1 //===- FastISel.h - Definition of the FastISel class ------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file defines the FastISel class.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CODEGEN_FASTISEL_H
15 #define LLVM_CODEGEN_FASTISEL_H
16 
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/CodeGen/MachineBasicBlock.h"
21 #include "llvm/CodeGen/TargetLowering.h"
22 #include "llvm/IR/Attributes.h"
23 #include "llvm/IR/CallingConv.h"
24 #include "llvm/IR/DebugLoc.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/InstrTypes.h"
27 #include "llvm/Support/MachineValueType.h"
28 #include <cstdint>
29 #include <utility>
30 
31 namespace llvm {
32 
33 class AllocaInst;
34 class Instruction;
35 class IntrinsicInst;
36 class BasicBlock;
37 class CallInst;
38 class Constant;
39 class ConstantFP;
40 class DataLayout;
41 class FunctionLoweringInfo;
42 class LoadInst;
43 class MachineConstantPool;
44 class MachineFrameInfo;
45 class MachineFunction;
46 class MachineInstr;
47 class MachineMemOperand;
48 class MachineOperand;
49 class MachineRegisterInfo;
50 class MCContext;
51 class MCInstrDesc;
52 class MCSymbol;
53 class TargetInstrInfo;
54 class TargetLibraryInfo;
55 class TargetMachine;
56 class TargetRegisterClass;
57 class TargetRegisterInfo;
58 class Type;
59 class User;
60 class Value;
61 
62 /// This is a fast-path instruction selection class that generates poor
63 /// code and doesn't support illegal types or non-trivial lowering, but runs
64 /// quickly.
65 class FastISel {
66 public:
67   using ArgListEntry = TargetLoweringBase::ArgListEntry;
68   using ArgListTy = TargetLoweringBase::ArgListTy;
69   struct CallLoweringInfo {
70     Type *RetTy = nullptr;
71     bool RetSExt : 1;
72     bool RetZExt : 1;
73     bool IsVarArg : 1;
74     bool IsInReg : 1;
75     bool DoesNotReturn : 1;
76     bool IsReturnValueUsed : 1;
77     bool IsPatchPoint : 1;
78 
79     // IsTailCall Should be modified by implementations of FastLowerCall
80     // that perform tail call conversions.
81     bool IsTailCall = false;
82 
83     unsigned NumFixedArgs = -1;
84     CallingConv::ID CallConv = CallingConv::C;
85     const Value *Callee = nullptr;
86     MCSymbol *Symbol = nullptr;
87     ArgListTy Args;
88     const CallBase *CB = nullptr;
89     MachineInstr *Call = nullptr;
90     Register ResultReg;
91     unsigned NumResultRegs = 0;
92 
93     SmallVector<Value *, 16> OutVals;
94     SmallVector<ISD::ArgFlagsTy, 16> OutFlags;
95     SmallVector<Register, 16> OutRegs;
96     SmallVector<ISD::InputArg, 4> Ins;
97     SmallVector<Register, 4> InRegs;
98 
99     CallLoweringInfo()
100         : RetSExt(false), RetZExt(false), IsVarArg(false), IsInReg(false),
101           DoesNotReturn(false), IsReturnValueUsed(true), IsPatchPoint(false) {}
102 
103     CallLoweringInfo &setCallee(Type *ResultTy, FunctionType *FuncTy,
104                                 const Value *Target, ArgListTy &&ArgsList,
105                                 const CallBase &Call) {
106       RetTy = ResultTy;
107       Callee = Target;
108 
109       IsInReg = Call.hasRetAttr(Attribute::InReg);
110       DoesNotReturn = Call.doesNotReturn();
111       IsVarArg = FuncTy->isVarArg();
112       IsReturnValueUsed = !Call.use_empty();
113       RetSExt = Call.hasRetAttr(Attribute::SExt);
114       RetZExt = Call.hasRetAttr(Attribute::ZExt);
115 
116       CallConv = Call.getCallingConv();
117       Args = std::move(ArgsList);
118       NumFixedArgs = FuncTy->getNumParams();
119 
120       CB = &Call;
121 
122       return *this;
123     }
124 
125     CallLoweringInfo &setCallee(Type *ResultTy, FunctionType *FuncTy,
126                                 MCSymbol *Target, ArgListTy &&ArgsList,
127                                 const CallBase &Call,
128                                 unsigned FixedArgs = ~0U) {
129       RetTy = ResultTy;
130       Callee = Call.getCalledOperand();
131       Symbol = Target;
132 
133       IsInReg = Call.hasRetAttr(Attribute::InReg);
134       DoesNotReturn = Call.doesNotReturn();
135       IsVarArg = FuncTy->isVarArg();
136       IsReturnValueUsed = !Call.use_empty();
137       RetSExt = Call.hasRetAttr(Attribute::SExt);
138       RetZExt = Call.hasRetAttr(Attribute::ZExt);
139 
140       CallConv = Call.getCallingConv();
141       Args = std::move(ArgsList);
142       NumFixedArgs = (FixedArgs == ~0U) ? FuncTy->getNumParams() : FixedArgs;
143 
144       CB = &Call;
145 
146       return *this;
147     }
148 
149     CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultTy,
150                                 const Value *Target, ArgListTy &&ArgsList,
151                                 unsigned FixedArgs = ~0U) {
152       RetTy = ResultTy;
153       Callee = Target;
154       CallConv = CC;
155       Args = std::move(ArgsList);
156       NumFixedArgs = (FixedArgs == ~0U) ? Args.size() : FixedArgs;
157       return *this;
158     }
159 
160     CallLoweringInfo &setCallee(const DataLayout &DL, MCContext &Ctx,
161                                 CallingConv::ID CC, Type *ResultTy,
162                                 StringRef Target, ArgListTy &&ArgsList,
163                                 unsigned FixedArgs = ~0U);
164 
165     CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultTy,
166                                 MCSymbol *Target, ArgListTy &&ArgsList,
167                                 unsigned FixedArgs = ~0U) {
168       RetTy = ResultTy;
169       Symbol = Target;
170       CallConv = CC;
171       Args = std::move(ArgsList);
172       NumFixedArgs = (FixedArgs == ~0U) ? Args.size() : FixedArgs;
173       return *this;
174     }
175 
176     CallLoweringInfo &setTailCall(bool Value = true) {
177       IsTailCall = Value;
178       return *this;
179     }
180 
181     CallLoweringInfo &setIsPatchPoint(bool Value = true) {
182       IsPatchPoint = Value;
183       return *this;
184     }
185 
186     ArgListTy &getArgs() { return Args; }
187 
188     void clearOuts() {
189       OutVals.clear();
190       OutFlags.clear();
191       OutRegs.clear();
192     }
193 
194     void clearIns() {
195       Ins.clear();
196       InRegs.clear();
197     }
198   };
199 
200 protected:
201   DenseMap<const Value *, Register> LocalValueMap;
202   FunctionLoweringInfo &FuncInfo;
203   MachineFunction *MF;
204   MachineRegisterInfo &MRI;
205   MachineFrameInfo &MFI;
206   MachineConstantPool &MCP;
207   DebugLoc DbgLoc;
208   const TargetMachine &TM;
209   const DataLayout &DL;
210   const TargetInstrInfo &TII;
211   const TargetLowering &TLI;
212   const TargetRegisterInfo &TRI;
213   const TargetLibraryInfo *LibInfo;
214   bool SkipTargetIndependentISel;
215   bool UseInstrRefDebugInfo = false;
216 
217   /// The position of the last instruction for materializing constants
218   /// for use in the current block. It resets to EmitStartPt when it makes sense
219   /// (for example, it's usually profitable to avoid function calls between the
220   /// definition and the use)
221   MachineInstr *LastLocalValue = nullptr;
222 
223   /// The top most instruction in the current block that is allowed for
224   /// emitting local variables. LastLocalValue resets to EmitStartPt when it
225   /// makes sense (for example, on function calls)
226   MachineInstr *EmitStartPt = nullptr;
227 
228 public:
229   virtual ~FastISel();
230 
231   /// Return the position of the last instruction emitted for
232   /// materializing constants for use in the current block.
233   MachineInstr *getLastLocalValue() { return LastLocalValue; }
234 
235   /// Update the position of the last instruction emitted for
236   /// materializing constants for use in the current block.
237   void setLastLocalValue(MachineInstr *I) {
238     EmitStartPt = I;
239     LastLocalValue = I;
240   }
241 
242   /// Set the current block to which generated machine instructions will
243   /// be appended.
244   void startNewBlock();
245 
246   /// Flush the local value map.
247   void finishBasicBlock();
248 
249   /// Return current debug location information.
250   DebugLoc getCurDebugLoc() const { return DbgLoc; }
251 
252   /// Do "fast" instruction selection for function arguments and append
253   /// the machine instructions to the current block. Returns true when
254   /// successful.
255   bool lowerArguments();
256 
257   /// Do "fast" instruction selection for the given LLVM IR instruction
258   /// and append the generated machine instructions to the current block.
259   /// Returns true if selection was successful.
260   bool selectInstruction(const Instruction *I);
261 
262   /// Do "fast" instruction selection for the given LLVM IR operator
263   /// (Instruction or ConstantExpr), and append generated machine instructions
264   /// to the current block. Return true if selection was successful.
265   bool selectOperator(const User *I, unsigned Opcode);
266 
267   /// Create a virtual register and arrange for it to be assigned the
268   /// value for the given LLVM value.
269   Register getRegForValue(const Value *V);
270 
271   /// Look up the value to see if its value is already cached in a
272   /// register. It may be defined by instructions across blocks or defined
273   /// locally.
274   Register lookUpRegForValue(const Value *V);
275 
276   /// This is a wrapper around getRegForValue that also takes care of
277   /// truncating or sign-extending the given getelementptr index value.
278   Register getRegForGEPIndex(const Value *Idx);
279 
280   /// We're checking to see if we can fold \p LI into \p FoldInst. Note
281   /// that we could have a sequence where multiple LLVM IR instructions are
282   /// folded into the same machineinstr.  For example we could have:
283   ///
284   ///   A: x = load i32 *P
285   ///   B: y = icmp A, 42
286   ///   C: br y, ...
287   ///
288   /// In this scenario, \p LI is "A", and \p FoldInst is "C".  We know about "B"
289   /// (and any other folded instructions) because it is between A and C.
290   ///
291   /// If we succeed folding, return true.
292   bool tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst);
293 
294   /// The specified machine instr operand is a vreg, and that vreg is
295   /// being provided by the specified load instruction.  If possible, try to
296   /// fold the load as an operand to the instruction, returning true if
297   /// possible.
298   ///
299   /// This method should be implemented by targets.
300   virtual bool tryToFoldLoadIntoMI(MachineInstr * /*MI*/, unsigned /*OpNo*/,
301                                    const LoadInst * /*LI*/) {
302     return false;
303   }
304 
305   /// Reset InsertPt to prepare for inserting instructions into the
306   /// current block.
307   void recomputeInsertPt();
308 
309   /// Remove all dead instructions between the I and E.
310   void removeDeadCode(MachineBasicBlock::iterator I,
311                       MachineBasicBlock::iterator E);
312 
313   using SavePoint = MachineBasicBlock::iterator;
314 
315   /// Prepare InsertPt to begin inserting instructions into the local
316   /// value area and return the old insert position.
317   SavePoint enterLocalValueArea();
318 
319   /// Reset InsertPt to the given old insert position.
320   void leaveLocalValueArea(SavePoint Old);
321 
322   /// Signal whether instruction referencing variable locations are desired for
323   /// this function's debug-info.
324   void useInstrRefDebugInfo(bool Flag) {
325     UseInstrRefDebugInfo = Flag;
326   }
327 
328 protected:
329   explicit FastISel(FunctionLoweringInfo &FuncInfo,
330                     const TargetLibraryInfo *LibInfo,
331                     bool SkipTargetIndependentISel = false);
332 
333   /// This method is called by target-independent code when the normal
334   /// FastISel process fails to select an instruction. This gives targets a
335   /// chance to emit code for anything that doesn't fit into FastISel's
336   /// framework. It returns true if it was successful.
337   virtual bool fastSelectInstruction(const Instruction *I) = 0;
338 
339   /// This method is called by target-independent code to do target-
340   /// specific argument lowering. It returns true if it was successful.
341   virtual bool fastLowerArguments();
342 
343   /// This method is called by target-independent code to do target-
344   /// specific call lowering. It returns true if it was successful.
345   virtual bool fastLowerCall(CallLoweringInfo &CLI);
346 
347   /// This method is called by target-independent code to do target-
348   /// specific intrinsic lowering. It returns true if it was successful.
349   virtual bool fastLowerIntrinsicCall(const IntrinsicInst *II);
350 
351   /// This method is called by target-independent code to request that an
352   /// instruction with the given type and opcode be emitted.
353   virtual unsigned fastEmit_(MVT VT, MVT RetVT, unsigned Opcode);
354 
355   /// This method is called by target-independent code to request that an
356   /// instruction with the given type, opcode, and register operand be emitted.
357   virtual unsigned fastEmit_r(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0);
358 
359   /// This method is called by target-independent code to request that an
360   /// instruction with the given type, opcode, and register operands be emitted.
361   virtual unsigned fastEmit_rr(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0,
362                                unsigned Op1);
363 
364   /// This method is called by target-independent code to request that an
365   /// instruction with the given type, opcode, and register and immediate
366   /// operands be emitted.
367   virtual unsigned fastEmit_ri(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0,
368                                uint64_t Imm);
369 
370   /// This method is a wrapper of fastEmit_ri.
371   ///
372   /// It first tries to emit an instruction with an immediate operand using
373   /// fastEmit_ri.  If that fails, it materializes the immediate into a register
374   /// and try fastEmit_rr instead.
375   Register fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0, uint64_t Imm,
376                         MVT ImmType);
377 
378   /// This method is called by target-independent code to request that an
379   /// instruction with the given type, opcode, and immediate operand be emitted.
380   virtual unsigned fastEmit_i(MVT VT, MVT RetVT, unsigned Opcode, uint64_t Imm);
381 
382   /// This method is called by target-independent code to request that an
383   /// instruction with the given type, opcode, and floating-point immediate
384   /// operand be emitted.
385   virtual unsigned fastEmit_f(MVT VT, MVT RetVT, unsigned Opcode,
386                               const ConstantFP *FPImm);
387 
388   /// Emit a MachineInstr with no operands and a result register in the
389   /// given register class.
390   Register fastEmitInst_(unsigned MachineInstOpcode,
391                          const TargetRegisterClass *RC);
392 
393   /// Emit a MachineInstr with one register operand and a result register
394   /// in the given register class.
395   Register fastEmitInst_r(unsigned MachineInstOpcode,
396                           const TargetRegisterClass *RC, unsigned Op0);
397 
398   /// Emit a MachineInstr with two register operands and a result
399   /// register in the given register class.
400   Register fastEmitInst_rr(unsigned MachineInstOpcode,
401                            const TargetRegisterClass *RC, unsigned Op0,
402                            unsigned Op1);
403 
404   /// Emit a MachineInstr with three register operands and a result
405   /// register in the given register class.
406   Register fastEmitInst_rrr(unsigned MachineInstOpcode,
407                             const TargetRegisterClass *RC, unsigned Op0,
408                             unsigned Op1, unsigned Op2);
409 
410   /// Emit a MachineInstr with a register operand, an immediate, and a
411   /// result register in the given register class.
412   Register fastEmitInst_ri(unsigned MachineInstOpcode,
413                            const TargetRegisterClass *RC, unsigned Op0,
414                            uint64_t Imm);
415 
416   /// Emit a MachineInstr with one register operand and two immediate
417   /// operands.
418   Register fastEmitInst_rii(unsigned MachineInstOpcode,
419                             const TargetRegisterClass *RC, unsigned Op0,
420                             uint64_t Imm1, uint64_t Imm2);
421 
422   /// Emit a MachineInstr with a floating point immediate, and a result
423   /// register in the given register class.
424   Register fastEmitInst_f(unsigned MachineInstOpcode,
425                           const TargetRegisterClass *RC,
426                           const ConstantFP *FPImm);
427 
428   /// Emit a MachineInstr with two register operands, an immediate, and a
429   /// result register in the given register class.
430   Register fastEmitInst_rri(unsigned MachineInstOpcode,
431                             const TargetRegisterClass *RC, unsigned Op0,
432                             unsigned Op1, uint64_t Imm);
433 
434   /// Emit a MachineInstr with a single immediate operand, and a result
435   /// register in the given register class.
436   Register fastEmitInst_i(unsigned MachineInstOpcode,
437                           const TargetRegisterClass *RC, uint64_t Imm);
438 
439   /// Emit a MachineInstr for an extract_subreg from a specified index of
440   /// a superregister to a specified type.
441   Register fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0, uint32_t Idx);
442 
443   /// Emit MachineInstrs to compute the value of Op with all but the
444   /// least significant bit set to zero.
445   Register fastEmitZExtFromI1(MVT VT, unsigned Op0);
446 
447   /// Emit an unconditional branch to the given block, unless it is the
448   /// immediate (fall-through) successor, and update the CFG.
449   void fastEmitBranch(MachineBasicBlock *MSucc, const DebugLoc &DbgLoc);
450 
451   /// Emit an unconditional branch to \p FalseMBB, obtains the branch weight
452   /// and adds TrueMBB and FalseMBB to the successor list.
453   void finishCondBranch(const BasicBlock *BranchBB, MachineBasicBlock *TrueMBB,
454                         MachineBasicBlock *FalseMBB);
455 
456   /// Update the value map to include the new mapping for this
457   /// instruction, or insert an extra copy to get the result in a previous
458   /// determined register.
459   ///
460   /// NOTE: This is only necessary because we might select a block that uses a
461   /// value before we select the block that defines the value. It might be
462   /// possible to fix this by selecting blocks in reverse postorder.
463   void updateValueMap(const Value *I, Register Reg, unsigned NumRegs = 1);
464 
465   Register createResultReg(const TargetRegisterClass *RC);
466 
467   /// Try to constrain Op so that it is usable by argument OpNum of the
468   /// provided MCInstrDesc. If this fails, create a new virtual register in the
469   /// correct class and COPY the value there.
470   Register constrainOperandRegClass(const MCInstrDesc &II, Register Op,
471                                     unsigned OpNum);
472 
473   /// Emit a constant in a register using target-specific logic, such as
474   /// constant pool loads.
475   virtual unsigned fastMaterializeConstant(const Constant *C) { return 0; }
476 
477   /// Emit an alloca address in a register using target-specific logic.
478   virtual unsigned fastMaterializeAlloca(const AllocaInst *C) { return 0; }
479 
480   /// Emit the floating-point constant +0.0 in a register using target-
481   /// specific logic.
482   virtual unsigned fastMaterializeFloatZero(const ConstantFP *CF) {
483     return 0;
484   }
485 
486   /// Check if \c Add is an add that can be safely folded into \c GEP.
487   ///
488   /// \c Add can be folded into \c GEP if:
489   /// - \c Add is an add,
490   /// - \c Add's size matches \c GEP's,
491   /// - \c Add is in the same basic block as \c GEP, and
492   /// - \c Add has a constant operand.
493   bool canFoldAddIntoGEP(const User *GEP, const Value *Add);
494 
495   /// Create a machine mem operand from the given instruction.
496   MachineMemOperand *createMachineMemOperandFor(const Instruction *I) const;
497 
498   CmpInst::Predicate optimizeCmpPredicate(const CmpInst *CI) const;
499 
500   bool lowerCallTo(const CallInst *CI, MCSymbol *Symbol, unsigned NumArgs);
501   bool lowerCallTo(const CallInst *CI, const char *SymName,
502                    unsigned NumArgs);
503   bool lowerCallTo(CallLoweringInfo &CLI);
504 
505   bool lowerCall(const CallInst *I);
506   /// Select and emit code for a binary operator instruction, which has
507   /// an opcode which directly corresponds to the given ISD opcode.
508   bool selectBinaryOp(const User *I, unsigned ISDOpcode);
509   bool selectFNeg(const User *I, const Value *In);
510   bool selectGetElementPtr(const User *I);
511   bool selectStackmap(const CallInst *I);
512   bool selectPatchpoint(const CallInst *I);
513   bool selectCall(const User *I);
514   bool selectIntrinsicCall(const IntrinsicInst *II);
515   bool selectBitCast(const User *I);
516   bool selectFreeze(const User *I);
517   bool selectCast(const User *I, unsigned Opcode);
518   bool selectExtractValue(const User *U);
519   bool selectXRayCustomEvent(const CallInst *II);
520   bool selectXRayTypedEvent(const CallInst *II);
521 
522   bool shouldOptForSize(const MachineFunction *MF) const {
523     // TODO: Implement PGSO.
524     return MF->getFunction().hasOptSize();
525   }
526 
527 private:
528   /// Handle PHI nodes in successor blocks.
529   ///
530   /// Emit code to ensure constants are copied into registers when needed.
531   /// Remember the virtual registers that need to be added to the Machine PHI
532   /// nodes as input.  We cannot just directly add them, because expansion might
533   /// result in multiple MBB's for one BB.  As such, the start of the BB might
534   /// correspond to a different MBB than the end.
535   bool handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB);
536 
537   /// Helper for materializeRegForValue to materialize a constant in a
538   /// target-independent way.
539   Register materializeConstant(const Value *V, MVT VT);
540 
541   /// Helper for getRegForVale. This function is called when the value
542   /// isn't already available in a register and must be materialized with new
543   /// instructions.
544   Register materializeRegForValue(const Value *V, MVT VT);
545 
546   /// Clears LocalValueMap and moves the area for the new local variables
547   /// to the beginning of the block. It helps to avoid spilling cached variables
548   /// across heavy instructions like calls.
549   void flushLocalValueMap();
550 
551   /// Removes dead local value instructions after SavedLastLocalvalue.
552   void removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue);
553 
554   /// Insertion point before trying to select the current instruction.
555   MachineBasicBlock::iterator SavedInsertPt;
556 
557   /// Add a stackmap or patchpoint intrinsic call's live variable
558   /// operands to a stackmap or patchpoint machine instruction.
559   bool addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops,
560                            const CallInst *CI, unsigned StartIdx);
561   bool lowerCallOperands(const CallInst *CI, unsigned ArgIdx, unsigned NumArgs,
562                          const Value *Callee, bool ForceRetVoidTy,
563                          CallLoweringInfo &CLI);
564 };
565 
566 } // end namespace llvm
567 
568 #endif // LLVM_CODEGEN_FASTISEL_H
569