1 //===- llvm/CodeGen/GlobalISel/IRTranslator.h - IRTranslator ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file declares the IRTranslator pass.
10 /// This pass is responsible for translating LLVM IR into MachineInstr.
11 /// It uses target hooks to lower the ABI but aside from that, the pass
12 /// generated code is generic. This is the default translator used for
13 /// GlobalISel.
14 ///
15 /// \todo Replace the comments with actual doxygen comments.
16 //===----------------------------------------------------------------------===//
17 
18 #ifndef LLVM_CODEGEN_GLOBALISEL_IRTRANSLATOR_H
19 #define LLVM_CODEGEN_GLOBALISEL_IRTRANSLATOR_H
20 
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/CodeGen/CodeGenCommonISel.h"
24 #include "llvm/CodeGen/FunctionLoweringInfo.h"
25 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
28 #include "llvm/CodeGen/SwitchLoweringUtils.h"
29 #include "llvm/Support/Allocator.h"
30 #include "llvm/Support/CodeGen.h"
31 #include <memory>
32 #include <utility>
33 
34 namespace llvm {
35 
36 class AllocaInst;
37 class AssumptionCache;
38 class BasicBlock;
39 class CallInst;
40 class CallLowering;
41 class Constant;
42 class ConstrainedFPIntrinsic;
43 class DataLayout;
44 class DbgDeclareInst;
45 class DbgValueInst;
46 class Instruction;
47 class MachineBasicBlock;
48 class MachineFunction;
49 class MachineInstr;
50 class MachineRegisterInfo;
51 class OptimizationRemarkEmitter;
52 class PHINode;
53 class TargetLibraryInfo;
54 class TargetPassConfig;
55 class User;
56 class Value;
57 
58 // Technically the pass should run on an hypothetical MachineModule,
59 // since it should translate Global into some sort of MachineGlobal.
60 // The MachineGlobal should ultimately just be a transfer of ownership of
61 // the interesting bits that are relevant to represent a global value.
62 // That being said, we could investigate what would it cost to just duplicate
63 // the information from the LLVM IR.
64 // The idea is that ultimately we would be able to free up the memory used
65 // by the LLVM IR as soon as the translation is over.
66 class IRTranslator : public MachineFunctionPass {
67 public:
68   static char ID;
69 
70 private:
71   /// Interface used to lower the everything related to calls.
72   const CallLowering *CLI = nullptr;
73 
74   /// This class contains the mapping between the Values to vreg related data.
75   class ValueToVRegInfo {
76   public:
77     ValueToVRegInfo() = default;
78 
79     using VRegListT = SmallVector<Register, 1>;
80     using OffsetListT = SmallVector<uint64_t, 1>;
81 
82     using const_vreg_iterator =
83         DenseMap<const Value *, VRegListT *>::const_iterator;
84     using const_offset_iterator =
85         DenseMap<const Value *, OffsetListT *>::const_iterator;
86 
87     inline const_vreg_iterator vregs_end() const { return ValToVRegs.end(); }
88 
89     VRegListT *getVRegs(const Value &V) {
90       auto It = ValToVRegs.find(&V);
91       if (It != ValToVRegs.end())
92         return It->second;
93 
94       return insertVRegs(V);
95     }
96 
97     OffsetListT *getOffsets(const Value &V) {
98       auto It = TypeToOffsets.find(V.getType());
99       if (It != TypeToOffsets.end())
100         return It->second;
101 
102       return insertOffsets(V);
103     }
104 
105     const_vreg_iterator findVRegs(const Value &V) const {
106       return ValToVRegs.find(&V);
107     }
108 
109     bool contains(const Value &V) const { return ValToVRegs.contains(&V); }
110 
111     void reset() {
112       ValToVRegs.clear();
113       TypeToOffsets.clear();
114       VRegAlloc.DestroyAll();
115       OffsetAlloc.DestroyAll();
116     }
117 
118   private:
119     VRegListT *insertVRegs(const Value &V) {
120       assert(!ValToVRegs.contains(&V) && "Value already exists");
121 
122       // We placement new using our fast allocator since we never try to free
123       // the vectors until translation is finished.
124       auto *VRegList = new (VRegAlloc.Allocate()) VRegListT();
125       ValToVRegs[&V] = VRegList;
126       return VRegList;
127     }
128 
129     OffsetListT *insertOffsets(const Value &V) {
130       assert(!TypeToOffsets.contains(V.getType()) && "Type already exists");
131 
132       auto *OffsetList = new (OffsetAlloc.Allocate()) OffsetListT();
133       TypeToOffsets[V.getType()] = OffsetList;
134       return OffsetList;
135     }
136     SpecificBumpPtrAllocator<VRegListT> VRegAlloc;
137     SpecificBumpPtrAllocator<OffsetListT> OffsetAlloc;
138 
139     // We store pointers to vectors here since references may be invalidated
140     // while we hold them if we stored the vectors directly.
141     DenseMap<const Value *, VRegListT*> ValToVRegs;
142     DenseMap<const Type *, OffsetListT*> TypeToOffsets;
143   };
144 
145   /// Mapping of the values of the current LLVM IR function to the related
146   /// virtual registers and offsets.
147   ValueToVRegInfo VMap;
148 
149   // N.b. it's not completely obvious that this will be sufficient for every
150   // LLVM IR construct (with "invoke" being the obvious candidate to mess up our
151   // lives.
152   DenseMap<const BasicBlock *, MachineBasicBlock *> BBToMBB;
153 
154   // One BasicBlock can be translated to multiple MachineBasicBlocks.  For such
155   // BasicBlocks translated to multiple MachineBasicBlocks, MachinePreds retains
156   // a mapping between the edges arriving at the BasicBlock to the corresponding
157   // created MachineBasicBlocks. Some BasicBlocks that get translated to a
158   // single MachineBasicBlock may also end up in this Map.
159   using CFGEdge = std::pair<const BasicBlock *, const BasicBlock *>;
160   DenseMap<CFGEdge, SmallVector<MachineBasicBlock *, 1>> MachinePreds;
161 
162   // List of stubbed PHI instructions, for values and basic blocks to be filled
163   // in once all MachineBasicBlocks have been created.
164   SmallVector<std::pair<const PHINode *, SmallVector<MachineInstr *, 1>>, 4>
165       PendingPHIs;
166 
167   /// Record of what frame index has been allocated to specified allocas for
168   /// this function.
169   DenseMap<const AllocaInst *, int> FrameIndices;
170 
171   SwiftErrorValueTracking SwiftError;
172 
173   /// \name Methods for translating form LLVM IR to MachineInstr.
174   /// \see ::translate for general information on the translate methods.
175   /// @{
176 
177   /// Translate \p Inst into its corresponding MachineInstr instruction(s).
178   /// Insert the newly translated instruction(s) right where the CurBuilder
179   /// is set.
180   ///
181   /// The general algorithm is:
182   /// 1. Look for a virtual register for each operand or
183   ///    create one.
184   /// 2 Update the VMap accordingly.
185   /// 2.alt. For constant arguments, if they are compile time constants,
186   ///   produce an immediate in the right operand and do not touch
187   ///   ValToReg. Actually we will go with a virtual register for each
188   ///   constants because it may be expensive to actually materialize the
189   ///   constant. Moreover, if the constant spans on several instructions,
190   ///   CSE may not catch them.
191   ///   => Update ValToVReg and remember that we saw a constant in Constants.
192   ///   We will materialize all the constants in finalize.
193   /// Note: we would need to do something so that we can recognize such operand
194   ///       as constants.
195   /// 3. Create the generic instruction.
196   ///
197   /// \return true if the translation succeeded.
198   bool translate(const Instruction &Inst);
199 
200   /// Materialize \p C into virtual-register \p Reg. The generic instructions
201   /// performing this materialization will be inserted into the entry block of
202   /// the function.
203   ///
204   /// \return true if the materialization succeeded.
205   bool translate(const Constant &C, Register Reg);
206 
207   /// Examine any debug-info attached to the instruction (in the form of
208   /// DPValues) and translate it.
209   void translateDbgInfo(const Instruction &Inst,
210                           MachineIRBuilder &MIRBuilder);
211 
212   /// Translate a debug-info record of a dbg.value into a DBG_* instruction.
213   /// Pass in all the contents of the record, rather than relying on how it's
214   /// stored.
215   void translateDbgValueRecord(Value *V, bool HasArgList,
216                          const DILocalVariable *Variable,
217                          const DIExpression *Expression, const DebugLoc &DL,
218                          MachineIRBuilder &MIRBuilder);
219 
220   /// Translate a debug-info record of a dbg.declare into an indirect DBG_*
221   /// instruction. Pass in all the contents of the record, rather than relying
222   /// on how it's stored.
223   void translateDbgDeclareRecord(Value *Address, bool HasArgList,
224                          const DILocalVariable *Variable,
225                          const DIExpression *Expression, const DebugLoc &DL,
226                          MachineIRBuilder &MIRBuilder);
227 
228   // Translate U as a copy of V.
229   bool translateCopy(const User &U, const Value &V,
230                      MachineIRBuilder &MIRBuilder);
231 
232   /// Translate an LLVM bitcast into generic IR. Either a COPY or a G_BITCAST is
233   /// emitted.
234   bool translateBitCast(const User &U, MachineIRBuilder &MIRBuilder);
235 
236   /// Translate an LLVM load instruction into generic IR.
237   bool translateLoad(const User &U, MachineIRBuilder &MIRBuilder);
238 
239   /// Translate an LLVM store instruction into generic IR.
240   bool translateStore(const User &U, MachineIRBuilder &MIRBuilder);
241 
242   /// Translate an LLVM string intrinsic (memcpy, memset, ...).
243   bool translateMemFunc(const CallInst &CI, MachineIRBuilder &MIRBuilder,
244                         unsigned Opcode);
245 
246   void getStackGuard(Register DstReg, MachineIRBuilder &MIRBuilder);
247 
248   bool translateOverflowIntrinsic(const CallInst &CI, unsigned Op,
249                                   MachineIRBuilder &MIRBuilder);
250   bool translateFixedPointIntrinsic(unsigned Op, const CallInst &CI,
251                                     MachineIRBuilder &MIRBuilder);
252 
253   /// Helper function for translateSimpleIntrinsic.
254   /// \return The generic opcode for \p IntrinsicID if \p IntrinsicID is a
255   /// simple intrinsic (ceil, fabs, etc.). Otherwise, returns
256   /// Intrinsic::not_intrinsic.
257   unsigned getSimpleIntrinsicOpcode(Intrinsic::ID ID);
258 
259   /// Translates the intrinsics defined in getSimpleIntrinsicOpcode.
260   /// \return true if the translation succeeded.
261   bool translateSimpleIntrinsic(const CallInst &CI, Intrinsic::ID ID,
262                                 MachineIRBuilder &MIRBuilder);
263 
264   bool translateConstrainedFPIntrinsic(const ConstrainedFPIntrinsic &FPI,
265                                        MachineIRBuilder &MIRBuilder);
266 
267   bool translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID,
268                                MachineIRBuilder &MIRBuilder);
269 
270   /// Returns the single livein physical register Arg was lowered to, if
271   /// possible.
272   std::optional<MCRegister> getArgPhysReg(Argument &Arg);
273 
274   /// If debug-info targets an Argument and its expression is an EntryValue,
275   /// lower it as either an entry in the MF debug table (dbg.declare), or a
276   /// DBG_VALUE targeting the corresponding livein register for that Argument
277   /// (dbg.value).
278   bool translateIfEntryValueArgument(bool isDeclare, Value *Arg,
279                                      const DILocalVariable *Var,
280                                      const DIExpression *Expr,
281                                      const DebugLoc &DL,
282                                      MachineIRBuilder &MIRBuilder);
283 
284   bool translateInlineAsm(const CallBase &CB, MachineIRBuilder &MIRBuilder);
285 
286   /// Common code for translating normal calls or invokes.
287   bool translateCallBase(const CallBase &CB, MachineIRBuilder &MIRBuilder);
288 
289   /// Translate call instruction.
290   /// \pre \p U is a call instruction.
291   bool translateCall(const User &U, MachineIRBuilder &MIRBuilder);
292 
293   /// When an invoke or a cleanupret unwinds to the next EH pad, there are
294   /// many places it could ultimately go. In the IR, we have a single unwind
295   /// destination, but in the machine CFG, we enumerate all the possible blocks.
296   /// This function skips over imaginary basic blocks that hold catchswitch
297   /// instructions, and finds all the "real" machine
298   /// basic block destinations. As those destinations may not be successors of
299   /// EHPadBB, here we also calculate the edge probability to those
300   /// destinations. The passed-in Prob is the edge probability to EHPadBB.
301   bool findUnwindDestinations(
302       const BasicBlock *EHPadBB, BranchProbability Prob,
303       SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
304           &UnwindDests);
305 
306   bool translateInvoke(const User &U, MachineIRBuilder &MIRBuilder);
307 
308   bool translateCallBr(const User &U, MachineIRBuilder &MIRBuilder);
309 
310   bool translateLandingPad(const User &U, MachineIRBuilder &MIRBuilder);
311 
312   /// Translate one of LLVM's cast instructions into MachineInstrs, with the
313   /// given generic Opcode.
314   bool translateCast(unsigned Opcode, const User &U,
315                      MachineIRBuilder &MIRBuilder);
316 
317   /// Translate a phi instruction.
318   bool translatePHI(const User &U, MachineIRBuilder &MIRBuilder);
319 
320   /// Translate a comparison (icmp or fcmp) instruction or constant.
321   bool translateCompare(const User &U, MachineIRBuilder &MIRBuilder);
322 
323   /// Translate an integer compare instruction (or constant).
324   bool translateICmp(const User &U, MachineIRBuilder &MIRBuilder) {
325     return translateCompare(U, MIRBuilder);
326   }
327 
328   /// Translate a floating-point compare instruction (or constant).
329   bool translateFCmp(const User &U, MachineIRBuilder &MIRBuilder) {
330     return translateCompare(U, MIRBuilder);
331   }
332 
333   /// Add remaining operands onto phis we've translated. Executed after all
334   /// MachineBasicBlocks for the function have been created.
335   void finishPendingPhis();
336 
337   /// Translate \p Inst into a unary operation \p Opcode.
338   /// \pre \p U is a unary operation.
339   bool translateUnaryOp(unsigned Opcode, const User &U,
340                         MachineIRBuilder &MIRBuilder);
341 
342   /// Translate \p Inst into a binary operation \p Opcode.
343   /// \pre \p U is a binary operation.
344   bool translateBinaryOp(unsigned Opcode, const User &U,
345                          MachineIRBuilder &MIRBuilder);
346 
347   /// If the set of cases should be emitted as a series of branches, return
348   /// true. If we should emit this as a bunch of and/or'd together conditions,
349   /// return false.
350   bool shouldEmitAsBranches(const std::vector<SwitchCG::CaseBlock> &Cases);
351   /// Helper method for findMergedConditions.
352   /// This function emits a branch and is used at the leaves of an OR or an
353   /// AND operator tree.
354   void emitBranchForMergedCondition(const Value *Cond, MachineBasicBlock *TBB,
355                                     MachineBasicBlock *FBB,
356                                     MachineBasicBlock *CurBB,
357                                     MachineBasicBlock *SwitchBB,
358                                     BranchProbability TProb,
359                                     BranchProbability FProb, bool InvertCond);
360   /// Used during condbr translation to find trees of conditions that can be
361   /// optimized.
362   void findMergedConditions(const Value *Cond, MachineBasicBlock *TBB,
363                             MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
364                             MachineBasicBlock *SwitchBB,
365                             Instruction::BinaryOps Opc, BranchProbability TProb,
366                             BranchProbability FProb, bool InvertCond);
367 
368   /// Translate branch (br) instruction.
369   /// \pre \p U is a branch instruction.
370   bool translateBr(const User &U, MachineIRBuilder &MIRBuilder);
371 
372   // Begin switch lowering functions.
373   bool emitJumpTableHeader(SwitchCG::JumpTable &JT,
374                            SwitchCG::JumpTableHeader &JTH,
375                            MachineBasicBlock *HeaderBB);
376   void emitJumpTable(SwitchCG::JumpTable &JT, MachineBasicBlock *MBB);
377 
378   void emitSwitchCase(SwitchCG::CaseBlock &CB, MachineBasicBlock *SwitchBB,
379                       MachineIRBuilder &MIB);
380 
381   /// Generate for the BitTest header block, which precedes each sequence of
382   /// BitTestCases.
383   void emitBitTestHeader(SwitchCG::BitTestBlock &BTB,
384                          MachineBasicBlock *SwitchMBB);
385   /// Generate code to produces one "bit test" for a given BitTestCase \p B.
386   void emitBitTestCase(SwitchCG::BitTestBlock &BB, MachineBasicBlock *NextMBB,
387                        BranchProbability BranchProbToNext, Register Reg,
388                        SwitchCG::BitTestCase &B, MachineBasicBlock *SwitchBB);
389 
390   void splitWorkItem(SwitchCG::SwitchWorkList &WorkList,
391                      const SwitchCG::SwitchWorkListItem &W, Value *Cond,
392                      MachineBasicBlock *SwitchMBB, MachineIRBuilder &MIB);
393 
394   bool lowerJumpTableWorkItem(
395       SwitchCG::SwitchWorkListItem W, MachineBasicBlock *SwitchMBB,
396       MachineBasicBlock *CurMBB, MachineBasicBlock *DefaultMBB,
397       MachineIRBuilder &MIB, MachineFunction::iterator BBI,
398       BranchProbability UnhandledProbs, SwitchCG::CaseClusterIt I,
399       MachineBasicBlock *Fallthrough, bool FallthroughUnreachable);
400 
401   bool lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I, Value *Cond,
402                                 MachineBasicBlock *Fallthrough,
403                                 bool FallthroughUnreachable,
404                                 BranchProbability UnhandledProbs,
405                                 MachineBasicBlock *CurMBB,
406                                 MachineIRBuilder &MIB,
407                                 MachineBasicBlock *SwitchMBB);
408 
409   bool lowerBitTestWorkItem(
410       SwitchCG::SwitchWorkListItem W, MachineBasicBlock *SwitchMBB,
411       MachineBasicBlock *CurMBB, MachineBasicBlock *DefaultMBB,
412       MachineIRBuilder &MIB, MachineFunction::iterator BBI,
413       BranchProbability DefaultProb, BranchProbability UnhandledProbs,
414       SwitchCG::CaseClusterIt I, MachineBasicBlock *Fallthrough,
415       bool FallthroughUnreachable);
416 
417   bool lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W, Value *Cond,
418                            MachineBasicBlock *SwitchMBB,
419                            MachineBasicBlock *DefaultMBB,
420                            MachineIRBuilder &MIB);
421 
422   bool translateSwitch(const User &U, MachineIRBuilder &MIRBuilder);
423   // End switch lowering section.
424 
425   bool translateIndirectBr(const User &U, MachineIRBuilder &MIRBuilder);
426 
427   bool translateExtractValue(const User &U, MachineIRBuilder &MIRBuilder);
428 
429   bool translateInsertValue(const User &U, MachineIRBuilder &MIRBuilder);
430 
431   bool translateSelect(const User &U, MachineIRBuilder &MIRBuilder);
432 
433   bool translateGetElementPtr(const User &U, MachineIRBuilder &MIRBuilder);
434 
435   bool translateAlloca(const User &U, MachineIRBuilder &MIRBuilder);
436 
437   /// Translate return (ret) instruction.
438   /// The target needs to implement CallLowering::lowerReturn for
439   /// this to succeed.
440   /// \pre \p U is a return instruction.
441   bool translateRet(const User &U, MachineIRBuilder &MIRBuilder);
442 
443   bool translateFNeg(const User &U, MachineIRBuilder &MIRBuilder);
444 
445   bool translateAdd(const User &U, MachineIRBuilder &MIRBuilder) {
446     return translateBinaryOp(TargetOpcode::G_ADD, U, MIRBuilder);
447   }
448   bool translateSub(const User &U, MachineIRBuilder &MIRBuilder) {
449     return translateBinaryOp(TargetOpcode::G_SUB, U, MIRBuilder);
450   }
451   bool translateAnd(const User &U, MachineIRBuilder &MIRBuilder) {
452     return translateBinaryOp(TargetOpcode::G_AND, U, MIRBuilder);
453   }
454   bool translateMul(const User &U, MachineIRBuilder &MIRBuilder) {
455     return translateBinaryOp(TargetOpcode::G_MUL, U, MIRBuilder);
456   }
457   bool translateOr(const User &U, MachineIRBuilder &MIRBuilder) {
458     return translateBinaryOp(TargetOpcode::G_OR, U, MIRBuilder);
459   }
460   bool translateXor(const User &U, MachineIRBuilder &MIRBuilder) {
461     return translateBinaryOp(TargetOpcode::G_XOR, U, MIRBuilder);
462   }
463 
464   bool translateUDiv(const User &U, MachineIRBuilder &MIRBuilder) {
465     return translateBinaryOp(TargetOpcode::G_UDIV, U, MIRBuilder);
466   }
467   bool translateSDiv(const User &U, MachineIRBuilder &MIRBuilder) {
468     return translateBinaryOp(TargetOpcode::G_SDIV, U, MIRBuilder);
469   }
470   bool translateURem(const User &U, MachineIRBuilder &MIRBuilder) {
471     return translateBinaryOp(TargetOpcode::G_UREM, U, MIRBuilder);
472   }
473   bool translateSRem(const User &U, MachineIRBuilder &MIRBuilder) {
474     return translateBinaryOp(TargetOpcode::G_SREM, U, MIRBuilder);
475   }
476   bool translateIntToPtr(const User &U, MachineIRBuilder &MIRBuilder) {
477     return translateCast(TargetOpcode::G_INTTOPTR, U, MIRBuilder);
478   }
479   bool translatePtrToInt(const User &U, MachineIRBuilder &MIRBuilder) {
480     return translateCast(TargetOpcode::G_PTRTOINT, U, MIRBuilder);
481   }
482   bool translateTrunc(const User &U, MachineIRBuilder &MIRBuilder) {
483     return translateCast(TargetOpcode::G_TRUNC, U, MIRBuilder);
484   }
485   bool translateFPTrunc(const User &U, MachineIRBuilder &MIRBuilder) {
486     return translateCast(TargetOpcode::G_FPTRUNC, U, MIRBuilder);
487   }
488   bool translateFPExt(const User &U, MachineIRBuilder &MIRBuilder) {
489     return translateCast(TargetOpcode::G_FPEXT, U, MIRBuilder);
490   }
491   bool translateFPToUI(const User &U, MachineIRBuilder &MIRBuilder) {
492     return translateCast(TargetOpcode::G_FPTOUI, U, MIRBuilder);
493   }
494   bool translateFPToSI(const User &U, MachineIRBuilder &MIRBuilder) {
495     return translateCast(TargetOpcode::G_FPTOSI, U, MIRBuilder);
496   }
497   bool translateUIToFP(const User &U, MachineIRBuilder &MIRBuilder) {
498     return translateCast(TargetOpcode::G_UITOFP, U, MIRBuilder);
499   }
500   bool translateSIToFP(const User &U, MachineIRBuilder &MIRBuilder) {
501     return translateCast(TargetOpcode::G_SITOFP, U, MIRBuilder);
502   }
503   bool translateUnreachable(const User &U, MachineIRBuilder &MIRBuilder);
504 
505   bool translateSExt(const User &U, MachineIRBuilder &MIRBuilder) {
506     return translateCast(TargetOpcode::G_SEXT, U, MIRBuilder);
507   }
508 
509   bool translateZExt(const User &U, MachineIRBuilder &MIRBuilder) {
510     return translateCast(TargetOpcode::G_ZEXT, U, MIRBuilder);
511   }
512 
513   bool translateShl(const User &U, MachineIRBuilder &MIRBuilder) {
514     return translateBinaryOp(TargetOpcode::G_SHL, U, MIRBuilder);
515   }
516   bool translateLShr(const User &U, MachineIRBuilder &MIRBuilder) {
517     return translateBinaryOp(TargetOpcode::G_LSHR, U, MIRBuilder);
518   }
519   bool translateAShr(const User &U, MachineIRBuilder &MIRBuilder) {
520     return translateBinaryOp(TargetOpcode::G_ASHR, U, MIRBuilder);
521   }
522 
523   bool translateFAdd(const User &U, MachineIRBuilder &MIRBuilder) {
524     return translateBinaryOp(TargetOpcode::G_FADD, U, MIRBuilder);
525   }
526   bool translateFSub(const User &U, MachineIRBuilder &MIRBuilder) {
527     return translateBinaryOp(TargetOpcode::G_FSUB, U, MIRBuilder);
528   }
529   bool translateFMul(const User &U, MachineIRBuilder &MIRBuilder) {
530     return translateBinaryOp(TargetOpcode::G_FMUL, U, MIRBuilder);
531   }
532   bool translateFDiv(const User &U, MachineIRBuilder &MIRBuilder) {
533     return translateBinaryOp(TargetOpcode::G_FDIV, U, MIRBuilder);
534   }
535   bool translateFRem(const User &U, MachineIRBuilder &MIRBuilder) {
536     return translateBinaryOp(TargetOpcode::G_FREM, U, MIRBuilder);
537   }
538 
539   bool translateVAArg(const User &U, MachineIRBuilder &MIRBuilder);
540 
541   bool translateInsertElement(const User &U, MachineIRBuilder &MIRBuilder);
542 
543   bool translateExtractElement(const User &U, MachineIRBuilder &MIRBuilder);
544 
545   bool translateShuffleVector(const User &U, MachineIRBuilder &MIRBuilder);
546 
547   bool translateAtomicCmpXchg(const User &U, MachineIRBuilder &MIRBuilder);
548   bool translateAtomicRMW(const User &U, MachineIRBuilder &MIRBuilder);
549   bool translateFence(const User &U, MachineIRBuilder &MIRBuilder);
550   bool translateFreeze(const User &U, MachineIRBuilder &MIRBuilder);
551 
552   // Stubs to keep the compiler happy while we implement the rest of the
553   // translation.
554   bool translateResume(const User &U, MachineIRBuilder &MIRBuilder) {
555     return false;
556   }
557   bool translateCleanupRet(const User &U, MachineIRBuilder &MIRBuilder) {
558     return false;
559   }
560   bool translateCatchRet(const User &U, MachineIRBuilder &MIRBuilder) {
561     return false;
562   }
563   bool translateCatchSwitch(const User &U, MachineIRBuilder &MIRBuilder) {
564     return false;
565   }
566   bool translateAddrSpaceCast(const User &U, MachineIRBuilder &MIRBuilder) {
567     return translateCast(TargetOpcode::G_ADDRSPACE_CAST, U, MIRBuilder);
568   }
569   bool translateCleanupPad(const User &U, MachineIRBuilder &MIRBuilder) {
570     return false;
571   }
572   bool translateCatchPad(const User &U, MachineIRBuilder &MIRBuilder) {
573     return false;
574   }
575   bool translateUserOp1(const User &U, MachineIRBuilder &MIRBuilder) {
576     return false;
577   }
578   bool translateUserOp2(const User &U, MachineIRBuilder &MIRBuilder) {
579     return false;
580   }
581 
582   /// @}
583 
584   // Builder for machine instruction a la IRBuilder.
585   // I.e., compared to regular MIBuilder, this one also inserts the instruction
586   // in the current block, it can creates block, etc., basically a kind of
587   // IRBuilder, but for Machine IR.
588   // CSEMIRBuilder CurBuilder;
589   std::unique_ptr<MachineIRBuilder> CurBuilder;
590 
591   // Builder set to the entry block (just after ABI lowering instructions). Used
592   // as a convenient location for Constants.
593   // CSEMIRBuilder EntryBuilder;
594   std::unique_ptr<MachineIRBuilder> EntryBuilder;
595 
596   // The MachineFunction currently being translated.
597   MachineFunction *MF = nullptr;
598 
599   /// MachineRegisterInfo used to create virtual registers.
600   MachineRegisterInfo *MRI = nullptr;
601 
602   const DataLayout *DL = nullptr;
603 
604   /// Current target configuration. Controls how the pass handles errors.
605   const TargetPassConfig *TPC = nullptr;
606 
607   CodeGenOptLevel OptLevel;
608 
609   /// Current optimization remark emitter. Used to report failures.
610   std::unique_ptr<OptimizationRemarkEmitter> ORE;
611 
612   AAResults *AA = nullptr;
613   AssumptionCache *AC = nullptr;
614   const TargetLibraryInfo *LibInfo = nullptr;
615   FunctionLoweringInfo FuncInfo;
616 
617   // True when either the Target Machine specifies no optimizations or the
618   // function has the optnone attribute.
619   bool EnableOpts = false;
620 
621   /// True when the block contains a tail call. This allows the IRTranslator to
622   /// stop translating such blocks early.
623   bool HasTailCall = false;
624 
625   StackProtectorDescriptor SPDescriptor;
626 
627   /// Switch analysis and optimization.
628   class GISelSwitchLowering : public SwitchCG::SwitchLowering {
629   public:
630     GISelSwitchLowering(IRTranslator *irt, FunctionLoweringInfo &funcinfo)
631         : SwitchLowering(funcinfo), IRT(irt) {
632       assert(irt && "irt is null!");
633     }
634 
635     void addSuccessorWithProb(
636         MachineBasicBlock *Src, MachineBasicBlock *Dst,
637         BranchProbability Prob = BranchProbability::getUnknown()) override {
638       IRT->addSuccessorWithProb(Src, Dst, Prob);
639     }
640 
641     virtual ~GISelSwitchLowering() = default;
642 
643   private:
644     IRTranslator *IRT;
645   };
646 
647   std::unique_ptr<GISelSwitchLowering> SL;
648 
649   // * Insert all the code needed to materialize the constants
650   // at the proper place. E.g., Entry block or dominator block
651   // of each constant depending on how fancy we want to be.
652   // * Clear the different maps.
653   void finalizeFunction();
654 
655   // Processing steps done per block. E.g. emitting jump tables, stack
656   // protectors etc. Returns true if no errors, false if there was a problem
657   // that caused an abort.
658   bool finalizeBasicBlock(const BasicBlock &BB, MachineBasicBlock &MBB);
659 
660   /// Codegen a new tail for a stack protector check ParentMBB which has had its
661   /// tail spliced into a stack protector check success bb.
662   ///
663   /// For a high level explanation of how this fits into the stack protector
664   /// generation see the comment on the declaration of class
665   /// StackProtectorDescriptor.
666   ///
667   /// \return true if there were no problems.
668   bool emitSPDescriptorParent(StackProtectorDescriptor &SPD,
669                               MachineBasicBlock *ParentBB);
670 
671   /// Codegen the failure basic block for a stack protector check.
672   ///
673   /// A failure stack protector machine basic block consists simply of a call to
674   /// __stack_chk_fail().
675   ///
676   /// For a high level explanation of how this fits into the stack protector
677   /// generation see the comment on the declaration of class
678   /// StackProtectorDescriptor.
679   ///
680   /// \return true if there were no problems.
681   bool emitSPDescriptorFailure(StackProtectorDescriptor &SPD,
682                                MachineBasicBlock *FailureBB);
683 
684   /// Get the VRegs that represent \p Val.
685   /// Non-aggregate types have just one corresponding VReg and the list can be
686   /// used as a single "unsigned". Aggregates get flattened. If such VRegs do
687   /// not exist, they are created.
688   ArrayRef<Register> getOrCreateVRegs(const Value &Val);
689 
690   Register getOrCreateVReg(const Value &Val) {
691     auto Regs = getOrCreateVRegs(Val);
692     if (Regs.empty())
693       return 0;
694     assert(Regs.size() == 1 &&
695            "attempt to get single VReg for aggregate or void");
696     return Regs[0];
697   }
698 
699   /// Allocate some vregs and offsets in the VMap. Then populate just the
700   /// offsets while leaving the vregs empty.
701   ValueToVRegInfo::VRegListT &allocateVRegs(const Value &Val);
702 
703   /// Get the frame index that represents \p Val.
704   /// If such VReg does not exist, it is created.
705   int getOrCreateFrameIndex(const AllocaInst &AI);
706 
707   /// Get the alignment of the given memory operation instruction. This will
708   /// either be the explicitly specified value or the ABI-required alignment for
709   /// the type being accessed (according to the Module's DataLayout).
710   Align getMemOpAlign(const Instruction &I);
711 
712   /// Get the MachineBasicBlock that represents \p BB. Specifically, the block
713   /// returned will be the head of the translated block (suitable for branch
714   /// destinations).
715   MachineBasicBlock &getMBB(const BasicBlock &BB);
716 
717   /// Record \p NewPred as a Machine predecessor to `Edge.second`, corresponding
718   /// to `Edge.first` at the IR level. This is used when IRTranslation creates
719   /// multiple MachineBasicBlocks for a given IR block and the CFG is no longer
720   /// represented simply by the IR-level CFG.
721   void addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred);
722 
723   /// Returns the Machine IR predecessors for the given IR CFG edge. Usually
724   /// this is just the single MachineBasicBlock corresponding to the predecessor
725   /// in the IR. More complex lowering can result in multiple MachineBasicBlocks
726   /// preceding the original though (e.g. switch instructions).
727   SmallVector<MachineBasicBlock *, 1> getMachinePredBBs(CFGEdge Edge) {
728     auto RemappedEdge = MachinePreds.find(Edge);
729     if (RemappedEdge != MachinePreds.end())
730       return RemappedEdge->second;
731     return SmallVector<MachineBasicBlock *, 4>(1, &getMBB(*Edge.first));
732   }
733 
734   /// Return branch probability calculated by BranchProbabilityInfo for IR
735   /// blocks.
736   BranchProbability getEdgeProbability(const MachineBasicBlock *Src,
737                                        const MachineBasicBlock *Dst) const;
738 
739   void addSuccessorWithProb(
740       MachineBasicBlock *Src, MachineBasicBlock *Dst,
741       BranchProbability Prob = BranchProbability::getUnknown());
742 
743 public:
744   IRTranslator(CodeGenOptLevel OptLevel = CodeGenOptLevel::None);
745 
746   StringRef getPassName() const override { return "IRTranslator"; }
747 
748   void getAnalysisUsage(AnalysisUsage &AU) const override;
749 
750   // Algo:
751   //   CallLowering = MF.subtarget.getCallLowering()
752   //   F = MF.getParent()
753   //   MIRBuilder.reset(MF)
754   //   getMBB(F.getEntryBB())
755   //   CallLowering->translateArguments(MIRBuilder, F, ValToVReg)
756   //   for each bb in F
757   //     getMBB(bb)
758   //     for each inst in bb
759   //       if (!translate(MIRBuilder, inst, ValToVReg, ConstantToSequence))
760   //         report_fatal_error("Don't know how to translate input");
761   //   finalize()
762   bool runOnMachineFunction(MachineFunction &MF) override;
763 };
764 
765 } // end namespace llvm
766 
767 #endif // LLVM_CODEGEN_GLOBALISEL_IRTRANSLATOR_H
768