1 //===- CodeGen/Analysis.h - CodeGen LLVM IR Analysis Utilities --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares several CodeGen-specific LLVM IR analysis utilities.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CODEGEN_ANALYSIS_H
14 #define LLVM_CODEGEN_ANALYSIS_H
15 
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Triple.h"
20 #include "llvm/CodeGen/ISDOpcodes.h"
21 #include "llvm/IR/InlineAsm.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/Support/CodeGen.h"
24 
25 namespace llvm {
26 class GlobalValue;
27 class LLT;
28 class MachineBasicBlock;
29 class MachineFunction;
30 class TargetLoweringBase;
31 class TargetLowering;
32 class TargetMachine;
33 struct EVT;
34 
35 /// Compute the linearized index of a member in a nested
36 /// aggregate/struct/array.
37 ///
38 /// Given an LLVM IR aggregate type and a sequence of insertvalue or
39 /// extractvalue indices that identify a member, return the linearized index of
40 /// the start of the member, i.e the number of element in memory before the
41 /// sought one. This is disconnected from the number of bytes.
42 ///
43 /// \param Ty is the type indexed by \p Indices.
44 /// \param Indices is an optional pointer in the indices list to the current
45 /// index.
46 /// \param IndicesEnd is the end of the indices list.
47 /// \param CurIndex is the current index in the recursion.
48 ///
49 /// \returns \p CurIndex plus the linear index in \p Ty  the indices list.
50 unsigned ComputeLinearIndex(Type *Ty,
51                             const unsigned *Indices,
52                             const unsigned *IndicesEnd,
53                             unsigned CurIndex = 0);
54 
55 inline unsigned ComputeLinearIndex(Type *Ty,
56                                    ArrayRef<unsigned> Indices,
57                                    unsigned CurIndex = 0) {
58   return ComputeLinearIndex(Ty, Indices.begin(), Indices.end(), CurIndex);
59 }
60 
61 /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
62 /// EVTs that represent all the individual underlying
63 /// non-aggregate types that comprise it.
64 ///
65 /// If Offsets is non-null, it points to a vector to be filled in
66 /// with the in-memory offsets of each of the individual values.
67 ///
68 void ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, Type *Ty,
69                      SmallVectorImpl<EVT> &ValueVTs,
70                      SmallVectorImpl<uint64_t> *Offsets = nullptr,
71                      uint64_t StartingOffset = 0);
72 
73 /// Variant of ComputeValueVTs that also produces the memory VTs.
74 void ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, Type *Ty,
75                      SmallVectorImpl<EVT> &ValueVTs,
76                      SmallVectorImpl<EVT> *MemVTs,
77                      SmallVectorImpl<uint64_t> *Offsets = nullptr,
78                      uint64_t StartingOffset = 0);
79 
80 /// computeValueLLTs - Given an LLVM IR type, compute a sequence of
81 /// LLTs that represent all the individual underlying
82 /// non-aggregate types that comprise it.
83 ///
84 /// If Offsets is non-null, it points to a vector to be filled in
85 /// with the in-memory offsets of each of the individual values.
86 ///
87 void computeValueLLTs(const DataLayout &DL, Type &Ty,
88                       SmallVectorImpl<LLT> &ValueTys,
89                       SmallVectorImpl<uint64_t> *Offsets = nullptr,
90                       uint64_t StartingOffset = 0);
91 
92 /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
93 GlobalValue *ExtractTypeInfo(Value *V);
94 
95 /// getFCmpCondCode - Return the ISD condition code corresponding to
96 /// the given LLVM IR floating-point condition code.  This includes
97 /// consideration of global floating-point math flags.
98 ///
99 ISD::CondCode getFCmpCondCode(FCmpInst::Predicate Pred);
100 
101 /// getFCmpCodeWithoutNaN - Given an ISD condition code comparing floats,
102 /// return the equivalent code if we're allowed to assume that NaNs won't occur.
103 ISD::CondCode getFCmpCodeWithoutNaN(ISD::CondCode CC);
104 
105 /// getICmpCondCode - Return the ISD condition code corresponding to
106 /// the given LLVM IR integer condition code.
107 ///
108 ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred);
109 
110 /// Test if the given instruction is in a position to be optimized
111 /// with a tail-call. This roughly means that it's in a block with
112 /// a return and there's nothing that needs to be scheduled
113 /// between it and the return.
114 ///
115 /// This function only tests target-independent requirements.
116 bool isInTailCallPosition(const CallBase &Call, const TargetMachine &TM);
117 
118 /// Test if given that the input instruction is in the tail call position, if
119 /// there is an attribute mismatch between the caller and the callee that will
120 /// inhibit tail call optimizations.
121 /// \p AllowDifferingSizes is an output parameter which, if forming a tail call
122 /// is permitted, determines whether it's permitted only if the size of the
123 /// caller's and callee's return types match exactly.
124 bool attributesPermitTailCall(const Function *F, const Instruction *I,
125                               const ReturnInst *Ret,
126                               const TargetLoweringBase &TLI,
127                               bool *AllowDifferingSizes = nullptr);
128 
129 /// Test if given that the input instruction is in the tail call position if the
130 /// return type or any attributes of the function will inhibit tail call
131 /// optimization.
132 bool returnTypeIsEligibleForTailCall(const Function *F, const Instruction *I,
133                                      const ReturnInst *Ret,
134                                      const TargetLoweringBase &TLI);
135 
136 DenseMap<const MachineBasicBlock *, int>
137 getEHScopeMembership(const MachineFunction &MF);
138 
139 } // End llvm namespace
140 
141 #endif
142