1 //===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The ScalarEvolution class is an LLVM pass which can be used to analyze and
10 // categorize scalar expressions in loops.  It specializes in recognizing
11 // general induction variables, representing them with the abstract and opaque
12 // SCEV class.  Given this analysis, trip counts of loops and other important
13 // properties can be obtained.
14 //
15 // This analysis is primarily useful for induction variable substitution and
16 // strength reduction.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
21 #define LLVM_ANALYSIS_SCALAREVOLUTION_H
22 
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/ADT/ArrayRef.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/DenseMapInfo.h"
27 #include "llvm/ADT/FoldingSet.h"
28 #include "llvm/ADT/Optional.h"
29 #include "llvm/ADT/PointerIntPair.h"
30 #include "llvm/ADT/SetVector.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/IR/ConstantRange.h"
34 #include "llvm/IR/InstrTypes.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/PassManager.h"
37 #include "llvm/IR/ValueHandle.h"
38 #include "llvm/IR/ValueMap.h"
39 #include "llvm/Pass.h"
40 #include <cassert>
41 #include <cstdint>
42 #include <memory>
43 #include <utility>
44 
45 namespace llvm {
46 
47 class OverflowingBinaryOperator;
48 class AssumptionCache;
49 class BasicBlock;
50 class Constant;
51 class ConstantInt;
52 class DataLayout;
53 class DominatorTree;
54 class Function;
55 class GEPOperator;
56 class Instruction;
57 class LLVMContext;
58 class Loop;
59 class LoopInfo;
60 class raw_ostream;
61 class ScalarEvolution;
62 class SCEVAddRecExpr;
63 class SCEVUnknown;
64 class StructType;
65 class TargetLibraryInfo;
66 class Type;
67 class Value;
68 enum SCEVTypes : unsigned short;
69 
70 extern bool VerifySCEV;
71 
72 /// This class represents an analyzed expression in the program.  These are
73 /// opaque objects that the client is not allowed to do much with directly.
74 ///
75 class SCEV : public FoldingSetNode {
76   friend struct FoldingSetTrait<SCEV>;
77 
78   /// A reference to an Interned FoldingSetNodeID for this node.  The
79   /// ScalarEvolution's BumpPtrAllocator holds the data.
80   FoldingSetNodeIDRef FastID;
81 
82   // The SCEV baseclass this node corresponds to
83   const SCEVTypes SCEVType;
84 
85 protected:
86   // Estimated complexity of this node's expression tree size.
87   const unsigned short ExpressionSize;
88 
89   /// This field is initialized to zero and may be used in subclasses to store
90   /// miscellaneous information.
91   unsigned short SubclassData = 0;
92 
93 public:
94   /// NoWrapFlags are bitfield indices into SubclassData.
95   ///
96   /// Add and Mul expressions may have no-unsigned-wrap <NUW> or
97   /// no-signed-wrap <NSW> properties, which are derived from the IR
98   /// operator. NSW is a misnomer that we use to mean no signed overflow or
99   /// underflow.
100   ///
101   /// AddRec expressions may have a no-self-wraparound <NW> property if, in
102   /// the integer domain, abs(step) * max-iteration(loop) <=
103   /// unsigned-max(bitwidth).  This means that the recurrence will never reach
104   /// its start value if the step is non-zero.  Computing the same value on
105   /// each iteration is not considered wrapping, and recurrences with step = 0
106   /// are trivially <NW>.  <NW> is independent of the sign of step and the
107   /// value the add recurrence starts with.
108   ///
109   /// Note that NUW and NSW are also valid properties of a recurrence, and
110   /// either implies NW. For convenience, NW will be set for a recurrence
111   /// whenever either NUW or NSW are set.
112   ///
113   /// We require that the flag on a SCEV apply to the entire scope in which
114   /// that SCEV is defined.  A SCEV's scope is set of locations dominated by
115   /// a defining location, which is in turn described by the following rules:
116   /// * A SCEVUnknown is at the point of definition of the Value.
117   /// * A SCEVConstant is defined at all points.
118   /// * A SCEVAddRec is defined starting with the header of the associated
119   ///   loop.
120   /// * All other SCEVs are defined at the earlest point all operands are
121   ///   defined.
122   ///
123   /// The above rules describe a maximally hoisted form (without regards to
124   /// potential control dependence).  A SCEV is defined anywhere a
125   /// corresponding instruction could be defined in said maximally hoisted
126   /// form.  Note that SCEVUDivExpr (currently the only expression type which
127   /// can trap) can be defined per these rules in regions where it would trap
128   /// at runtime.  A SCEV being defined does not require the existence of any
129   /// instruction within the defined scope.
130   enum NoWrapFlags {
131     FlagAnyWrap = 0,    // No guarantee.
132     FlagNW = (1 << 0),  // No self-wrap.
133     FlagNUW = (1 << 1), // No unsigned wrap.
134     FlagNSW = (1 << 2), // No signed wrap.
135     NoWrapMask = (1 << 3) - 1
136   };
137 
138   explicit SCEV(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy,
139                 unsigned short ExpressionSize)
140       : FastID(ID), SCEVType(SCEVTy), ExpressionSize(ExpressionSize) {}
141   SCEV(const SCEV &) = delete;
142   SCEV &operator=(const SCEV &) = delete;
143 
144   SCEVTypes getSCEVType() const { return SCEVType; }
145 
146   /// Return the LLVM type of this SCEV expression.
147   Type *getType() const;
148 
149   /// Return true if the expression is a constant zero.
150   bool isZero() const;
151 
152   /// Return true if the expression is a constant one.
153   bool isOne() const;
154 
155   /// Return true if the expression is a constant all-ones value.
156   bool isAllOnesValue() const;
157 
158   /// Return true if the specified scev is negated, but not a constant.
159   bool isNonConstantNegative() const;
160 
161   // Returns estimated size of the mathematical expression represented by this
162   // SCEV. The rules of its calculation are following:
163   // 1) Size of a SCEV without operands (like constants and SCEVUnknown) is 1;
164   // 2) Size SCEV with operands Op1, Op2, ..., OpN is calculated by formula:
165   //    (1 + Size(Op1) + ... + Size(OpN)).
166   // This value gives us an estimation of time we need to traverse through this
167   // SCEV and all its operands recursively. We may use it to avoid performing
168   // heavy transformations on SCEVs of excessive size for sake of saving the
169   // compilation time.
170   unsigned short getExpressionSize() const {
171     return ExpressionSize;
172   }
173 
174   /// Print out the internal representation of this scalar to the specified
175   /// stream.  This should really only be used for debugging purposes.
176   void print(raw_ostream &OS) const;
177 
178   /// This method is used for debugging.
179   void dump() const;
180 };
181 
182 // Specialize FoldingSetTrait for SCEV to avoid needing to compute
183 // temporary FoldingSetNodeID values.
184 template <> struct FoldingSetTrait<SCEV> : DefaultFoldingSetTrait<SCEV> {
185   static void Profile(const SCEV &X, FoldingSetNodeID &ID) { ID = X.FastID; }
186 
187   static bool Equals(const SCEV &X, const FoldingSetNodeID &ID, unsigned IDHash,
188                      FoldingSetNodeID &TempID) {
189     return ID == X.FastID;
190   }
191 
192   static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID) {
193     return X.FastID.ComputeHash();
194   }
195 };
196 
197 inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
198   S.print(OS);
199   return OS;
200 }
201 
202 /// An object of this class is returned by queries that could not be answered.
203 /// For example, if you ask for the number of iterations of a linked-list
204 /// traversal loop, you will get one of these.  None of the standard SCEV
205 /// operations are valid on this class, it is just a marker.
206 struct SCEVCouldNotCompute : public SCEV {
207   SCEVCouldNotCompute();
208 
209   /// Methods for support type inquiry through isa, cast, and dyn_cast:
210   static bool classof(const SCEV *S);
211 };
212 
213 /// This class represents an assumption made using SCEV expressions which can
214 /// be checked at run-time.
215 class SCEVPredicate : public FoldingSetNode {
216   friend struct FoldingSetTrait<SCEVPredicate>;
217 
218   /// A reference to an Interned FoldingSetNodeID for this node.  The
219   /// ScalarEvolution's BumpPtrAllocator holds the data.
220   FoldingSetNodeIDRef FastID;
221 
222 public:
223   enum SCEVPredicateKind { P_Union, P_Compare, P_Wrap };
224 
225 protected:
226   SCEVPredicateKind Kind;
227   ~SCEVPredicate() = default;
228   SCEVPredicate(const SCEVPredicate &) = default;
229   SCEVPredicate &operator=(const SCEVPredicate &) = default;
230 
231 public:
232   SCEVPredicate(const FoldingSetNodeIDRef ID, SCEVPredicateKind Kind);
233 
234   SCEVPredicateKind getKind() const { return Kind; }
235 
236   /// Returns the estimated complexity of this predicate.  This is roughly
237   /// measured in the number of run-time checks required.
238   virtual unsigned getComplexity() const { return 1; }
239 
240   /// Returns true if the predicate is always true. This means that no
241   /// assumptions were made and nothing needs to be checked at run-time.
242   virtual bool isAlwaysTrue() const = 0;
243 
244   /// Returns true if this predicate implies \p N.
245   virtual bool implies(const SCEVPredicate *N) const = 0;
246 
247   /// Prints a textual representation of this predicate with an indentation of
248   /// \p Depth.
249   virtual void print(raw_ostream &OS, unsigned Depth = 0) const = 0;
250 };
251 
252 inline raw_ostream &operator<<(raw_ostream &OS, const SCEVPredicate &P) {
253   P.print(OS);
254   return OS;
255 }
256 
257 // Specialize FoldingSetTrait for SCEVPredicate to avoid needing to compute
258 // temporary FoldingSetNodeID values.
259 template <>
260 struct FoldingSetTrait<SCEVPredicate> : DefaultFoldingSetTrait<SCEVPredicate> {
261   static void Profile(const SCEVPredicate &X, FoldingSetNodeID &ID) {
262     ID = X.FastID;
263   }
264 
265   static bool Equals(const SCEVPredicate &X, const FoldingSetNodeID &ID,
266                      unsigned IDHash, FoldingSetNodeID &TempID) {
267     return ID == X.FastID;
268   }
269 
270   static unsigned ComputeHash(const SCEVPredicate &X,
271                               FoldingSetNodeID &TempID) {
272     return X.FastID.ComputeHash();
273   }
274 };
275 
276 /// This class represents an assumption that the expression LHS Pred RHS
277 /// evaluates to true, and this can be checked at run-time.
278 class SCEVComparePredicate final : public SCEVPredicate {
279   /// We assume that LHS Pred RHS is true.
280   const ICmpInst::Predicate Pred;
281   const SCEV *LHS;
282   const SCEV *RHS;
283 
284 public:
285   SCEVComparePredicate(const FoldingSetNodeIDRef ID,
286                        const ICmpInst::Predicate Pred,
287                        const SCEV *LHS, const SCEV *RHS);
288 
289   /// Implementation of the SCEVPredicate interface
290   bool implies(const SCEVPredicate *N) const override;
291   void print(raw_ostream &OS, unsigned Depth = 0) const override;
292   bool isAlwaysTrue() const override;
293 
294   ICmpInst::Predicate getPredicate() const { return Pred; }
295 
296   /// Returns the left hand side of the predicate.
297   const SCEV *getLHS() const { return LHS; }
298 
299   /// Returns the right hand side of the predicate.
300   const SCEV *getRHS() const { return RHS; }
301 
302   /// Methods for support type inquiry through isa, cast, and dyn_cast:
303   static bool classof(const SCEVPredicate *P) {
304     return P->getKind() == P_Compare;
305   }
306 };
307 
308 /// This class represents an assumption made on an AddRec expression. Given an
309 /// affine AddRec expression {a,+,b}, we assume that it has the nssw or nusw
310 /// flags (defined below) in the first X iterations of the loop, where X is a
311 /// SCEV expression returned by getPredicatedBackedgeTakenCount).
312 ///
313 /// Note that this does not imply that X is equal to the backedge taken
314 /// count. This means that if we have a nusw predicate for i32 {0,+,1} with a
315 /// predicated backedge taken count of X, we only guarantee that {0,+,1} has
316 /// nusw in the first X iterations. {0,+,1} may still wrap in the loop if we
317 /// have more than X iterations.
318 class SCEVWrapPredicate final : public SCEVPredicate {
319 public:
320   /// Similar to SCEV::NoWrapFlags, but with slightly different semantics
321   /// for FlagNUSW. The increment is considered to be signed, and a + b
322   /// (where b is the increment) is considered to wrap if:
323   ///    zext(a + b) != zext(a) + sext(b)
324   ///
325   /// If Signed is a function that takes an n-bit tuple and maps to the
326   /// integer domain as the tuples value interpreted as twos complement,
327   /// and Unsigned a function that takes an n-bit tuple and maps to the
328   /// integer domain as as the base two value of input tuple, then a + b
329   /// has IncrementNUSW iff:
330   ///
331   /// 0 <= Unsigned(a) + Signed(b) < 2^n
332   ///
333   /// The IncrementNSSW flag has identical semantics with SCEV::FlagNSW.
334   ///
335   /// Note that the IncrementNUSW flag is not commutative: if base + inc
336   /// has IncrementNUSW, then inc + base doesn't neccessarily have this
337   /// property. The reason for this is that this is used for sign/zero
338   /// extending affine AddRec SCEV expressions when a SCEVWrapPredicate is
339   /// assumed. A {base,+,inc} expression is already non-commutative with
340   /// regards to base and inc, since it is interpreted as:
341   ///     (((base + inc) + inc) + inc) ...
342   enum IncrementWrapFlags {
343     IncrementAnyWrap = 0,     // No guarantee.
344     IncrementNUSW = (1 << 0), // No unsigned with signed increment wrap.
345     IncrementNSSW = (1 << 1), // No signed with signed increment wrap
346                               // (equivalent with SCEV::NSW)
347     IncrementNoWrapMask = (1 << 2) - 1
348   };
349 
350   /// Convenient IncrementWrapFlags manipulation methods.
351   LLVM_NODISCARD static SCEVWrapPredicate::IncrementWrapFlags
352   clearFlags(SCEVWrapPredicate::IncrementWrapFlags Flags,
353              SCEVWrapPredicate::IncrementWrapFlags OffFlags) {
354     assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
355     assert((OffFlags & IncrementNoWrapMask) == OffFlags &&
356            "Invalid flags value!");
357     return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & ~OffFlags);
358   }
359 
360   LLVM_NODISCARD static SCEVWrapPredicate::IncrementWrapFlags
361   maskFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, int Mask) {
362     assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
363     assert((Mask & IncrementNoWrapMask) == Mask && "Invalid mask value!");
364 
365     return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & Mask);
366   }
367 
368   LLVM_NODISCARD static SCEVWrapPredicate::IncrementWrapFlags
369   setFlags(SCEVWrapPredicate::IncrementWrapFlags Flags,
370            SCEVWrapPredicate::IncrementWrapFlags OnFlags) {
371     assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
372     assert((OnFlags & IncrementNoWrapMask) == OnFlags &&
373            "Invalid flags value!");
374 
375     return (SCEVWrapPredicate::IncrementWrapFlags)(Flags | OnFlags);
376   }
377 
378   /// Returns the set of SCEVWrapPredicate no wrap flags implied by a
379   /// SCEVAddRecExpr.
380   LLVM_NODISCARD static SCEVWrapPredicate::IncrementWrapFlags
381   getImpliedFlags(const SCEVAddRecExpr *AR, ScalarEvolution &SE);
382 
383 private:
384   const SCEVAddRecExpr *AR;
385   IncrementWrapFlags Flags;
386 
387 public:
388   explicit SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
389                              const SCEVAddRecExpr *AR,
390                              IncrementWrapFlags Flags);
391 
392   /// Returns the set assumed no overflow flags.
393   IncrementWrapFlags getFlags() const { return Flags; }
394 
395   /// Implementation of the SCEVPredicate interface
396   const SCEVAddRecExpr *getExpr() const;
397   bool implies(const SCEVPredicate *N) const override;
398   void print(raw_ostream &OS, unsigned Depth = 0) const override;
399   bool isAlwaysTrue() const override;
400 
401   /// Methods for support type inquiry through isa, cast, and dyn_cast:
402   static bool classof(const SCEVPredicate *P) {
403     return P->getKind() == P_Wrap;
404   }
405 };
406 
407 /// This class represents a composition of other SCEV predicates, and is the
408 /// class that most clients will interact with.  This is equivalent to a
409 /// logical "AND" of all the predicates in the union.
410 ///
411 /// NB! Unlike other SCEVPredicate sub-classes this class does not live in the
412 /// ScalarEvolution::Preds folding set.  This is why the \c add function is sound.
413 class SCEVUnionPredicate final : public SCEVPredicate {
414 private:
415   using PredicateMap =
416       DenseMap<const SCEV *, SmallVector<const SCEVPredicate *, 4>>;
417 
418   /// Vector with references to all predicates in this union.
419   SmallVector<const SCEVPredicate *, 16> Preds;
420 
421   /// Adds a predicate to this union.
422   void add(const SCEVPredicate *N);
423 
424 public:
425   SCEVUnionPredicate(ArrayRef<const SCEVPredicate *> Preds);
426 
427   const SmallVectorImpl<const SCEVPredicate *> &getPredicates() const {
428     return Preds;
429   }
430 
431   /// Implementation of the SCEVPredicate interface
432   bool isAlwaysTrue() const override;
433   bool implies(const SCEVPredicate *N) const override;
434   void print(raw_ostream &OS, unsigned Depth) const override;
435 
436   /// We estimate the complexity of a union predicate as the size number of
437   /// predicates in the union.
438   unsigned getComplexity() const override { return Preds.size(); }
439 
440   /// Methods for support type inquiry through isa, cast, and dyn_cast:
441   static bool classof(const SCEVPredicate *P) {
442     return P->getKind() == P_Union;
443   }
444 };
445 
446 /// The main scalar evolution driver. Because client code (intentionally)
447 /// can't do much with the SCEV objects directly, they must ask this class
448 /// for services.
449 class ScalarEvolution {
450   friend class ScalarEvolutionsTest;
451 
452 public:
453   /// An enum describing the relationship between a SCEV and a loop.
454   enum LoopDisposition {
455     LoopVariant,   ///< The SCEV is loop-variant (unknown).
456     LoopInvariant, ///< The SCEV is loop-invariant.
457     LoopComputable ///< The SCEV varies predictably with the loop.
458   };
459 
460   /// An enum describing the relationship between a SCEV and a basic block.
461   enum BlockDisposition {
462     DoesNotDominateBlock,  ///< The SCEV does not dominate the block.
463     DominatesBlock,        ///< The SCEV dominates the block.
464     ProperlyDominatesBlock ///< The SCEV properly dominates the block.
465   };
466 
467   /// Convenient NoWrapFlags manipulation that hides enum casts and is
468   /// visible in the ScalarEvolution name space.
469   LLVM_NODISCARD static SCEV::NoWrapFlags maskFlags(SCEV::NoWrapFlags Flags,
470                                                     int Mask) {
471     return (SCEV::NoWrapFlags)(Flags & Mask);
472   }
473   LLVM_NODISCARD static SCEV::NoWrapFlags setFlags(SCEV::NoWrapFlags Flags,
474                                                    SCEV::NoWrapFlags OnFlags) {
475     return (SCEV::NoWrapFlags)(Flags | OnFlags);
476   }
477   LLVM_NODISCARD static SCEV::NoWrapFlags
478   clearFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OffFlags) {
479     return (SCEV::NoWrapFlags)(Flags & ~OffFlags);
480   }
481   LLVM_NODISCARD static bool hasFlags(SCEV::NoWrapFlags Flags,
482                                       SCEV::NoWrapFlags TestFlags) {
483     return TestFlags == maskFlags(Flags, TestFlags);
484   };
485 
486   ScalarEvolution(Function &F, TargetLibraryInfo &TLI, AssumptionCache &AC,
487                   DominatorTree &DT, LoopInfo &LI);
488   ScalarEvolution(ScalarEvolution &&Arg);
489   ~ScalarEvolution();
490 
491   LLVMContext &getContext() const { return F.getContext(); }
492 
493   /// Test if values of the given type are analyzable within the SCEV
494   /// framework. This primarily includes integer types, and it can optionally
495   /// include pointer types if the ScalarEvolution class has access to
496   /// target-specific information.
497   bool isSCEVable(Type *Ty) const;
498 
499   /// Return the size in bits of the specified type, for which isSCEVable must
500   /// return true.
501   uint64_t getTypeSizeInBits(Type *Ty) const;
502 
503   /// Return a type with the same bitwidth as the given type and which
504   /// represents how SCEV will treat the given type, for which isSCEVable must
505   /// return true. For pointer types, this is the pointer-sized integer type.
506   Type *getEffectiveSCEVType(Type *Ty) const;
507 
508   // Returns a wider type among {Ty1, Ty2}.
509   Type *getWiderType(Type *Ty1, Type *Ty2) const;
510 
511   /// Return true if there exists a point in the program at which both
512   /// A and B could be operands to the same instruction.
513   /// SCEV expressions are generally assumed to correspond to instructions
514   /// which could exists in IR.  In general, this requires that there exists
515   /// a use point in the program where all operands dominate the use.
516   ///
517   /// Example:
518   /// loop {
519   ///   if
520   ///     loop { v1 = load @global1; }
521   ///   else
522   ///     loop { v2 = load @global2; }
523   /// }
524   /// No SCEV with operand V1, and v2 can exist in this program.
525   bool instructionCouldExistWitthOperands(const SCEV *A, const SCEV *B);
526 
527   /// Return true if the SCEV is a scAddRecExpr or it contains
528   /// scAddRecExpr. The result will be cached in HasRecMap.
529   bool containsAddRecurrence(const SCEV *S);
530 
531   /// Is operation \p BinOp between \p LHS and \p RHS provably does not have
532   /// a signed/unsigned overflow (\p Signed)?
533   bool willNotOverflow(Instruction::BinaryOps BinOp, bool Signed,
534                        const SCEV *LHS, const SCEV *RHS);
535 
536   /// Parse NSW/NUW flags from add/sub/mul IR binary operation \p Op into
537   /// SCEV no-wrap flags, and deduce flag[s] that aren't known yet.
538   /// Does not mutate the original instruction. Returns None if it could not
539   /// deduce more precise flags than the instruction already has, otherwise
540   /// returns proven flags.
541   Optional<SCEV::NoWrapFlags>
542   getStrengthenedNoWrapFlagsFromBinOp(const OverflowingBinaryOperator *OBO);
543 
544   /// Notify this ScalarEvolution that \p User directly uses SCEVs in \p Ops.
545   void registerUser(const SCEV *User, ArrayRef<const SCEV *> Ops);
546 
547   /// Return true if the SCEV expression contains an undef value.
548   bool containsUndefs(const SCEV *S) const;
549 
550   /// Return true if the SCEV expression contains a Value that has been
551   /// optimised out and is now a nullptr.
552   bool containsErasedValue(const SCEV *S) const;
553 
554   /// Return a SCEV expression for the full generality of the specified
555   /// expression.
556   const SCEV *getSCEV(Value *V);
557 
558   const SCEV *getConstant(ConstantInt *V);
559   const SCEV *getConstant(const APInt &Val);
560   const SCEV *getConstant(Type *Ty, uint64_t V, bool isSigned = false);
561   const SCEV *getLosslessPtrToIntExpr(const SCEV *Op, unsigned Depth = 0);
562   const SCEV *getPtrToIntExpr(const SCEV *Op, Type *Ty);
563   const SCEV *getTruncateExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0);
564   const SCEV *getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0);
565   const SCEV *getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0);
566   const SCEV *getCastExpr(SCEVTypes Kind, const SCEV *Op, Type *Ty);
567   const SCEV *getAnyExtendExpr(const SCEV *Op, Type *Ty);
568   const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
569                          SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
570                          unsigned Depth = 0);
571   const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS,
572                          SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
573                          unsigned Depth = 0) {
574     SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
575     return getAddExpr(Ops, Flags, Depth);
576   }
577   const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
578                          SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
579                          unsigned Depth = 0) {
580     SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2};
581     return getAddExpr(Ops, Flags, Depth);
582   }
583   const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
584                          SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
585                          unsigned Depth = 0);
586   const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS,
587                          SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
588                          unsigned Depth = 0) {
589     SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
590     return getMulExpr(Ops, Flags, Depth);
591   }
592   const SCEV *getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
593                          SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
594                          unsigned Depth = 0) {
595     SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2};
596     return getMulExpr(Ops, Flags, Depth);
597   }
598   const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS);
599   const SCEV *getUDivExactExpr(const SCEV *LHS, const SCEV *RHS);
600   const SCEV *getURemExpr(const SCEV *LHS, const SCEV *RHS);
601   const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step, const Loop *L,
602                             SCEV::NoWrapFlags Flags);
603   const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
604                             const Loop *L, SCEV::NoWrapFlags Flags);
605   const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands,
606                             const Loop *L, SCEV::NoWrapFlags Flags) {
607     SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end());
608     return getAddRecExpr(NewOp, L, Flags);
609   }
610 
611   /// Checks if \p SymbolicPHI can be rewritten as an AddRecExpr under some
612   /// Predicates. If successful return these <AddRecExpr, Predicates>;
613   /// The function is intended to be called from PSCEV (the caller will decide
614   /// whether to actually add the predicates and carry out the rewrites).
615   Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
616   createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI);
617 
618   /// Returns an expression for a GEP
619   ///
620   /// \p GEP The GEP. The indices contained in the GEP itself are ignored,
621   /// instead we use IndexExprs.
622   /// \p IndexExprs The expressions for the indices.
623   const SCEV *getGEPExpr(GEPOperator *GEP,
624                          const SmallVectorImpl<const SCEV *> &IndexExprs);
625   const SCEV *getAbsExpr(const SCEV *Op, bool IsNSW);
626   const SCEV *getMinMaxExpr(SCEVTypes Kind,
627                             SmallVectorImpl<const SCEV *> &Operands);
628   const SCEV *getSequentialMinMaxExpr(SCEVTypes Kind,
629                                       SmallVectorImpl<const SCEV *> &Operands);
630   const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS);
631   const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
632   const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS);
633   const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
634   const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS);
635   const SCEV *getSMinExpr(SmallVectorImpl<const SCEV *> &Operands);
636   const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS,
637                           bool Sequential = false);
638   const SCEV *getUMinExpr(SmallVectorImpl<const SCEV *> &Operands,
639                           bool Sequential = false);
640   const SCEV *getUnknown(Value *V);
641   const SCEV *getCouldNotCompute();
642 
643   /// Return a SCEV for the constant 0 of a specific type.
644   const SCEV *getZero(Type *Ty) { return getConstant(Ty, 0); }
645 
646   /// Return a SCEV for the constant 1 of a specific type.
647   const SCEV *getOne(Type *Ty) { return getConstant(Ty, 1); }
648 
649   /// Return a SCEV for the constant -1 of a specific type.
650   const SCEV *getMinusOne(Type *Ty) {
651     return getConstant(Ty, -1, /*isSigned=*/true);
652   }
653 
654   /// Return an expression for sizeof ScalableTy that is type IntTy, where
655   /// ScalableTy is a scalable vector type.
656   const SCEV *getSizeOfScalableVectorExpr(Type *IntTy,
657                                           ScalableVectorType *ScalableTy);
658 
659   /// Return an expression for the alloc size of AllocTy that is type IntTy
660   const SCEV *getSizeOfExpr(Type *IntTy, Type *AllocTy);
661 
662   /// Return an expression for the store size of StoreTy that is type IntTy
663   const SCEV *getStoreSizeOfExpr(Type *IntTy, Type *StoreTy);
664 
665   /// Return an expression for offsetof on the given field with type IntTy
666   const SCEV *getOffsetOfExpr(Type *IntTy, StructType *STy, unsigned FieldNo);
667 
668   /// Return the SCEV object corresponding to -V.
669   const SCEV *getNegativeSCEV(const SCEV *V,
670                               SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
671 
672   /// Return the SCEV object corresponding to ~V.
673   const SCEV *getNotSCEV(const SCEV *V);
674 
675   /// Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
676   ///
677   /// If the LHS and RHS are pointers which don't share a common base
678   /// (according to getPointerBase()), this returns a SCEVCouldNotCompute.
679   /// To compute the difference between two unrelated pointers, you can
680   /// explicitly convert the arguments using getPtrToIntExpr(), for pointer
681   /// types that support it.
682   const SCEV *getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
683                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
684                            unsigned Depth = 0);
685 
686   /// Compute ceil(N / D). N and D are treated as unsigned values.
687   ///
688   /// Since SCEV doesn't have native ceiling division, this generates a
689   /// SCEV expression of the following form:
690   ///
691   /// umin(N, 1) + floor((N - umin(N, 1)) / D)
692   ///
693   /// A denominator of zero or poison is handled the same way as getUDivExpr().
694   const SCEV *getUDivCeilSCEV(const SCEV *N, const SCEV *D);
695 
696   /// Return a SCEV corresponding to a conversion of the input value to the
697   /// specified type.  If the type must be extended, it is zero extended.
698   const SCEV *getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
699                                       unsigned Depth = 0);
700 
701   /// Return a SCEV corresponding to a conversion of the input value to the
702   /// specified type.  If the type must be extended, it is sign extended.
703   const SCEV *getTruncateOrSignExtend(const SCEV *V, Type *Ty,
704                                       unsigned Depth = 0);
705 
706   /// Return a SCEV corresponding to a conversion of the input value to the
707   /// specified type.  If the type must be extended, it is zero extended.  The
708   /// conversion must not be narrowing.
709   const SCEV *getNoopOrZeroExtend(const SCEV *V, Type *Ty);
710 
711   /// Return a SCEV corresponding to a conversion of the input value to the
712   /// specified type.  If the type must be extended, it is sign extended.  The
713   /// conversion must not be narrowing.
714   const SCEV *getNoopOrSignExtend(const SCEV *V, Type *Ty);
715 
716   /// Return a SCEV corresponding to a conversion of the input value to the
717   /// specified type. If the type must be extended, it is extended with
718   /// unspecified bits. The conversion must not be narrowing.
719   const SCEV *getNoopOrAnyExtend(const SCEV *V, Type *Ty);
720 
721   /// Return a SCEV corresponding to a conversion of the input value to the
722   /// specified type.  The conversion must not be widening.
723   const SCEV *getTruncateOrNoop(const SCEV *V, Type *Ty);
724 
725   /// Promote the operands to the wider of the types using zero-extension, and
726   /// then perform a umax operation with them.
727   const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS);
728 
729   /// Promote the operands to the wider of the types using zero-extension, and
730   /// then perform a umin operation with them.
731   const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS,
732                                          bool Sequential = false);
733 
734   /// Promote the operands to the wider of the types using zero-extension, and
735   /// then perform a umin operation with them. N-ary function.
736   const SCEV *getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV *> &Ops,
737                                          bool Sequential = false);
738 
739   /// Transitively follow the chain of pointer-type operands until reaching a
740   /// SCEV that does not have a single pointer operand. This returns a
741   /// SCEVUnknown pointer for well-formed pointer-type expressions, but corner
742   /// cases do exist.
743   const SCEV *getPointerBase(const SCEV *V);
744 
745   /// Compute an expression equivalent to S - getPointerBase(S).
746   const SCEV *removePointerBase(const SCEV *S);
747 
748   /// Return a SCEV expression for the specified value at the specified scope
749   /// in the program.  The L value specifies a loop nest to evaluate the
750   /// expression at, where null is the top-level or a specified loop is
751   /// immediately inside of the loop.
752   ///
753   /// This method can be used to compute the exit value for a variable defined
754   /// in a loop by querying what the value will hold in the parent loop.
755   ///
756   /// In the case that a relevant loop exit value cannot be computed, the
757   /// original value V is returned.
758   const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L);
759 
760   /// This is a convenience function which does getSCEVAtScope(getSCEV(V), L).
761   const SCEV *getSCEVAtScope(Value *V, const Loop *L);
762 
763   /// Test whether entry to the loop is protected by a conditional between LHS
764   /// and RHS.  This is used to help avoid max expressions in loop trip
765   /// counts, and to eliminate casts.
766   bool isLoopEntryGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
767                                 const SCEV *LHS, const SCEV *RHS);
768 
769   /// Test whether entry to the basic block is protected by a conditional
770   /// between LHS and RHS.
771   bool isBasicBlockEntryGuardedByCond(const BasicBlock *BB,
772                                       ICmpInst::Predicate Pred, const SCEV *LHS,
773                                       const SCEV *RHS);
774 
775   /// Test whether the backedge of the loop is protected by a conditional
776   /// between LHS and RHS.  This is used to eliminate casts.
777   bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
778                                    const SCEV *LHS, const SCEV *RHS);
779 
780   /// Convert from an "exit count" (i.e. "backedge taken count") to a "trip
781   /// count".  A "trip count" is the number of times the header of the loop
782   /// will execute if an exit is taken after the specified number of backedges
783   /// have been taken.  (e.g. TripCount = ExitCount + 1).  Note that the
784   /// expression can overflow if ExitCount = UINT_MAX.  \p Extend controls
785   /// how potential overflow is handled.  If true, a wider result type is
786   /// returned. ex: EC = 255 (i8), TC = 256 (i9).  If false, result unsigned
787   /// wraps with 2s-complement semantics.  ex: EC = 255 (i8), TC = 0 (i8)
788   const SCEV *getTripCountFromExitCount(const SCEV *ExitCount,
789                                         bool Extend = true);
790 
791   /// Returns the exact trip count of the loop if we can compute it, and
792   /// the result is a small constant.  '0' is used to represent an unknown
793   /// or non-constant trip count.  Note that a trip count is simply one more
794   /// than the backedge taken count for the loop.
795   unsigned getSmallConstantTripCount(const Loop *L);
796 
797   /// Return the exact trip count for this loop if we exit through ExitingBlock.
798   /// '0' is used to represent an unknown or non-constant trip count.  Note
799   /// that a trip count is simply one more than the backedge taken count for
800   /// the same exit.
801   /// This "trip count" assumes that control exits via ExitingBlock. More
802   /// precisely, it is the number of times that control will reach ExitingBlock
803   /// before taking the branch. For loops with multiple exits, it may not be
804   /// the number times that the loop header executes if the loop exits
805   /// prematurely via another branch.
806   unsigned getSmallConstantTripCount(const Loop *L,
807                                      const BasicBlock *ExitingBlock);
808 
809   /// Returns the upper bound of the loop trip count as a normal unsigned
810   /// value.
811   /// Returns 0 if the trip count is unknown or not constant.
812   unsigned getSmallConstantMaxTripCount(const Loop *L);
813 
814   /// Returns the upper bound of the loop trip count infered from array size.
815   /// Can not access bytes starting outside the statically allocated size
816   /// without being immediate UB.
817   /// Returns SCEVCouldNotCompute if the trip count could not inferred
818   /// from array accesses.
819   const SCEV *getConstantMaxTripCountFromArray(const Loop *L);
820 
821   /// Returns the largest constant divisor of the trip count as a normal
822   /// unsigned value, if possible. This means that the actual trip count is
823   /// always a multiple of the returned value. Returns 1 if the trip count is
824   /// unknown or not guaranteed to be the multiple of a constant., Will also
825   /// return 1 if the trip count is very large (>= 2^32).
826   /// Note that the argument is an exit count for loop L, NOT a trip count.
827   unsigned getSmallConstantTripMultiple(const Loop *L,
828                                         const SCEV *ExitCount);
829 
830   /// Returns the largest constant divisor of the trip count of the
831   /// loop.  Will return 1 if no trip count could be computed, or if a
832   /// divisor could not be found.
833   unsigned getSmallConstantTripMultiple(const Loop *L);
834 
835   /// Returns the largest constant divisor of the trip count of this loop as a
836   /// normal unsigned value, if possible. This means that the actual trip
837   /// count is always a multiple of the returned value (don't forget the trip
838   /// count could very well be zero as well!). As explained in the comments
839   /// for getSmallConstantTripCount, this assumes that control exits the loop
840   /// via ExitingBlock.
841   unsigned getSmallConstantTripMultiple(const Loop *L,
842                                         const BasicBlock *ExitingBlock);
843 
844   /// The terms "backedge taken count" and "exit count" are used
845   /// interchangeably to refer to the number of times the backedge of a loop
846   /// has executed before the loop is exited.
847   enum ExitCountKind {
848     /// An expression exactly describing the number of times the backedge has
849     /// executed when a loop is exited.
850     Exact,
851     /// A constant which provides an upper bound on the exact trip count.
852     ConstantMaximum,
853     /// An expression which provides an upper bound on the exact trip count.
854     SymbolicMaximum,
855   };
856 
857   /// Return the number of times the backedge executes before the given exit
858   /// would be taken; if not exactly computable, return SCEVCouldNotCompute.
859   /// For a single exit loop, this value is equivelent to the result of
860   /// getBackedgeTakenCount.  The loop is guaranteed to exit (via *some* exit)
861   /// before the backedge is executed (ExitCount + 1) times.  Note that there
862   /// is no guarantee about *which* exit is taken on the exiting iteration.
863   const SCEV *getExitCount(const Loop *L, const BasicBlock *ExitingBlock,
864                            ExitCountKind Kind = Exact);
865 
866   /// If the specified loop has a predictable backedge-taken count, return it,
867   /// otherwise return a SCEVCouldNotCompute object. The backedge-taken count is
868   /// the number of times the loop header will be branched to from within the
869   /// loop, assuming there are no abnormal exists like exception throws. This is
870   /// one less than the trip count of the loop, since it doesn't count the first
871   /// iteration, when the header is branched to from outside the loop.
872   ///
873   /// Note that it is not valid to call this method on a loop without a
874   /// loop-invariant backedge-taken count (see
875   /// hasLoopInvariantBackedgeTakenCount).
876   const SCEV *getBackedgeTakenCount(const Loop *L, ExitCountKind Kind = Exact);
877 
878   /// Similar to getBackedgeTakenCount, except it will add a set of
879   /// SCEV predicates to Predicates that are required to be true in order for
880   /// the answer to be correct. Predicates can be checked with run-time
881   /// checks and can be used to perform loop versioning.
882   const SCEV *getPredicatedBackedgeTakenCount(const Loop *L,
883                                               SmallVector<const SCEVPredicate *, 4> &Predicates);
884 
885   /// When successful, this returns a SCEVConstant that is greater than or equal
886   /// to (i.e. a "conservative over-approximation") of the value returend by
887   /// getBackedgeTakenCount.  If such a value cannot be computed, it returns the
888   /// SCEVCouldNotCompute object.
889   const SCEV *getConstantMaxBackedgeTakenCount(const Loop *L) {
890     return getBackedgeTakenCount(L, ConstantMaximum);
891   }
892 
893   /// When successful, this returns a SCEV that is greater than or equal
894   /// to (i.e. a "conservative over-approximation") of the value returend by
895   /// getBackedgeTakenCount.  If such a value cannot be computed, it returns the
896   /// SCEVCouldNotCompute object.
897   const SCEV *getSymbolicMaxBackedgeTakenCount(const Loop *L) {
898     return getBackedgeTakenCount(L, SymbolicMaximum);
899   }
900 
901   /// Return true if the backedge taken count is either the value returned by
902   /// getConstantMaxBackedgeTakenCount or zero.
903   bool isBackedgeTakenCountMaxOrZero(const Loop *L);
904 
905   /// Return true if the specified loop has an analyzable loop-invariant
906   /// backedge-taken count.
907   bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
908 
909   // This method should be called by the client when it made any change that
910   // would invalidate SCEV's answers, and the client wants to remove all loop
911   // information held internally by ScalarEvolution. This is intended to be used
912   // when the alternative to forget a loop is too expensive (i.e. large loop
913   // bodies).
914   void forgetAllLoops();
915 
916   /// This method should be called by the client when it has changed a loop in
917   /// a way that may effect ScalarEvolution's ability to compute a trip count,
918   /// or if the loop is deleted.  This call is potentially expensive for large
919   /// loop bodies.
920   void forgetLoop(const Loop *L);
921 
922   // This method invokes forgetLoop for the outermost loop of the given loop
923   // \p L, making ScalarEvolution forget about all this subtree. This needs to
924   // be done whenever we make a transform that may affect the parameters of the
925   // outer loop, such as exit counts for branches.
926   void forgetTopmostLoop(const Loop *L);
927 
928   /// This method should be called by the client when it has changed a value
929   /// in a way that may effect its value, or which may disconnect it from a
930   /// def-use chain linking it to a loop.
931   void forgetValue(Value *V);
932 
933   /// Called when the client has changed the disposition of values in
934   /// this loop.
935   ///
936   /// We don't have a way to invalidate per-loop dispositions. Clear and
937   /// recompute is simpler.
938   void forgetLoopDispositions(const Loop *L);
939 
940   /// Determine the minimum number of zero bits that S is guaranteed to end in
941   /// (at every loop iteration).  It is, at the same time, the minimum number
942   /// of times S is divisible by 2.  For example, given {4,+,8} it returns 2.
943   /// If S is guaranteed to be 0, it returns the bitwidth of S.
944   uint32_t GetMinTrailingZeros(const SCEV *S);
945 
946   /// Determine the unsigned range for a particular SCEV.
947   /// NOTE: This returns a copy of the reference returned by getRangeRef.
948   ConstantRange getUnsignedRange(const SCEV *S) {
949     return getRangeRef(S, HINT_RANGE_UNSIGNED);
950   }
951 
952   /// Determine the min of the unsigned range for a particular SCEV.
953   APInt getUnsignedRangeMin(const SCEV *S) {
954     return getRangeRef(S, HINT_RANGE_UNSIGNED).getUnsignedMin();
955   }
956 
957   /// Determine the max of the unsigned range for a particular SCEV.
958   APInt getUnsignedRangeMax(const SCEV *S) {
959     return getRangeRef(S, HINT_RANGE_UNSIGNED).getUnsignedMax();
960   }
961 
962   /// Determine the signed range for a particular SCEV.
963   /// NOTE: This returns a copy of the reference returned by getRangeRef.
964   ConstantRange getSignedRange(const SCEV *S) {
965     return getRangeRef(S, HINT_RANGE_SIGNED);
966   }
967 
968   /// Determine the min of the signed range for a particular SCEV.
969   APInt getSignedRangeMin(const SCEV *S) {
970     return getRangeRef(S, HINT_RANGE_SIGNED).getSignedMin();
971   }
972 
973   /// Determine the max of the signed range for a particular SCEV.
974   APInt getSignedRangeMax(const SCEV *S) {
975     return getRangeRef(S, HINT_RANGE_SIGNED).getSignedMax();
976   }
977 
978   /// Test if the given expression is known to be negative.
979   bool isKnownNegative(const SCEV *S);
980 
981   /// Test if the given expression is known to be positive.
982   bool isKnownPositive(const SCEV *S);
983 
984   /// Test if the given expression is known to be non-negative.
985   bool isKnownNonNegative(const SCEV *S);
986 
987   /// Test if the given expression is known to be non-positive.
988   bool isKnownNonPositive(const SCEV *S);
989 
990   /// Test if the given expression is known to be non-zero.
991   bool isKnownNonZero(const SCEV *S);
992 
993   /// Splits SCEV expression \p S into two SCEVs. One of them is obtained from
994   /// \p S by substitution of all AddRec sub-expression related to loop \p L
995   /// with initial value of that SCEV. The second is obtained from \p S by
996   /// substitution of all AddRec sub-expressions related to loop \p L with post
997   /// increment of this AddRec in the loop \p L. In both cases all other AddRec
998   /// sub-expressions (not related to \p L) remain the same.
999   /// If the \p S contains non-invariant unknown SCEV the function returns
1000   /// CouldNotCompute SCEV in both values of std::pair.
1001   /// For example, for SCEV S={0, +, 1}<L1> + {0, +, 1}<L2> and loop L=L1
1002   /// the function returns pair:
1003   /// first = {0, +, 1}<L2>
1004   /// second = {1, +, 1}<L1> + {0, +, 1}<L2>
1005   /// We can see that for the first AddRec sub-expression it was replaced with
1006   /// 0 (initial value) for the first element and to {1, +, 1}<L1> (post
1007   /// increment value) for the second one. In both cases AddRec expression
1008   /// related to L2 remains the same.
1009   std::pair<const SCEV *, const SCEV *> SplitIntoInitAndPostInc(const Loop *L,
1010                                                                 const SCEV *S);
1011 
1012   /// We'd like to check the predicate on every iteration of the most dominated
1013   /// loop between loops used in LHS and RHS.
1014   /// To do this we use the following list of steps:
1015   /// 1. Collect set S all loops on which either LHS or RHS depend.
1016   /// 2. If S is non-empty
1017   /// a. Let PD be the element of S which is dominated by all other elements.
1018   /// b. Let E(LHS) be value of LHS on entry of PD.
1019   ///    To get E(LHS), we should just take LHS and replace all AddRecs that are
1020   ///    attached to PD on with their entry values.
1021   ///    Define E(RHS) in the same way.
1022   /// c. Let B(LHS) be value of L on backedge of PD.
1023   ///    To get B(LHS), we should just take LHS and replace all AddRecs that are
1024   ///    attached to PD on with their backedge values.
1025   ///    Define B(RHS) in the same way.
1026   /// d. Note that E(LHS) and E(RHS) are automatically available on entry of PD,
1027   ///    so we can assert on that.
1028   /// e. Return true if isLoopEntryGuardedByCond(Pred, E(LHS), E(RHS)) &&
1029   ///                   isLoopBackedgeGuardedByCond(Pred, B(LHS), B(RHS))
1030   bool isKnownViaInduction(ICmpInst::Predicate Pred, const SCEV *LHS,
1031                            const SCEV *RHS);
1032 
1033   /// Test if the given expression is known to satisfy the condition described
1034   /// by Pred, LHS, and RHS.
1035   bool isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
1036                         const SCEV *RHS);
1037 
1038   /// Check whether the condition described by Pred, LHS, and RHS is true or
1039   /// false. If we know it, return the evaluation of this condition. If neither
1040   /// is proved, return None.
1041   Optional<bool> evaluatePredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
1042                                    const SCEV *RHS);
1043 
1044   /// Test if the given expression is known to satisfy the condition described
1045   /// by Pred, LHS, and RHS in the given Context.
1046   bool isKnownPredicateAt(ICmpInst::Predicate Pred, const SCEV *LHS,
1047                           const SCEV *RHS, const Instruction *CtxI);
1048 
1049   /// Check whether the condition described by Pred, LHS, and RHS is true or
1050   /// false in the given \p Context. If we know it, return the evaluation of
1051   /// this condition. If neither is proved, return None.
1052   Optional<bool> evaluatePredicateAt(ICmpInst::Predicate Pred, const SCEV *LHS,
1053                                      const SCEV *RHS, const Instruction *CtxI);
1054 
1055   /// Test if the condition described by Pred, LHS, RHS is known to be true on
1056   /// every iteration of the loop of the recurrency LHS.
1057   bool isKnownOnEveryIteration(ICmpInst::Predicate Pred,
1058                                const SCEVAddRecExpr *LHS, const SCEV *RHS);
1059 
1060   /// A predicate is said to be monotonically increasing if may go from being
1061   /// false to being true as the loop iterates, but never the other way
1062   /// around.  A predicate is said to be monotonically decreasing if may go
1063   /// from being true to being false as the loop iterates, but never the other
1064   /// way around.
1065   enum MonotonicPredicateType {
1066     MonotonicallyIncreasing,
1067     MonotonicallyDecreasing
1068   };
1069 
1070   /// If, for all loop invariant X, the predicate "LHS `Pred` X" is
1071   /// monotonically increasing or decreasing, returns
1072   /// Some(MonotonicallyIncreasing) and Some(MonotonicallyDecreasing)
1073   /// respectively. If we could not prove either of these facts, returns None.
1074   Optional<MonotonicPredicateType>
1075   getMonotonicPredicateType(const SCEVAddRecExpr *LHS,
1076                             ICmpInst::Predicate Pred);
1077 
1078   struct LoopInvariantPredicate {
1079     ICmpInst::Predicate Pred;
1080     const SCEV *LHS;
1081     const SCEV *RHS;
1082 
1083     LoopInvariantPredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
1084                            const SCEV *RHS)
1085         : Pred(Pred), LHS(LHS), RHS(RHS) {}
1086   };
1087   /// If the result of the predicate LHS `Pred` RHS is loop invariant with
1088   /// respect to L, return a LoopInvariantPredicate with LHS and RHS being
1089   /// invariants, available at L's entry. Otherwise, return None.
1090   Optional<LoopInvariantPredicate>
1091   getLoopInvariantPredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
1092                             const SCEV *RHS, const Loop *L);
1093 
1094   /// If the result of the predicate LHS `Pred` RHS is loop invariant with
1095   /// respect to L at given Context during at least first MaxIter iterations,
1096   /// return a LoopInvariantPredicate with LHS and RHS being invariants,
1097   /// available at L's entry. Otherwise, return None. The predicate should be
1098   /// the loop's exit condition.
1099   Optional<LoopInvariantPredicate>
1100   getLoopInvariantExitCondDuringFirstIterations(ICmpInst::Predicate Pred,
1101                                                 const SCEV *LHS,
1102                                                 const SCEV *RHS, const Loop *L,
1103                                                 const Instruction *CtxI,
1104                                                 const SCEV *MaxIter);
1105 
1106   /// Simplify LHS and RHS in a comparison with predicate Pred. Return true
1107   /// iff any changes were made. If the operands are provably equal or
1108   /// unequal, LHS and RHS are set to the same value and Pred is set to either
1109   /// ICMP_EQ or ICMP_NE. ControllingFiniteLoop is set if this comparison
1110   /// controls the exit of a loop known to have a finite number of iterations.
1111   bool SimplifyICmpOperands(ICmpInst::Predicate &Pred, const SCEV *&LHS,
1112                             const SCEV *&RHS, unsigned Depth = 0,
1113                             bool ControllingFiniteLoop = false);
1114 
1115   /// Return the "disposition" of the given SCEV with respect to the given
1116   /// loop.
1117   LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L);
1118 
1119   /// Return true if the value of the given SCEV is unchanging in the
1120   /// specified loop.
1121   bool isLoopInvariant(const SCEV *S, const Loop *L);
1122 
1123   /// Determine if the SCEV can be evaluated at loop's entry. It is true if it
1124   /// doesn't depend on a SCEVUnknown of an instruction which is dominated by
1125   /// the header of loop L.
1126   bool isAvailableAtLoopEntry(const SCEV *S, const Loop *L);
1127 
1128   /// Return true if the given SCEV changes value in a known way in the
1129   /// specified loop.  This property being true implies that the value is
1130   /// variant in the loop AND that we can emit an expression to compute the
1131   /// value of the expression at any particular loop iteration.
1132   bool hasComputableLoopEvolution(const SCEV *S, const Loop *L);
1133 
1134   /// Return the "disposition" of the given SCEV with respect to the given
1135   /// block.
1136   BlockDisposition getBlockDisposition(const SCEV *S, const BasicBlock *BB);
1137 
1138   /// Return true if elements that makes up the given SCEV dominate the
1139   /// specified basic block.
1140   bool dominates(const SCEV *S, const BasicBlock *BB);
1141 
1142   /// Return true if elements that makes up the given SCEV properly dominate
1143   /// the specified basic block.
1144   bool properlyDominates(const SCEV *S, const BasicBlock *BB);
1145 
1146   /// Test whether the given SCEV has Op as a direct or indirect operand.
1147   bool hasOperand(const SCEV *S, const SCEV *Op) const;
1148 
1149   /// Return the size of an element read or written by Inst.
1150   const SCEV *getElementSize(Instruction *Inst);
1151 
1152   void print(raw_ostream &OS) const;
1153   void verify() const;
1154   bool invalidate(Function &F, const PreservedAnalyses &PA,
1155                   FunctionAnalysisManager::Invalidator &Inv);
1156 
1157   /// Return the DataLayout associated with the module this SCEV instance is
1158   /// operating on.
1159   const DataLayout &getDataLayout() const {
1160     return F.getParent()->getDataLayout();
1161   }
1162 
1163   const SCEVPredicate *getEqualPredicate(const SCEV *LHS, const SCEV *RHS);
1164   const SCEVPredicate *getComparePredicate(ICmpInst::Predicate Pred,
1165                                            const SCEV *LHS, const SCEV *RHS);
1166 
1167   const SCEVPredicate *
1168   getWrapPredicate(const SCEVAddRecExpr *AR,
1169                    SCEVWrapPredicate::IncrementWrapFlags AddedFlags);
1170 
1171   /// Re-writes the SCEV according to the Predicates in \p A.
1172   const SCEV *rewriteUsingPredicate(const SCEV *S, const Loop *L,
1173                                     const SCEVPredicate &A);
1174   /// Tries to convert the \p S expression to an AddRec expression,
1175   /// adding additional predicates to \p Preds as required.
1176   const SCEVAddRecExpr *convertSCEVToAddRecWithPredicates(
1177       const SCEV *S, const Loop *L,
1178       SmallPtrSetImpl<const SCEVPredicate *> &Preds);
1179 
1180   /// Compute \p LHS - \p RHS and returns the result as an APInt if it is a
1181   /// constant, and None if it isn't.
1182   ///
1183   /// This is intended to be a cheaper version of getMinusSCEV.  We can be
1184   /// frugal here since we just bail out of actually constructing and
1185   /// canonicalizing an expression in the cases where the result isn't going
1186   /// to be a constant.
1187   Optional<APInt> computeConstantDifference(const SCEV *LHS, const SCEV *RHS);
1188 
1189   /// Update no-wrap flags of an AddRec. This may drop the cached info about
1190   /// this AddRec (such as range info) in case if new flags may potentially
1191   /// sharpen it.
1192   void setNoWrapFlags(SCEVAddRecExpr *AddRec, SCEV::NoWrapFlags Flags);
1193 
1194   /// Try to apply information from loop guards for \p L to \p Expr.
1195   const SCEV *applyLoopGuards(const SCEV *Expr, const Loop *L);
1196 
1197   /// Return true if the loop has no abnormal exits. That is, if the loop
1198   /// is not infinite, it must exit through an explicit edge in the CFG.
1199   /// (As opposed to either a) throwing out of the function or b) entering a
1200   /// well defined infinite loop in some callee.)
1201   bool loopHasNoAbnormalExits(const Loop *L) {
1202     return getLoopProperties(L).HasNoAbnormalExits;
1203   }
1204 
1205   /// Return true if this loop is finite by assumption.  That is,
1206   /// to be infinite, it must also be undefined.
1207   bool loopIsFiniteByAssumption(const Loop *L);
1208 
1209 private:
1210   /// A CallbackVH to arrange for ScalarEvolution to be notified whenever a
1211   /// Value is deleted.
1212   class SCEVCallbackVH final : public CallbackVH {
1213     ScalarEvolution *SE;
1214 
1215     void deleted() override;
1216     void allUsesReplacedWith(Value *New) override;
1217 
1218   public:
1219     SCEVCallbackVH(Value *V, ScalarEvolution *SE = nullptr);
1220   };
1221 
1222   friend class SCEVCallbackVH;
1223   friend class SCEVExpander;
1224   friend class SCEVUnknown;
1225 
1226   /// The function we are analyzing.
1227   Function &F;
1228 
1229   /// Does the module have any calls to the llvm.experimental.guard intrinsic
1230   /// at all?  If this is false, we avoid doing work that will only help if
1231   /// thare are guards present in the IR.
1232   bool HasGuards;
1233 
1234   /// The target library information for the target we are targeting.
1235   TargetLibraryInfo &TLI;
1236 
1237   /// The tracker for \@llvm.assume intrinsics in this function.
1238   AssumptionCache &AC;
1239 
1240   /// The dominator tree.
1241   DominatorTree &DT;
1242 
1243   /// The loop information for the function we are currently analyzing.
1244   LoopInfo &LI;
1245 
1246   /// This SCEV is used to represent unknown trip counts and things.
1247   std::unique_ptr<SCEVCouldNotCompute> CouldNotCompute;
1248 
1249   /// The type for HasRecMap.
1250   using HasRecMapType = DenseMap<const SCEV *, bool>;
1251 
1252   /// This is a cache to record whether a SCEV contains any scAddRecExpr.
1253   HasRecMapType HasRecMap;
1254 
1255   /// The type for ExprValueMap.
1256   using ValueSetVector = SmallSetVector<Value *, 4>;
1257   using ExprValueMapType = DenseMap<const SCEV *, ValueSetVector>;
1258 
1259   /// ExprValueMap -- This map records the original values from which
1260   /// the SCEV expr is generated from.
1261   ExprValueMapType ExprValueMap;
1262 
1263   /// The type for ValueExprMap.
1264   using ValueExprMapType =
1265       DenseMap<SCEVCallbackVH, const SCEV *, DenseMapInfo<Value *>>;
1266 
1267   /// This is a cache of the values we have analyzed so far.
1268   ValueExprMapType ValueExprMap;
1269 
1270   /// Mark predicate values currently being processed by isImpliedCond.
1271   SmallPtrSet<const Value *, 6> PendingLoopPredicates;
1272 
1273   /// Mark SCEVUnknown Phis currently being processed by getRangeRef.
1274   SmallPtrSet<const PHINode *, 6> PendingPhiRanges;
1275 
1276   // Mark SCEVUnknown Phis currently being processed by isImpliedViaMerge.
1277   SmallPtrSet<const PHINode *, 6> PendingMerges;
1278 
1279   /// Set to true by isLoopBackedgeGuardedByCond when we're walking the set of
1280   /// conditions dominating the backedge of a loop.
1281   bool WalkingBEDominatingConds = false;
1282 
1283   /// Set to true by isKnownPredicateViaSplitting when we're trying to prove a
1284   /// predicate by splitting it into a set of independent predicates.
1285   bool ProvingSplitPredicate = false;
1286 
1287   /// Memoized values for the GetMinTrailingZeros
1288   DenseMap<const SCEV *, uint32_t> MinTrailingZerosCache;
1289 
1290   /// Return the Value set from which the SCEV expr is generated.
1291   ArrayRef<Value *> getSCEVValues(const SCEV *S);
1292 
1293   /// Private helper method for the GetMinTrailingZeros method
1294   uint32_t GetMinTrailingZerosImpl(const SCEV *S);
1295 
1296   /// Information about the number of loop iterations for which a loop exit's
1297   /// branch condition evaluates to the not-taken path.  This is a temporary
1298   /// pair of exact and max expressions that are eventually summarized in
1299   /// ExitNotTakenInfo and BackedgeTakenInfo.
1300   struct ExitLimit {
1301     const SCEV *ExactNotTaken; // The exit is not taken exactly this many times
1302     const SCEV *MaxNotTaken; // The exit is not taken at most this many times
1303 
1304     // Not taken either exactly MaxNotTaken or zero times
1305     bool MaxOrZero = false;
1306 
1307     /// A set of predicate guards for this ExitLimit. The result is only valid
1308     /// if all of the predicates in \c Predicates evaluate to 'true' at
1309     /// run-time.
1310     SmallPtrSet<const SCEVPredicate *, 4> Predicates;
1311 
1312     void addPredicate(const SCEVPredicate *P) {
1313       assert(!isa<SCEVUnionPredicate>(P) && "Only add leaf predicates here!");
1314       Predicates.insert(P);
1315     }
1316 
1317     /// Construct either an exact exit limit from a constant, or an unknown
1318     /// one from a SCEVCouldNotCompute.  No other types of SCEVs are allowed
1319     /// as arguments and asserts enforce that internally.
1320     /*implicit*/ ExitLimit(const SCEV *E);
1321 
1322     ExitLimit(
1323         const SCEV *E, const SCEV *M, bool MaxOrZero,
1324         ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList);
1325 
1326     ExitLimit(const SCEV *E, const SCEV *M, bool MaxOrZero,
1327               const SmallPtrSetImpl<const SCEVPredicate *> &PredSet);
1328 
1329     ExitLimit(const SCEV *E, const SCEV *M, bool MaxOrZero);
1330 
1331     /// Test whether this ExitLimit contains any computed information, or
1332     /// whether it's all SCEVCouldNotCompute values.
1333     bool hasAnyInfo() const {
1334       return !isa<SCEVCouldNotCompute>(ExactNotTaken) ||
1335              !isa<SCEVCouldNotCompute>(MaxNotTaken);
1336     }
1337 
1338     /// Test whether this ExitLimit contains all information.
1339     bool hasFullInfo() const {
1340       return !isa<SCEVCouldNotCompute>(ExactNotTaken);
1341     }
1342   };
1343 
1344   /// Information about the number of times a particular loop exit may be
1345   /// reached before exiting the loop.
1346   struct ExitNotTakenInfo {
1347     PoisoningVH<BasicBlock> ExitingBlock;
1348     const SCEV *ExactNotTaken;
1349     const SCEV *MaxNotTaken;
1350     SmallPtrSet<const SCEVPredicate *, 4> Predicates;
1351 
1352     explicit ExitNotTakenInfo(PoisoningVH<BasicBlock> ExitingBlock,
1353                               const SCEV *ExactNotTaken,
1354                               const SCEV *MaxNotTaken,
1355                               const SmallPtrSet<const SCEVPredicate *, 4> &Predicates)
1356       : ExitingBlock(ExitingBlock), ExactNotTaken(ExactNotTaken),
1357         MaxNotTaken(ExactNotTaken), Predicates(Predicates) {}
1358 
1359     bool hasAlwaysTruePredicate() const {
1360       return Predicates.empty();
1361     }
1362   };
1363 
1364   /// Information about the backedge-taken count of a loop. This currently
1365   /// includes an exact count and a maximum count.
1366   ///
1367   class BackedgeTakenInfo {
1368     friend class ScalarEvolution;
1369 
1370     /// A list of computable exits and their not-taken counts.  Loops almost
1371     /// never have more than one computable exit.
1372     SmallVector<ExitNotTakenInfo, 1> ExitNotTaken;
1373 
1374     /// Expression indicating the least constant maximum backedge-taken count of
1375     /// the loop that is known, or a SCEVCouldNotCompute. This expression is
1376     /// only valid if the redicates associated with all loop exits are true.
1377     const SCEV *ConstantMax = nullptr;
1378 
1379     /// Indicating if \c ExitNotTaken has an element for every exiting block in
1380     /// the loop.
1381     bool IsComplete = false;
1382 
1383     /// Expression indicating the least maximum backedge-taken count of the loop
1384     /// that is known, or a SCEVCouldNotCompute. Lazily computed on first query.
1385     const SCEV *SymbolicMax = nullptr;
1386 
1387     /// True iff the backedge is taken either exactly Max or zero times.
1388     bool MaxOrZero = false;
1389 
1390     bool isComplete() const { return IsComplete; }
1391     const SCEV *getConstantMax() const { return ConstantMax; }
1392 
1393   public:
1394     BackedgeTakenInfo() = default;
1395     BackedgeTakenInfo(BackedgeTakenInfo &&) = default;
1396     BackedgeTakenInfo &operator=(BackedgeTakenInfo &&) = default;
1397 
1398     using EdgeExitInfo = std::pair<BasicBlock *, ExitLimit>;
1399 
1400     /// Initialize BackedgeTakenInfo from a list of exact exit counts.
1401     BackedgeTakenInfo(ArrayRef<EdgeExitInfo> ExitCounts, bool IsComplete,
1402                       const SCEV *ConstantMax, bool MaxOrZero);
1403 
1404     /// Test whether this BackedgeTakenInfo contains any computed information,
1405     /// or whether it's all SCEVCouldNotCompute values.
1406     bool hasAnyInfo() const {
1407       return !ExitNotTaken.empty() ||
1408              !isa<SCEVCouldNotCompute>(getConstantMax());
1409     }
1410 
1411     /// Test whether this BackedgeTakenInfo contains complete information.
1412     bool hasFullInfo() const { return isComplete(); }
1413 
1414     /// Return an expression indicating the exact *backedge-taken*
1415     /// count of the loop if it is known or SCEVCouldNotCompute
1416     /// otherwise.  If execution makes it to the backedge on every
1417     /// iteration (i.e. there are no abnormal exists like exception
1418     /// throws and thread exits) then this is the number of times the
1419     /// loop header will execute minus one.
1420     ///
1421     /// If the SCEV predicate associated with the answer can be different
1422     /// from AlwaysTrue, we must add a (non null) Predicates argument.
1423     /// The SCEV predicate associated with the answer will be added to
1424     /// Predicates. A run-time check needs to be emitted for the SCEV
1425     /// predicate in order for the answer to be valid.
1426     ///
1427     /// Note that we should always know if we need to pass a predicate
1428     /// argument or not from the way the ExitCounts vector was computed.
1429     /// If we allowed SCEV predicates to be generated when populating this
1430     /// vector, this information can contain them and therefore a
1431     /// SCEVPredicate argument should be added to getExact.
1432     const SCEV *getExact(const Loop *L, ScalarEvolution *SE,
1433                          SmallVector<const SCEVPredicate *, 4> *Predicates = nullptr) const;
1434 
1435     /// Return the number of times this loop exit may fall through to the back
1436     /// edge, or SCEVCouldNotCompute. The loop is guaranteed not to exit via
1437     /// this block before this number of iterations, but may exit via another
1438     /// block.
1439     const SCEV *getExact(const BasicBlock *ExitingBlock,
1440                          ScalarEvolution *SE) const;
1441 
1442     /// Get the constant max backedge taken count for the loop.
1443     const SCEV *getConstantMax(ScalarEvolution *SE) const;
1444 
1445     /// Get the constant max backedge taken count for the particular loop exit.
1446     const SCEV *getConstantMax(const BasicBlock *ExitingBlock,
1447                                ScalarEvolution *SE) const;
1448 
1449     /// Get the symbolic max backedge taken count for the loop.
1450     const SCEV *getSymbolicMax(const Loop *L, ScalarEvolution *SE);
1451 
1452     /// Return true if the number of times this backedge is taken is either the
1453     /// value returned by getConstantMax or zero.
1454     bool isConstantMaxOrZero(ScalarEvolution *SE) const;
1455   };
1456 
1457   /// Cache the backedge-taken count of the loops for this function as they
1458   /// are computed.
1459   DenseMap<const Loop *, BackedgeTakenInfo> BackedgeTakenCounts;
1460 
1461   /// Cache the predicated backedge-taken count of the loops for this
1462   /// function as they are computed.
1463   DenseMap<const Loop *, BackedgeTakenInfo> PredicatedBackedgeTakenCounts;
1464 
1465   /// Loops whose backedge taken counts directly use this non-constant SCEV.
1466   DenseMap<const SCEV *, SmallPtrSet<PointerIntPair<const Loop *, 1, bool>, 4>>
1467       BECountUsers;
1468 
1469   /// This map contains entries for all of the PHI instructions that we
1470   /// attempt to compute constant evolutions for.  This allows us to avoid
1471   /// potentially expensive recomputation of these properties.  An instruction
1472   /// maps to null if we are unable to compute its exit value.
1473   DenseMap<PHINode *, Constant *> ConstantEvolutionLoopExitValue;
1474 
1475   /// This map contains entries for all the expressions that we attempt to
1476   /// compute getSCEVAtScope information for, which can be expensive in
1477   /// extreme cases.
1478   DenseMap<const SCEV *, SmallVector<std::pair<const Loop *, const SCEV *>, 2>>
1479       ValuesAtScopes;
1480 
1481   /// Reverse map for invalidation purposes: Stores of which SCEV and which
1482   /// loop this is the value-at-scope of.
1483   DenseMap<const SCEV *, SmallVector<std::pair<const Loop *, const SCEV *>, 2>>
1484       ValuesAtScopesUsers;
1485 
1486   /// Memoized computeLoopDisposition results.
1487   DenseMap<const SCEV *,
1488            SmallVector<PointerIntPair<const Loop *, 2, LoopDisposition>, 2>>
1489       LoopDispositions;
1490 
1491   struct LoopProperties {
1492     /// Set to true if the loop contains no instruction that can abnormally exit
1493     /// the loop (i.e. via throwing an exception, by terminating the thread
1494     /// cleanly or by infinite looping in a called function).  Strictly
1495     /// speaking, the last one is not leaving the loop, but is identical to
1496     /// leaving the loop for reasoning about undefined behavior.
1497     bool HasNoAbnormalExits;
1498 
1499     /// Set to true if the loop contains no instruction that can have side
1500     /// effects (i.e. via throwing an exception, volatile or atomic access).
1501     bool HasNoSideEffects;
1502   };
1503 
1504   /// Cache for \c getLoopProperties.
1505   DenseMap<const Loop *, LoopProperties> LoopPropertiesCache;
1506 
1507   /// Return a \c LoopProperties instance for \p L, creating one if necessary.
1508   LoopProperties getLoopProperties(const Loop *L);
1509 
1510   bool loopHasNoSideEffects(const Loop *L) {
1511     return getLoopProperties(L).HasNoSideEffects;
1512   }
1513 
1514   /// Compute a LoopDisposition value.
1515   LoopDisposition computeLoopDisposition(const SCEV *S, const Loop *L);
1516 
1517   /// Memoized computeBlockDisposition results.
1518   DenseMap<
1519       const SCEV *,
1520       SmallVector<PointerIntPair<const BasicBlock *, 2, BlockDisposition>, 2>>
1521       BlockDispositions;
1522 
1523   /// Compute a BlockDisposition value.
1524   BlockDisposition computeBlockDisposition(const SCEV *S, const BasicBlock *BB);
1525 
1526   /// Stores all SCEV that use a given SCEV as its direct operand.
1527   DenseMap<const SCEV *, SmallPtrSet<const SCEV *, 8> > SCEVUsers;
1528 
1529   /// Memoized results from getRange
1530   DenseMap<const SCEV *, ConstantRange> UnsignedRanges;
1531 
1532   /// Memoized results from getRange
1533   DenseMap<const SCEV *, ConstantRange> SignedRanges;
1534 
1535   /// Used to parameterize getRange
1536   enum RangeSignHint { HINT_RANGE_UNSIGNED, HINT_RANGE_SIGNED };
1537 
1538   /// Set the memoized range for the given SCEV.
1539   const ConstantRange &setRange(const SCEV *S, RangeSignHint Hint,
1540                                 ConstantRange CR) {
1541     DenseMap<const SCEV *, ConstantRange> &Cache =
1542         Hint == HINT_RANGE_UNSIGNED ? UnsignedRanges : SignedRanges;
1543 
1544     auto Pair = Cache.try_emplace(S, std::move(CR));
1545     if (!Pair.second)
1546       Pair.first->second = std::move(CR);
1547     return Pair.first->second;
1548   }
1549 
1550   /// Determine the range for a particular SCEV.
1551   /// NOTE: This returns a reference to an entry in a cache. It must be
1552   /// copied if its needed for longer.
1553   const ConstantRange &getRangeRef(const SCEV *S, RangeSignHint Hint);
1554 
1555   /// Determines the range for the affine SCEVAddRecExpr {\p Start,+,\p Step}.
1556   /// Helper for \c getRange.
1557   ConstantRange getRangeForAffineAR(const SCEV *Start, const SCEV *Step,
1558                                     const SCEV *MaxBECount, unsigned BitWidth);
1559 
1560   /// Determines the range for the affine non-self-wrapping SCEVAddRecExpr {\p
1561   /// Start,+,\p Step}<nw>.
1562   ConstantRange getRangeForAffineNoSelfWrappingAR(const SCEVAddRecExpr *AddRec,
1563                                                   const SCEV *MaxBECount,
1564                                                   unsigned BitWidth,
1565                                                   RangeSignHint SignHint);
1566 
1567   /// Try to compute a range for the affine SCEVAddRecExpr {\p Start,+,\p
1568   /// Step} by "factoring out" a ternary expression from the add recurrence.
1569   /// Helper called by \c getRange.
1570   ConstantRange getRangeViaFactoring(const SCEV *Start, const SCEV *Step,
1571                                      const SCEV *MaxBECount, unsigned BitWidth);
1572 
1573   /// If the unknown expression U corresponds to a simple recurrence, return
1574   /// a constant range which represents the entire recurrence.  Note that
1575   /// *add* recurrences with loop invariant steps aren't represented by
1576   /// SCEVUnknowns and thus don't use this mechanism.
1577   ConstantRange getRangeForUnknownRecurrence(const SCEVUnknown *U);
1578 
1579   /// We know that there is no SCEV for the specified value.  Analyze the
1580   /// expression recursively.
1581   const SCEV *createSCEV(Value *V);
1582 
1583   /// We know that there is no SCEV for the specified value. Create a new SCEV
1584   /// for \p V iteratively.
1585   const SCEV *createSCEVIter(Value *V);
1586   /// Collect operands of \p V for which SCEV expressions should be constructed
1587   /// first. Returns a SCEV directly if it can be constructed trivially for \p
1588   /// V.
1589   const SCEV *getOperandsToCreate(Value *V, SmallVectorImpl<Value *> &Ops);
1590 
1591   /// Provide the special handling we need to analyze PHI SCEVs.
1592   const SCEV *createNodeForPHI(PHINode *PN);
1593 
1594   /// Helper function called from createNodeForPHI.
1595   const SCEV *createAddRecFromPHI(PHINode *PN);
1596 
1597   /// A helper function for createAddRecFromPHI to handle simple cases.
1598   const SCEV *createSimpleAffineAddRec(PHINode *PN, Value *BEValueV,
1599                                             Value *StartValueV);
1600 
1601   /// Helper function called from createNodeForPHI.
1602   const SCEV *createNodeFromSelectLikePHI(PHINode *PN);
1603 
1604   /// Provide special handling for a select-like instruction (currently this
1605   /// is either a select instruction or a phi node).  \p I is the instruction
1606   /// being processed, and it is assumed equivalent to "Cond ? TrueVal :
1607   /// FalseVal".
1608   const SCEV *createNodeForSelectOrPHIInstWithICmpInstCond(Instruction *I,
1609                                                            ICmpInst *Cond,
1610                                                            Value *TrueVal,
1611                                                            Value *FalseVal);
1612 
1613   /// See if we can model this select-like instruction via umin_seq expression.
1614   const SCEV *createNodeForSelectOrPHIViaUMinSeq(Value *I, Value *Cond,
1615                                                  Value *TrueVal,
1616                                                  Value *FalseVal);
1617 
1618   /// Given a value \p V, which is a select-like instruction (currently this is
1619   /// either a select instruction or a phi node), which is assumed equivalent to
1620   ///   Cond ? TrueVal : FalseVal
1621   /// see if we can model it as a SCEV expression.
1622   const SCEV *createNodeForSelectOrPHI(Value *V, Value *Cond, Value *TrueVal,
1623                                        Value *FalseVal);
1624 
1625   /// Provide the special handling we need to analyze GEP SCEVs.
1626   const SCEV *createNodeForGEP(GEPOperator *GEP);
1627 
1628   /// Implementation code for getSCEVAtScope; called at most once for each
1629   /// SCEV+Loop pair.
1630   const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L);
1631 
1632   /// Return the BackedgeTakenInfo for the given loop, lazily computing new
1633   /// values if the loop hasn't been analyzed yet. The returned result is
1634   /// guaranteed not to be predicated.
1635   BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
1636 
1637   /// Similar to getBackedgeTakenInfo, but will add predicates as required
1638   /// with the purpose of returning complete information.
1639   const BackedgeTakenInfo &getPredicatedBackedgeTakenInfo(const Loop *L);
1640 
1641   /// Compute the number of times the specified loop will iterate.
1642   /// If AllowPredicates is set, we will create new SCEV predicates as
1643   /// necessary in order to return an exact answer.
1644   BackedgeTakenInfo computeBackedgeTakenCount(const Loop *L,
1645                                               bool AllowPredicates = false);
1646 
1647   /// Compute the number of times the backedge of the specified loop will
1648   /// execute if it exits via the specified block. If AllowPredicates is set,
1649   /// this call will try to use a minimal set of SCEV predicates in order to
1650   /// return an exact answer.
1651   ExitLimit computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
1652                              bool AllowPredicates = false);
1653 
1654   /// Compute the number of times the backedge of the specified loop will
1655   /// execute if its exit condition were a conditional branch of ExitCond.
1656   ///
1657   /// \p ControlsExit is true if ExitCond directly controls the exit
1658   /// branch. In this case, we can assume that the loop exits only if the
1659   /// condition is true and can infer that failing to meet the condition prior
1660   /// to integer wraparound results in undefined behavior.
1661   ///
1662   /// If \p AllowPredicates is set, this call will try to use a minimal set of
1663   /// SCEV predicates in order to return an exact answer.
1664   ExitLimit computeExitLimitFromCond(const Loop *L, Value *ExitCond,
1665                                      bool ExitIfTrue, bool ControlsExit,
1666                                      bool AllowPredicates = false);
1667 
1668   /// Return a symbolic upper bound for the backedge taken count of the loop.
1669   /// This is more general than getConstantMaxBackedgeTakenCount as it returns
1670   /// an arbitrary expression as opposed to only constants.
1671   const SCEV *computeSymbolicMaxBackedgeTakenCount(const Loop *L);
1672 
1673   // Helper functions for computeExitLimitFromCond to avoid exponential time
1674   // complexity.
1675 
1676   class ExitLimitCache {
1677     // It may look like we need key on the whole (L, ExitIfTrue, ControlsExit,
1678     // AllowPredicates) tuple, but recursive calls to
1679     // computeExitLimitFromCondCached from computeExitLimitFromCondImpl only
1680     // vary the in \c ExitCond and \c ControlsExit parameters.  We remember the
1681     // initial values of the other values to assert our assumption.
1682     SmallDenseMap<PointerIntPair<Value *, 1>, ExitLimit> TripCountMap;
1683 
1684     const Loop *L;
1685     bool ExitIfTrue;
1686     bool AllowPredicates;
1687 
1688   public:
1689     ExitLimitCache(const Loop *L, bool ExitIfTrue, bool AllowPredicates)
1690         : L(L), ExitIfTrue(ExitIfTrue), AllowPredicates(AllowPredicates) {}
1691 
1692     Optional<ExitLimit> find(const Loop *L, Value *ExitCond, bool ExitIfTrue,
1693                              bool ControlsExit, bool AllowPredicates);
1694 
1695     void insert(const Loop *L, Value *ExitCond, bool ExitIfTrue,
1696                 bool ControlsExit, bool AllowPredicates, const ExitLimit &EL);
1697   };
1698 
1699   using ExitLimitCacheTy = ExitLimitCache;
1700 
1701   ExitLimit computeExitLimitFromCondCached(ExitLimitCacheTy &Cache,
1702                                            const Loop *L, Value *ExitCond,
1703                                            bool ExitIfTrue,
1704                                            bool ControlsExit,
1705                                            bool AllowPredicates);
1706   ExitLimit computeExitLimitFromCondImpl(ExitLimitCacheTy &Cache, const Loop *L,
1707                                          Value *ExitCond, bool ExitIfTrue,
1708                                          bool ControlsExit,
1709                                          bool AllowPredicates);
1710   Optional<ScalarEvolution::ExitLimit>
1711   computeExitLimitFromCondFromBinOp(ExitLimitCacheTy &Cache, const Loop *L,
1712                                     Value *ExitCond, bool ExitIfTrue,
1713                                     bool ControlsExit, bool AllowPredicates);
1714 
1715   /// Compute the number of times the backedge of the specified loop will
1716   /// execute if its exit condition were a conditional branch of the ICmpInst
1717   /// ExitCond and ExitIfTrue. If AllowPredicates is set, this call will try
1718   /// to use a minimal set of SCEV predicates in order to return an exact
1719   /// answer.
1720   ExitLimit computeExitLimitFromICmp(const Loop *L, ICmpInst *ExitCond,
1721                                      bool ExitIfTrue,
1722                                      bool IsSubExpr,
1723                                      bool AllowPredicates = false);
1724 
1725   /// Variant of previous which takes the components representing an ICmp
1726   /// as opposed to the ICmpInst itself.  Note that the prior version can
1727   /// return more precise results in some cases and is preferred when caller
1728   /// has a materialized ICmp.
1729   ExitLimit computeExitLimitFromICmp(const Loop *L, ICmpInst::Predicate Pred,
1730                                      const SCEV *LHS, const SCEV *RHS,
1731                                      bool IsSubExpr,
1732                                      bool AllowPredicates = false);
1733 
1734   /// Compute the number of times the backedge of the specified loop will
1735   /// execute if its exit condition were a switch with a single exiting case
1736   /// to ExitingBB.
1737   ExitLimit computeExitLimitFromSingleExitSwitch(const Loop *L,
1738                                                  SwitchInst *Switch,
1739                                                  BasicBlock *ExitingBB,
1740                                                  bool IsSubExpr);
1741 
1742   /// Compute the exit limit of a loop that is controlled by a
1743   /// "(IV >> 1) != 0" type comparison.  We cannot compute the exact trip
1744   /// count in these cases (since SCEV has no way of expressing them), but we
1745   /// can still sometimes compute an upper bound.
1746   ///
1747   /// Return an ExitLimit for a loop whose backedge is guarded by `LHS Pred
1748   /// RHS`.
1749   ExitLimit computeShiftCompareExitLimit(Value *LHS, Value *RHS, const Loop *L,
1750                                          ICmpInst::Predicate Pred);
1751 
1752   /// If the loop is known to execute a constant number of times (the
1753   /// condition evolves only from constants), try to evaluate a few iterations
1754   /// of the loop until we get the exit condition gets a value of ExitWhen
1755   /// (true or false).  If we cannot evaluate the exit count of the loop,
1756   /// return CouldNotCompute.
1757   const SCEV *computeExitCountExhaustively(const Loop *L, Value *Cond,
1758                                            bool ExitWhen);
1759 
1760   /// Return the number of times an exit condition comparing the specified
1761   /// value to zero will execute.  If not computable, return CouldNotCompute.
1762   /// If AllowPredicates is set, this call will try to use a minimal set of
1763   /// SCEV predicates in order to return an exact answer.
1764   ExitLimit howFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr,
1765                          bool AllowPredicates = false);
1766 
1767   /// Return the number of times an exit condition checking the specified
1768   /// value for nonzero will execute.  If not computable, return
1769   /// CouldNotCompute.
1770   ExitLimit howFarToNonZero(const SCEV *V, const Loop *L);
1771 
1772   /// Return the number of times an exit condition containing the specified
1773   /// less-than comparison will execute.  If not computable, return
1774   /// CouldNotCompute.
1775   ///
1776   /// \p isSigned specifies whether the less-than is signed.
1777   ///
1778   /// \p ControlsExit is true when the LHS < RHS condition directly controls
1779   /// the branch (loops exits only if condition is true). In this case, we can
1780   /// use NoWrapFlags to skip overflow checks.
1781   ///
1782   /// If \p AllowPredicates is set, this call will try to use a minimal set of
1783   /// SCEV predicates in order to return an exact answer.
1784   ExitLimit howManyLessThans(const SCEV *LHS, const SCEV *RHS, const Loop *L,
1785                              bool isSigned, bool ControlsExit,
1786                              bool AllowPredicates = false);
1787 
1788   ExitLimit howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, const Loop *L,
1789                                 bool isSigned, bool IsSubExpr,
1790                                 bool AllowPredicates = false);
1791 
1792   /// Return a predecessor of BB (which may not be an immediate predecessor)
1793   /// which has exactly one successor from which BB is reachable, or null if
1794   /// no such block is found.
1795   std::pair<const BasicBlock *, const BasicBlock *>
1796   getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) const;
1797 
1798   /// Test whether the condition described by Pred, LHS, and RHS is true
1799   /// whenever the given FoundCondValue value evaluates to true in given
1800   /// Context. If Context is nullptr, then the found predicate is true
1801   /// everywhere. LHS and FoundLHS may have different type width.
1802   bool isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
1803                      const Value *FoundCondValue, bool Inverse,
1804                      const Instruction *Context = nullptr);
1805 
1806   /// Test whether the condition described by Pred, LHS, and RHS is true
1807   /// whenever the given FoundCondValue value evaluates to true in given
1808   /// Context. If Context is nullptr, then the found predicate is true
1809   /// everywhere. LHS and FoundLHS must have same type width.
1810   bool isImpliedCondBalancedTypes(ICmpInst::Predicate Pred, const SCEV *LHS,
1811                                   const SCEV *RHS,
1812                                   ICmpInst::Predicate FoundPred,
1813                                   const SCEV *FoundLHS, const SCEV *FoundRHS,
1814                                   const Instruction *CtxI);
1815 
1816   /// Test whether the condition described by Pred, LHS, and RHS is true
1817   /// whenever the condition described by FoundPred, FoundLHS, FoundRHS is
1818   /// true in given Context. If Context is nullptr, then the found predicate is
1819   /// true everywhere.
1820   bool isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
1821                      ICmpInst::Predicate FoundPred, const SCEV *FoundLHS,
1822                      const SCEV *FoundRHS,
1823                      const Instruction *Context = nullptr);
1824 
1825   /// Test whether the condition described by Pred, LHS, and RHS is true
1826   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1827   /// true in given Context. If Context is nullptr, then the found predicate is
1828   /// true everywhere.
1829   bool isImpliedCondOperands(ICmpInst::Predicate Pred, const SCEV *LHS,
1830                              const SCEV *RHS, const SCEV *FoundLHS,
1831                              const SCEV *FoundRHS,
1832                              const Instruction *Context = nullptr);
1833 
1834   /// Test whether the condition described by Pred, LHS, and RHS is true
1835   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1836   /// true. Here LHS is an operation that includes FoundLHS as one of its
1837   /// arguments.
1838   bool isImpliedViaOperations(ICmpInst::Predicate Pred,
1839                               const SCEV *LHS, const SCEV *RHS,
1840                               const SCEV *FoundLHS, const SCEV *FoundRHS,
1841                               unsigned Depth = 0);
1842 
1843   /// Test whether the condition described by Pred, LHS, and RHS is true.
1844   /// Use only simple non-recursive types of checks, such as range analysis etc.
1845   bool isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
1846                                        const SCEV *LHS, const SCEV *RHS);
1847 
1848   /// Test whether the condition described by Pred, LHS, and RHS is true
1849   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1850   /// true.
1851   bool isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, const SCEV *LHS,
1852                                    const SCEV *RHS, const SCEV *FoundLHS,
1853                                    const SCEV *FoundRHS);
1854 
1855   /// Test whether the condition described by Pred, LHS, and RHS is true
1856   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1857   /// true.  Utility function used by isImpliedCondOperands.  Tries to get
1858   /// cases like "X `sgt` 0 => X - 1 `sgt` -1".
1859   bool isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, const SCEV *LHS,
1860                                       const SCEV *RHS, const SCEV *FoundLHS,
1861                                       const SCEV *FoundRHS);
1862 
1863   /// Return true if the condition denoted by \p LHS \p Pred \p RHS is implied
1864   /// by a call to @llvm.experimental.guard in \p BB.
1865   bool isImpliedViaGuard(const BasicBlock *BB, ICmpInst::Predicate Pred,
1866                          const SCEV *LHS, const SCEV *RHS);
1867 
1868   /// Test whether the condition described by Pred, LHS, and RHS is true
1869   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1870   /// true.
1871   ///
1872   /// This routine tries to rule out certain kinds of integer overflow, and
1873   /// then tries to reason about arithmetic properties of the predicates.
1874   bool isImpliedCondOperandsViaNoOverflow(ICmpInst::Predicate Pred,
1875                                           const SCEV *LHS, const SCEV *RHS,
1876                                           const SCEV *FoundLHS,
1877                                           const SCEV *FoundRHS);
1878 
1879   /// Test whether the condition described by Pred, LHS, and RHS is true
1880   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1881   /// true.
1882   ///
1883   /// This routine tries to weaken the known condition basing on fact that
1884   /// FoundLHS is an AddRec.
1885   bool isImpliedCondOperandsViaAddRecStart(ICmpInst::Predicate Pred,
1886                                            const SCEV *LHS, const SCEV *RHS,
1887                                            const SCEV *FoundLHS,
1888                                            const SCEV *FoundRHS,
1889                                            const Instruction *CtxI);
1890 
1891   /// Test whether the condition described by Pred, LHS, and RHS is true
1892   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1893   /// true.
1894   ///
1895   /// This routine tries to figure out predicate for Phis which are SCEVUnknown
1896   /// if it is true for every possible incoming value from their respective
1897   /// basic blocks.
1898   bool isImpliedViaMerge(ICmpInst::Predicate Pred,
1899                          const SCEV *LHS, const SCEV *RHS,
1900                          const SCEV *FoundLHS, const SCEV *FoundRHS,
1901                          unsigned Depth);
1902 
1903   /// Test whether the condition described by Pred, LHS, and RHS is true
1904   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1905   /// true.
1906   ///
1907   /// This routine tries to reason about shifts.
1908   bool isImpliedCondOperandsViaShift(ICmpInst::Predicate Pred, const SCEV *LHS,
1909                                      const SCEV *RHS, const SCEV *FoundLHS,
1910                                      const SCEV *FoundRHS);
1911 
1912   /// If we know that the specified Phi is in the header of its containing
1913   /// loop, we know the loop executes a constant number of times, and the PHI
1914   /// node is just a recurrence involving constants, fold it.
1915   Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt &BEs,
1916                                               const Loop *L);
1917 
1918   /// Test if the given expression is known to satisfy the condition described
1919   /// by Pred and the known constant ranges of LHS and RHS.
1920   bool isKnownPredicateViaConstantRanges(ICmpInst::Predicate Pred,
1921                                          const SCEV *LHS, const SCEV *RHS);
1922 
1923   /// Try to prove the condition described by "LHS Pred RHS" by ruling out
1924   /// integer overflow.
1925   ///
1926   /// For instance, this will return true for "A s< (A + C)<nsw>" if C is
1927   /// positive.
1928   bool isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, const SCEV *LHS,
1929                                      const SCEV *RHS);
1930 
1931   /// Try to split Pred LHS RHS into logical conjunctions (and's) and try to
1932   /// prove them individually.
1933   bool isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, const SCEV *LHS,
1934                                     const SCEV *RHS);
1935 
1936   /// Try to match the Expr as "(L + R)<Flags>".
1937   bool splitBinaryAdd(const SCEV *Expr, const SCEV *&L, const SCEV *&R,
1938                       SCEV::NoWrapFlags &Flags);
1939 
1940   /// Forget predicated/non-predicated backedge taken counts for the given loop.
1941   void forgetBackedgeTakenCounts(const Loop *L, bool Predicated);
1942 
1943   /// Drop memoized information for all \p SCEVs.
1944   void forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs);
1945 
1946   /// Helper for forgetMemoizedResults.
1947   void forgetMemoizedResultsImpl(const SCEV *S);
1948 
1949   /// Return an existing SCEV for V if there is one, otherwise return nullptr.
1950   const SCEV *getExistingSCEV(Value *V);
1951 
1952   /// Erase Value from ValueExprMap and ExprValueMap.
1953   void eraseValueFromMap(Value *V);
1954 
1955   /// Insert V to S mapping into ValueExprMap and ExprValueMap.
1956   void insertValueToMap(Value *V, const SCEV *S);
1957 
1958   /// Return false iff given SCEV contains a SCEVUnknown with NULL value-
1959   /// pointer.
1960   bool checkValidity(const SCEV *S) const;
1961 
1962   /// Return true if `ExtendOpTy`({`Start`,+,`Step`}) can be proved to be
1963   /// equal to {`ExtendOpTy`(`Start`),+,`ExtendOpTy`(`Step`)}.  This is
1964   /// equivalent to proving no signed (resp. unsigned) wrap in
1965   /// {`Start`,+,`Step`} if `ExtendOpTy` is `SCEVSignExtendExpr`
1966   /// (resp. `SCEVZeroExtendExpr`).
1967   template <typename ExtendOpTy>
1968   bool proveNoWrapByVaryingStart(const SCEV *Start, const SCEV *Step,
1969                                  const Loop *L);
1970 
1971   /// Try to prove NSW or NUW on \p AR relying on ConstantRange manipulation.
1972   SCEV::NoWrapFlags proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR);
1973 
1974   /// Try to prove NSW on \p AR by proving facts about conditions known  on
1975   /// entry and backedge.
1976   SCEV::NoWrapFlags proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR);
1977 
1978   /// Try to prove NUW on \p AR by proving facts about conditions known on
1979   /// entry and backedge.
1980   SCEV::NoWrapFlags proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR);
1981 
1982   Optional<MonotonicPredicateType>
1983   getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS,
1984                                 ICmpInst::Predicate Pred);
1985 
1986   /// Return SCEV no-wrap flags that can be proven based on reasoning about
1987   /// how poison produced from no-wrap flags on this value (e.g. a nuw add)
1988   /// would trigger undefined behavior on overflow.
1989   SCEV::NoWrapFlags getNoWrapFlagsFromUB(const Value *V);
1990 
1991   /// Return a scope which provides an upper bound on the defining scope of
1992   /// 'S'. Specifically, return the first instruction in said bounding scope.
1993   /// Return nullptr if the scope is trivial (function entry).
1994   /// (See scope definition rules associated with flag discussion above)
1995   const Instruction *getNonTrivialDefiningScopeBound(const SCEV *S);
1996 
1997   /// Return a scope which provides an upper bound on the defining scope for
1998   /// a SCEV with the operands in Ops.  The outparam Precise is set if the
1999   /// bound found is a precise bound (i.e. must be the defining scope.)
2000   const Instruction *getDefiningScopeBound(ArrayRef<const SCEV *> Ops,
2001                                            bool &Precise);
2002 
2003   /// Wrapper around the above for cases which don't care if the bound
2004   /// is precise.
2005   const Instruction *getDefiningScopeBound(ArrayRef<const SCEV *> Ops);
2006 
2007   /// Given two instructions in the same function, return true if we can
2008   /// prove B must execute given A executes.
2009   bool isGuaranteedToTransferExecutionTo(const Instruction *A,
2010                                          const Instruction *B);
2011 
2012   /// Return true if the SCEV corresponding to \p I is never poison.  Proving
2013   /// this is more complex than proving that just \p I is never poison, since
2014   /// SCEV commons expressions across control flow, and you can have cases
2015   /// like:
2016   ///
2017   ///   idx0 = a + b;
2018   ///   ptr[idx0] = 100;
2019   ///   if (<condition>) {
2020   ///     idx1 = a +nsw b;
2021   ///     ptr[idx1] = 200;
2022   ///   }
2023   ///
2024   /// where the SCEV expression (+ a b) is guaranteed to not be poison (and
2025   /// hence not sign-overflow) only if "<condition>" is true.  Since both
2026   /// `idx0` and `idx1` will be mapped to the same SCEV expression, (+ a b),
2027   /// it is not okay to annotate (+ a b) with <nsw> in the above example.
2028   bool isSCEVExprNeverPoison(const Instruction *I);
2029 
2030   /// This is like \c isSCEVExprNeverPoison but it specifically works for
2031   /// instructions that will get mapped to SCEV add recurrences.  Return true
2032   /// if \p I will never generate poison under the assumption that \p I is an
2033   /// add recurrence on the loop \p L.
2034   bool isAddRecNeverPoison(const Instruction *I, const Loop *L);
2035 
2036   /// Similar to createAddRecFromPHI, but with the additional flexibility of
2037   /// suggesting runtime overflow checks in case casts are encountered.
2038   /// If successful, the analysis records that for this loop, \p SymbolicPHI,
2039   /// which is the UnknownSCEV currently representing the PHI, can be rewritten
2040   /// into an AddRec, assuming some predicates; The function then returns the
2041   /// AddRec and the predicates as a pair, and caches this pair in
2042   /// PredicatedSCEVRewrites.
2043   /// If the analysis is not successful, a mapping from the \p SymbolicPHI to
2044   /// itself (with no predicates) is recorded, and a nullptr with an empty
2045   /// predicates vector is returned as a pair.
2046   Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
2047   createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI);
2048 
2049   /// Compute the maximum backedge count based on the range of values
2050   /// permitted by Start, End, and Stride. This is for loops of the form
2051   /// {Start, +, Stride} LT End.
2052   ///
2053   /// Preconditions:
2054   /// * the induction variable is known to be positive.
2055   /// * the induction variable is assumed not to overflow (i.e. either it
2056   ///   actually doesn't, or we'd have to immediately execute UB)
2057   /// We *don't* assert these preconditions so please be careful.
2058   const SCEV *computeMaxBECountForLT(const SCEV *Start, const SCEV *Stride,
2059                                      const SCEV *End, unsigned BitWidth,
2060                                      bool IsSigned);
2061 
2062   /// Verify if an linear IV with positive stride can overflow when in a
2063   /// less-than comparison, knowing the invariant term of the comparison,
2064   /// the stride.
2065   bool canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, bool IsSigned);
2066 
2067   /// Verify if an linear IV with negative stride can overflow when in a
2068   /// greater-than comparison, knowing the invariant term of the comparison,
2069   /// the stride.
2070   bool canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, bool IsSigned);
2071 
2072   /// Get add expr already created or create a new one.
2073   const SCEV *getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2074                                  SCEV::NoWrapFlags Flags);
2075 
2076   /// Get mul expr already created or create a new one.
2077   const SCEV *getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
2078                                  SCEV::NoWrapFlags Flags);
2079 
2080   // Get addrec expr already created or create a new one.
2081   const SCEV *getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
2082                                     const Loop *L, SCEV::NoWrapFlags Flags);
2083 
2084   /// Return x if \p Val is f(x) where f is a 1-1 function.
2085   const SCEV *stripInjectiveFunctions(const SCEV *Val) const;
2086 
2087   /// Find all of the loops transitively used in \p S, and fill \p LoopsUsed.
2088   /// A loop is considered "used" by an expression if it contains
2089   /// an add rec on said loop.
2090   void getUsedLoops(const SCEV *S, SmallPtrSetImpl<const Loop *> &LoopsUsed);
2091 
2092   /// Try to match the pattern generated by getURemExpr(A, B). If successful,
2093   /// Assign A and B to LHS and RHS, respectively.
2094   bool matchURem(const SCEV *Expr, const SCEV *&LHS, const SCEV *&RHS);
2095 
2096   /// Look for a SCEV expression with type `SCEVType` and operands `Ops` in
2097   /// `UniqueSCEVs`.  Return if found, else nullptr.
2098   SCEV *findExistingSCEVInCache(SCEVTypes SCEVType, ArrayRef<const SCEV *> Ops);
2099 
2100   /// Get reachable blocks in this function, making limited use of SCEV
2101   /// reasoning about conditions.
2102   void getReachableBlocks(SmallPtrSetImpl<BasicBlock *> &Reachable,
2103                           Function &F);
2104 
2105   FoldingSet<SCEV> UniqueSCEVs;
2106   FoldingSet<SCEVPredicate> UniquePreds;
2107   BumpPtrAllocator SCEVAllocator;
2108 
2109   /// This maps loops to a list of addrecs that directly use said loop.
2110   DenseMap<const Loop *, SmallVector<const SCEVAddRecExpr *, 4>> LoopUsers;
2111 
2112   /// Cache tentative mappings from UnknownSCEVs in a Loop, to a SCEV expression
2113   /// they can be rewritten into under certain predicates.
2114   DenseMap<std::pair<const SCEVUnknown *, const Loop *>,
2115            std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
2116       PredicatedSCEVRewrites;
2117 
2118   /// The head of a linked list of all SCEVUnknown values that have been
2119   /// allocated. This is used by releaseMemory to locate them all and call
2120   /// their destructors.
2121   SCEVUnknown *FirstUnknown = nullptr;
2122 };
2123 
2124 /// Analysis pass that exposes the \c ScalarEvolution for a function.
2125 class ScalarEvolutionAnalysis
2126     : public AnalysisInfoMixin<ScalarEvolutionAnalysis> {
2127   friend AnalysisInfoMixin<ScalarEvolutionAnalysis>;
2128 
2129   static AnalysisKey Key;
2130 
2131 public:
2132   using Result = ScalarEvolution;
2133 
2134   ScalarEvolution run(Function &F, FunctionAnalysisManager &AM);
2135 };
2136 
2137 /// Verifier pass for the \c ScalarEvolutionAnalysis results.
2138 class ScalarEvolutionVerifierPass
2139     : public PassInfoMixin<ScalarEvolutionVerifierPass> {
2140 public:
2141   PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
2142 };
2143 
2144 /// Printer pass for the \c ScalarEvolutionAnalysis results.
2145 class ScalarEvolutionPrinterPass
2146     : public PassInfoMixin<ScalarEvolutionPrinterPass> {
2147   raw_ostream &OS;
2148 
2149 public:
2150   explicit ScalarEvolutionPrinterPass(raw_ostream &OS) : OS(OS) {}
2151 
2152   PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
2153 };
2154 
2155 class ScalarEvolutionWrapperPass : public FunctionPass {
2156   std::unique_ptr<ScalarEvolution> SE;
2157 
2158 public:
2159   static char ID;
2160 
2161   ScalarEvolutionWrapperPass();
2162 
2163   ScalarEvolution &getSE() { return *SE; }
2164   const ScalarEvolution &getSE() const { return *SE; }
2165 
2166   bool runOnFunction(Function &F) override;
2167   void releaseMemory() override;
2168   void getAnalysisUsage(AnalysisUsage &AU) const override;
2169   void print(raw_ostream &OS, const Module * = nullptr) const override;
2170   void verifyAnalysis() const override;
2171 };
2172 
2173 /// An interface layer with SCEV used to manage how we see SCEV expressions
2174 /// for values in the context of existing predicates. We can add new
2175 /// predicates, but we cannot remove them.
2176 ///
2177 /// This layer has multiple purposes:
2178 ///   - provides a simple interface for SCEV versioning.
2179 ///   - guarantees that the order of transformations applied on a SCEV
2180 ///     expression for a single Value is consistent across two different
2181 ///     getSCEV calls. This means that, for example, once we've obtained
2182 ///     an AddRec expression for a certain value through expression
2183 ///     rewriting, we will continue to get an AddRec expression for that
2184 ///     Value.
2185 ///   - lowers the number of expression rewrites.
2186 class PredicatedScalarEvolution {
2187 public:
2188   PredicatedScalarEvolution(ScalarEvolution &SE, Loop &L);
2189 
2190   const SCEVPredicate &getPredicate() const;
2191 
2192   /// Returns the SCEV expression of V, in the context of the current SCEV
2193   /// predicate.  The order of transformations applied on the expression of V
2194   /// returned by ScalarEvolution is guaranteed to be preserved, even when
2195   /// adding new predicates.
2196   const SCEV *getSCEV(Value *V);
2197 
2198   /// Get the (predicated) backedge count for the analyzed loop.
2199   const SCEV *getBackedgeTakenCount();
2200 
2201   /// Adds a new predicate.
2202   void addPredicate(const SCEVPredicate &Pred);
2203 
2204   /// Attempts to produce an AddRecExpr for V by adding additional SCEV
2205   /// predicates. If we can't transform the expression into an AddRecExpr we
2206   /// return nullptr and not add additional SCEV predicates to the current
2207   /// context.
2208   const SCEVAddRecExpr *getAsAddRec(Value *V);
2209 
2210   /// Proves that V doesn't overflow by adding SCEV predicate.
2211   void setNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags);
2212 
2213   /// Returns true if we've proved that V doesn't wrap by means of a SCEV
2214   /// predicate.
2215   bool hasNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags);
2216 
2217   /// Returns the ScalarEvolution analysis used.
2218   ScalarEvolution *getSE() const { return &SE; }
2219 
2220   /// We need to explicitly define the copy constructor because of FlagsMap.
2221   PredicatedScalarEvolution(const PredicatedScalarEvolution &);
2222 
2223   /// Print the SCEV mappings done by the Predicated Scalar Evolution.
2224   /// The printed text is indented by \p Depth.
2225   void print(raw_ostream &OS, unsigned Depth) const;
2226 
2227   /// Check if \p AR1 and \p AR2 are equal, while taking into account
2228   /// Equal predicates in Preds.
2229   bool areAddRecsEqualWithPreds(const SCEVAddRecExpr *AR1,
2230                                 const SCEVAddRecExpr *AR2) const;
2231 
2232 private:
2233   /// Increments the version number of the predicate.  This needs to be called
2234   /// every time the SCEV predicate changes.
2235   void updateGeneration();
2236 
2237   /// Holds a SCEV and the version number of the SCEV predicate used to
2238   /// perform the rewrite of the expression.
2239   using RewriteEntry = std::pair<unsigned, const SCEV *>;
2240 
2241   /// Maps a SCEV to the rewrite result of that SCEV at a certain version
2242   /// number. If this number doesn't match the current Generation, we will
2243   /// need to do a rewrite. To preserve the transformation order of previous
2244   /// rewrites, we will rewrite the previous result instead of the original
2245   /// SCEV.
2246   DenseMap<const SCEV *, RewriteEntry> RewriteMap;
2247 
2248   /// Records what NoWrap flags we've added to a Value *.
2249   ValueMap<Value *, SCEVWrapPredicate::IncrementWrapFlags> FlagsMap;
2250 
2251   /// The ScalarEvolution analysis.
2252   ScalarEvolution &SE;
2253 
2254   /// The analyzed Loop.
2255   const Loop &L;
2256 
2257   /// The SCEVPredicate that forms our context. We will rewrite all
2258   /// expressions assuming that this predicate true.
2259   std::unique_ptr<SCEVUnionPredicate> Preds;
2260 
2261   /// Marks the version of the SCEV predicate used. When rewriting a SCEV
2262   /// expression we mark it with the version of the predicate. We use this to
2263   /// figure out if the predicate has changed from the last rewrite of the
2264   /// SCEV. If so, we need to perform a new rewrite.
2265   unsigned Generation = 0;
2266 
2267   /// The backedge taken count.
2268   const SCEV *BackedgeCount = nullptr;
2269 };
2270 
2271 } // end namespace llvm
2272 
2273 #endif // LLVM_ANALYSIS_SCALAREVOLUTION_H
2274