
1871   /// an add rec on said loop.
1872   void getUsedLoops(const SCEV *S, SmallPtrSetImpl<const Loop *> &LoopsUsed);
1873 
1874   /// Find all of the loops transitively used in \p S, and update \c LoopUsers
1875   /// accordingly.
1876   void addToLoopUseLists(const SCEV *S);
1877 
1878   /// Try to match the pattern generated by getURemExpr(A, B). If successful,
1879   /// Assign A and B to LHS and RHS, respectively.
1880   bool matchURem(const SCEV *Expr, const SCEV *&LHS, const SCEV *&RHS);
1881 
1882   /// Look for a SCEV expression with type `SCEVType` and operands `Ops` in
1883   /// `UniqueSCEVs`.
1884   ///
1885   /// The first component of the returned tuple is the SCEV if found and null
1886   /// otherwise.  The second component is the `FoldingSetNodeID` that was
1887   /// constructed to look up the SCEV and the third component is the insertion
1888   /// point.
1889   std::tuple<const SCEV *, FoldingSetNodeID, void *>
1890   findExistingSCEVInCache(int SCEVType, ArrayRef<const SCEV *> Ops);
1891 
1892   FoldingSet<SCEV> UniqueSCEVs;
1893   FoldingSet<SCEVPredicate> UniquePreds;
1894   BumpPtrAllocator SCEVAllocator;
1895 
1896   /// This maps loops to a list of SCEV expressions that (transitively) use said
1897   /// loop.
1898   DenseMap<const Loop *, SmallVector<const SCEV *, 4>> LoopUsers;
1899 
1900   /// Cache tentative mappings from UnknownSCEVs in a Loop, to a SCEV expression
1901   /// they can be rewritten into under certain predicates.
1902   DenseMap<std::pair<const SCEVUnknown *, const Loop *>,
1903            std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
1904       PredicatedSCEVRewrites;
1905 
1906   /// The head of a linked list of all SCEVUnknown values that have been
1907   /// allocated. This is used by releaseMemory to locate them all and call
1908   /// their destructors.
1909   SCEVUnknown *FirstUnknown = nullptr;
1910 };
1911 
1912 /// Analysis pass that exposes the \c ScalarEvolution for a function.
1913 class ScalarEvolutionAnalysis
1914     : public AnalysisInfoMixin<ScalarEvolutionAnalysis> {
1915   friend AnalysisInfoMixin<ScalarEvolutionAnalysis>;
1916 
1917   static AnalysisKey Key;
1918 
1919 public:
1920   using Result = ScalarEvolution;
1921 
1922   ScalarEvolution run(Function &F, FunctionAnalysisManager &AM);
1923 };
1924 
1925 /// Verifier pass for the \c ScalarEvolutionAnalysis results.
1926 class ScalarEvolutionVerifierPass
1927     : public PassInfoMixin<ScalarEvolutionVerifierPass> {
1928 public:
1929   PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
1930 };
1931 
1932 /// Printer pass for the \c ScalarEvolutionAnalysis results.
1933 class ScalarEvolutionPrinterPass
1934     : public PassInfoMixin<ScalarEvolutionPrinterPass> {
1935   raw_ostream &OS;
1936 
1937 public:
1938   explicit ScalarEvolutionPrinterPass(raw_ostream &OS) : OS(OS) {}
1939 
1940   PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
1941 };
1942 
1943 class ScalarEvolutionWrapperPass : public FunctionPass {
1944   std::unique_ptr<ScalarEvolution> SE;
1945 
1946 public:
1947   static char ID;
1948 
1949   ScalarEvolutionWrapperPass();
1950 
1951   ScalarEvolution &getSE() { return *SE; }
1952   const ScalarEvolution &getSE() const { return *SE; }
1953 
1954   bool runOnFunction(Function &F) override;
1955   void releaseMemory() override;
1956   void getAnalysisUsage(AnalysisUsage &AU) const override;
1957   void print(raw_ostream &OS, const Module * = nullptr) const override;
1958   void verifyAnalysis() const override;
1959 };
1960 
1961 /// An interface layer with SCEV used to manage how we see SCEV expressions
1962 /// for values in the context of existing predicates. We can add new
1963 /// predicates, but we cannot remove them.
1964 ///
1965 /// This layer has multiple purposes:
1966 ///   - provides a simple interface for SCEV versioning.
1967 ///   - guarantees that the order of transformations applied on a SCEV
1968 ///     expression for a single Value is consistent across two different
1969 ///     getSCEV calls. This means that, for example, once we've obtained
1970 ///     an AddRec expression for a certain value through expression
1971 ///     rewriting, we will continue to get an AddRec expression for that
1972 ///     Value.
1973 ///   - lowers the number of expression rewrites.
1974 class PredicatedScalarEvolution {
1975 public:
1976   PredicatedScalarEvolution(ScalarEvolution &SE, Loop &L);
1977 
1978   const SCEVUnionPredicate &getUnionPredicate() const;
1979 
1980   /// Returns the SCEV expression of V, in the context of the current SCEV
1981   /// predicate.  The order of transformations applied on the expression of V
1982   /// returned by ScalarEvolution is guaranteed to be preserved, even when
1983   /// adding new predicates.
1984   const SCEV *getSCEV(Value *V);
1985 
1986   /// Get the (predicated) backedge count for the analyzed loop.
1987   const SCEV *getBackedgeTakenCount();
1988 
1989   /// Adds a new predicate.
1990   void addPredicate(const SCEVPredicate &Pred);
1991 
1992   /// Attempts to produce an AddRecExpr for V by adding additional SCEV
1993   /// predicates. If we can't transform the expression into an AddRecExpr we
1994   /// return nullptr and not add additional SCEV predicates to the current
1995   /// context.
1996   const SCEVAddRecExpr *getAsAddRec(Value *V);
1997 
1998   /// Proves that V doesn't overflow by adding SCEV predicate.
1999   void setNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags);
2000 
2001   /// Returns true if we've proved that V doesn't wrap by means of a SCEV
2002   /// predicate.
2003   bool hasNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags);
2004 
2005   /// Returns the ScalarEvolution analysis used.
2006   ScalarEvolution *getSE() const { return &SE; }
2007 
2008   /// We need to explicitly define the copy constructor because of FlagsMap.
2009   PredicatedScalarEvolution(const PredicatedScalarEvolution &);
2010 
2011   /// Print the SCEV mappings done by the Predicated Scalar Evolution.
2012   /// The printed text is indented by \p Depth.
2013   void print(raw_ostream &OS, unsigned Depth) const;
2014 
2015   /// Check if \p AR1 and \p AR2 are equal, while taking into account
2016   /// Equal predicates in Preds.
2017   bool areAddRecsEqualWithPreds(const SCEVAddRecExpr *AR1,
2018                                 const SCEVAddRecExpr *AR2) const;
2019 
2020 private:
2021   /// Increments the version number of the predicate.  This needs to be called
2022   /// every time the SCEV predicate changes.
2023   void updateGeneration();
2024 
2025   /// Holds a SCEV and the version number of the SCEV predicate used to
2026   /// perform the rewrite of the expression.
2027   using RewriteEntry = std::pair<unsigned, const SCEV *>;
2028 
2029   /// Maps a SCEV to the rewrite result of that SCEV at a certain version
2030   /// number. If this number doesn't match the current Generation, we will
2031   /// need to do a rewrite. To preserve the transformation order of previous
2032   /// rewrites, we will rewrite the previous result instead of the original
2033   /// SCEV.
2034   DenseMap<const SCEV *, RewriteEntry> RewriteMap;
2035 
2036   /// Records what NoWrap flags we've added to a Value *.
2037   ValueMap<Value *, SCEVWrapPredicate::IncrementWrapFlags> FlagsMap;
2038 
2039   /// The ScalarEvolution analysis.
2040   ScalarEvolution &SE;
2041 
2042   /// The analyzed Loop.
2043   const Loop &L;
2044 
2045   /// The SCEVPredicate that forms our context. We will rewrite all
2046   /// expressions assuming that this predicate true.
2047   SCEVUnionPredicate Preds;
2048 
2049   /// Marks the version of the SCEV predicate used. When rewriting a SCEV
2050   /// expression we mark it with the version of the predicate. We use this to
2051   /// figure out if the predicate has changed from the last rewrite of the
2052   /// SCEV. If so, we need to perform a new rewrite.
2053   unsigned Generation = 0;
2054 
2055   /// The backedge taken count.
2056   const SCEV *BackedgeCount = nullptr;
2057 };
2058 
2059 } // end namespace llvm
2060 
2061 #endif // LLVM_ANALYSIS_SCALAREVOLUTION_H
2062