1 //===- llvm/CodeGen/GlobalISel/IRTranslator.h - IRTranslator ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file declares the IRTranslator pass.
10 /// This pass is responsible for translating LLVM IR into MachineInstr.
11 /// It uses target hooks to lower the ABI but aside from that, the pass
12 /// generated code is generic. This is the default translator used for
13 /// GlobalISel.
14 ///
15 /// \todo Replace the comments with actual doxygen comments.
16 //===----------------------------------------------------------------------===//
17 
18 #ifndef LLVM_CODEGEN_GLOBALISEL_IRTRANSLATOR_H
19 #define LLVM_CODEGEN_GLOBALISEL_IRTRANSLATOR_H
20 
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/CodeGen/CodeGenCommonISel.h"
24 #include "llvm/CodeGen/FunctionLoweringInfo.h"
25 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
28 #include "llvm/CodeGen/SwitchLoweringUtils.h"
29 #include "llvm/Support/Allocator.h"
30 #include "llvm/Support/CodeGen.h"
31 #include <memory>
32 #include <utility>
33 
34 namespace llvm {
35 
36 class AllocaInst;
37 class BasicBlock;
38 class CallInst;
39 class CallLowering;
40 class Constant;
41 class ConstrainedFPIntrinsic;
42 class DataLayout;
43 class Instruction;
44 class MachineBasicBlock;
45 class MachineFunction;
46 class MachineInstr;
47 class MachineRegisterInfo;
48 class OptimizationRemarkEmitter;
49 class PHINode;
50 class TargetPassConfig;
51 class User;
52 class Value;
53 
54 // Technically the pass should run on an hypothetical MachineModule,
55 // since it should translate Global into some sort of MachineGlobal.
56 // The MachineGlobal should ultimately just be a transfer of ownership of
57 // the interesting bits that are relevant to represent a global value.
58 // That being said, we could investigate what would it cost to just duplicate
59 // the information from the LLVM IR.
60 // The idea is that ultimately we would be able to free up the memory used
61 // by the LLVM IR as soon as the translation is over.
62 class IRTranslator : public MachineFunctionPass {
63 public:
64   static char ID;
65 
66 private:
67   /// Interface used to lower the everything related to calls.
68   const CallLowering *CLI;
69 
70   /// This class contains the mapping between the Values to vreg related data.
71   class ValueToVRegInfo {
72   public:
73     ValueToVRegInfo() = default;
74 
75     using VRegListT = SmallVector<Register, 1>;
76     using OffsetListT = SmallVector<uint64_t, 1>;
77 
78     using const_vreg_iterator =
79         DenseMap<const Value *, VRegListT *>::const_iterator;
80     using const_offset_iterator =
81         DenseMap<const Value *, OffsetListT *>::const_iterator;
82 
83     inline const_vreg_iterator vregs_end() const { return ValToVRegs.end(); }
84 
85     VRegListT *getVRegs(const Value &V) {
86       auto It = ValToVRegs.find(&V);
87       if (It != ValToVRegs.end())
88         return It->second;
89 
90       return insertVRegs(V);
91     }
92 
93     OffsetListT *getOffsets(const Value &V) {
94       auto It = TypeToOffsets.find(V.getType());
95       if (It != TypeToOffsets.end())
96         return It->second;
97 
98       return insertOffsets(V);
99     }
100 
101     const_vreg_iterator findVRegs(const Value &V) const {
102       return ValToVRegs.find(&V);
103     }
104 
105     bool contains(const Value &V) const {
106       return ValToVRegs.find(&V) != ValToVRegs.end();
107     }
108 
109     void reset() {
110       ValToVRegs.clear();
111       TypeToOffsets.clear();
112       VRegAlloc.DestroyAll();
113       OffsetAlloc.DestroyAll();
114     }
115 
116   private:
117     VRegListT *insertVRegs(const Value &V) {
118       assert(ValToVRegs.find(&V) == ValToVRegs.end() && "Value already exists");
119 
120       // We placement new using our fast allocator since we never try to free
121       // the vectors until translation is finished.
122       auto *VRegList = new (VRegAlloc.Allocate()) VRegListT();
123       ValToVRegs[&V] = VRegList;
124       return VRegList;
125     }
126 
127     OffsetListT *insertOffsets(const Value &V) {
128       assert(TypeToOffsets.find(V.getType()) == TypeToOffsets.end() &&
129              "Type already exists");
130 
131       auto *OffsetList = new (OffsetAlloc.Allocate()) OffsetListT();
132       TypeToOffsets[V.getType()] = OffsetList;
133       return OffsetList;
134     }
135     SpecificBumpPtrAllocator<VRegListT> VRegAlloc;
136     SpecificBumpPtrAllocator<OffsetListT> OffsetAlloc;
137 
138     // We store pointers to vectors here since references may be invalidated
139     // while we hold them if we stored the vectors directly.
140     DenseMap<const Value *, VRegListT*> ValToVRegs;
141     DenseMap<const Type *, OffsetListT*> TypeToOffsets;
142   };
143 
144   /// Mapping of the values of the current LLVM IR function to the related
145   /// virtual registers and offsets.
146   ValueToVRegInfo VMap;
147 
148   // N.b. it's not completely obvious that this will be sufficient for every
149   // LLVM IR construct (with "invoke" being the obvious candidate to mess up our
150   // lives.
151   DenseMap<const BasicBlock *, MachineBasicBlock *> BBToMBB;
152 
153   // One BasicBlock can be translated to multiple MachineBasicBlocks.  For such
154   // BasicBlocks translated to multiple MachineBasicBlocks, MachinePreds retains
155   // a mapping between the edges arriving at the BasicBlock to the corresponding
156   // created MachineBasicBlocks. Some BasicBlocks that get translated to a
157   // single MachineBasicBlock may also end up in this Map.
158   using CFGEdge = std::pair<const BasicBlock *, const BasicBlock *>;
159   DenseMap<CFGEdge, SmallVector<MachineBasicBlock *, 1>> MachinePreds;
160 
161   // List of stubbed PHI instructions, for values and basic blocks to be filled
162   // in once all MachineBasicBlocks have been created.
163   SmallVector<std::pair<const PHINode *, SmallVector<MachineInstr *, 1>>, 4>
164       PendingPHIs;
165 
166   /// Record of what frame index has been allocated to specified allocas for
167   /// this function.
168   DenseMap<const AllocaInst *, int> FrameIndices;
169 
170   SwiftErrorValueTracking SwiftError;
171 
172   /// \name Methods for translating form LLVM IR to MachineInstr.
173   /// \see ::translate for general information on the translate methods.
174   /// @{
175 
176   /// Translate \p Inst into its corresponding MachineInstr instruction(s).
177   /// Insert the newly translated instruction(s) right where the CurBuilder
178   /// is set.
179   ///
180   /// The general algorithm is:
181   /// 1. Look for a virtual register for each operand or
182   ///    create one.
183   /// 2 Update the VMap accordingly.
184   /// 2.alt. For constant arguments, if they are compile time constants,
185   ///   produce an immediate in the right operand and do not touch
186   ///   ValToReg. Actually we will go with a virtual register for each
187   ///   constants because it may be expensive to actually materialize the
188   ///   constant. Moreover, if the constant spans on several instructions,
189   ///   CSE may not catch them.
190   ///   => Update ValToVReg and remember that we saw a constant in Constants.
191   ///   We will materialize all the constants in finalize.
192   /// Note: we would need to do something so that we can recognize such operand
193   ///       as constants.
194   /// 3. Create the generic instruction.
195   ///
196   /// \return true if the translation succeeded.
197   bool translate(const Instruction &Inst);
198 
199   /// Materialize \p C into virtual-register \p Reg. The generic instructions
200   /// performing this materialization will be inserted into the entry block of
201   /// the function.
202   ///
203   /// \return true if the materialization succeeded.
204   bool translate(const Constant &C, Register Reg);
205 
206   // Translate U as a copy of V.
207   bool translateCopy(const User &U, const Value &V,
208                      MachineIRBuilder &MIRBuilder);
209 
210   /// Translate an LLVM bitcast into generic IR. Either a COPY or a G_BITCAST is
211   /// emitted.
212   bool translateBitCast(const User &U, MachineIRBuilder &MIRBuilder);
213 
214   /// Translate an LLVM load instruction into generic IR.
215   bool translateLoad(const User &U, MachineIRBuilder &MIRBuilder);
216 
217   /// Translate an LLVM store instruction into generic IR.
218   bool translateStore(const User &U, MachineIRBuilder &MIRBuilder);
219 
220   /// Translate an LLVM string intrinsic (memcpy, memset, ...).
221   bool translateMemFunc(const CallInst &CI, MachineIRBuilder &MIRBuilder,
222                         unsigned Opcode);
223 
224   void getStackGuard(Register DstReg, MachineIRBuilder &MIRBuilder);
225 
226   bool translateOverflowIntrinsic(const CallInst &CI, unsigned Op,
227                                   MachineIRBuilder &MIRBuilder);
228   bool translateFixedPointIntrinsic(unsigned Op, const CallInst &CI,
229                                     MachineIRBuilder &MIRBuilder);
230 
231   /// Helper function for translateSimpleIntrinsic.
232   /// \return The generic opcode for \p IntrinsicID if \p IntrinsicID is a
233   /// simple intrinsic (ceil, fabs, etc.). Otherwise, returns
234   /// Intrinsic::not_intrinsic.
235   unsigned getSimpleIntrinsicOpcode(Intrinsic::ID ID);
236 
237   /// Translates the intrinsics defined in getSimpleIntrinsicOpcode.
238   /// \return true if the translation succeeded.
239   bool translateSimpleIntrinsic(const CallInst &CI, Intrinsic::ID ID,
240                                 MachineIRBuilder &MIRBuilder);
241 
242   bool translateConstrainedFPIntrinsic(const ConstrainedFPIntrinsic &FPI,
243                                        MachineIRBuilder &MIRBuilder);
244 
245   bool translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID,
246                                MachineIRBuilder &MIRBuilder);
247 
248   bool translateInlineAsm(const CallBase &CB, MachineIRBuilder &MIRBuilder);
249 
250   /// Common code for translating normal calls or invokes.
251   bool translateCallBase(const CallBase &CB, MachineIRBuilder &MIRBuilder);
252 
253   /// Translate call instruction.
254   /// \pre \p U is a call instruction.
255   bool translateCall(const User &U, MachineIRBuilder &MIRBuilder);
256 
257   /// When an invoke or a cleanupret unwinds to the next EH pad, there are
258   /// many places it could ultimately go. In the IR, we have a single unwind
259   /// destination, but in the machine CFG, we enumerate all the possible blocks.
260   /// This function skips over imaginary basic blocks that hold catchswitch
261   /// instructions, and finds all the "real" machine
262   /// basic block destinations. As those destinations may not be successors of
263   /// EHPadBB, here we also calculate the edge probability to those
264   /// destinations. The passed-in Prob is the edge probability to EHPadBB.
265   bool findUnwindDestinations(
266       const BasicBlock *EHPadBB, BranchProbability Prob,
267       SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
268           &UnwindDests);
269 
270   bool translateInvoke(const User &U, MachineIRBuilder &MIRBuilder);
271 
272   bool translateCallBr(const User &U, MachineIRBuilder &MIRBuilder);
273 
274   bool translateLandingPad(const User &U, MachineIRBuilder &MIRBuilder);
275 
276   /// Translate one of LLVM's cast instructions into MachineInstrs, with the
277   /// given generic Opcode.
278   bool translateCast(unsigned Opcode, const User &U,
279                      MachineIRBuilder &MIRBuilder);
280 
281   /// Translate a phi instruction.
282   bool translatePHI(const User &U, MachineIRBuilder &MIRBuilder);
283 
284   /// Translate a comparison (icmp or fcmp) instruction or constant.
285   bool translateCompare(const User &U, MachineIRBuilder &MIRBuilder);
286 
287   /// Translate an integer compare instruction (or constant).
288   bool translateICmp(const User &U, MachineIRBuilder &MIRBuilder) {
289     return translateCompare(U, MIRBuilder);
290   }
291 
292   /// Translate a floating-point compare instruction (or constant).
293   bool translateFCmp(const User &U, MachineIRBuilder &MIRBuilder) {
294     return translateCompare(U, MIRBuilder);
295   }
296 
297   /// Add remaining operands onto phis we've translated. Executed after all
298   /// MachineBasicBlocks for the function have been created.
299   void finishPendingPhis();
300 
301   /// Translate \p Inst into a unary operation \p Opcode.
302   /// \pre \p U is a unary operation.
303   bool translateUnaryOp(unsigned Opcode, const User &U,
304                         MachineIRBuilder &MIRBuilder);
305 
306   /// Translate \p Inst into a binary operation \p Opcode.
307   /// \pre \p U is a binary operation.
308   bool translateBinaryOp(unsigned Opcode, const User &U,
309                          MachineIRBuilder &MIRBuilder);
310 
311   /// If the set of cases should be emitted as a series of branches, return
312   /// true. If we should emit this as a bunch of and/or'd together conditions,
313   /// return false.
314   bool shouldEmitAsBranches(const std::vector<SwitchCG::CaseBlock> &Cases);
315   /// Helper method for findMergedConditions.
316   /// This function emits a branch and is used at the leaves of an OR or an
317   /// AND operator tree.
318   void emitBranchForMergedCondition(const Value *Cond, MachineBasicBlock *TBB,
319                                     MachineBasicBlock *FBB,
320                                     MachineBasicBlock *CurBB,
321                                     MachineBasicBlock *SwitchBB,
322                                     BranchProbability TProb,
323                                     BranchProbability FProb, bool InvertCond);
324   /// Used during condbr translation to find trees of conditions that can be
325   /// optimized.
326   void findMergedConditions(const Value *Cond, MachineBasicBlock *TBB,
327                             MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
328                             MachineBasicBlock *SwitchBB,
329                             Instruction::BinaryOps Opc, BranchProbability TProb,
330                             BranchProbability FProb, bool InvertCond);
331 
332   /// Translate branch (br) instruction.
333   /// \pre \p U is a branch instruction.
334   bool translateBr(const User &U, MachineIRBuilder &MIRBuilder);
335 
336   // Begin switch lowering functions.
337   bool emitJumpTableHeader(SwitchCG::JumpTable &JT,
338                            SwitchCG::JumpTableHeader &JTH,
339                            MachineBasicBlock *HeaderBB);
340   void emitJumpTable(SwitchCG::JumpTable &JT, MachineBasicBlock *MBB);
341 
342   void emitSwitchCase(SwitchCG::CaseBlock &CB, MachineBasicBlock *SwitchBB,
343                       MachineIRBuilder &MIB);
344 
345   /// Generate for for the BitTest header block, which precedes each sequence of
346   /// BitTestCases.
347   void emitBitTestHeader(SwitchCG::BitTestBlock &BTB,
348                          MachineBasicBlock *SwitchMBB);
349   /// Generate code to produces one "bit test" for a given BitTestCase \p B.
350   void emitBitTestCase(SwitchCG::BitTestBlock &BB, MachineBasicBlock *NextMBB,
351                        BranchProbability BranchProbToNext, Register Reg,
352                        SwitchCG::BitTestCase &B, MachineBasicBlock *SwitchBB);
353 
354   bool lowerJumpTableWorkItem(
355       SwitchCG::SwitchWorkListItem W, MachineBasicBlock *SwitchMBB,
356       MachineBasicBlock *CurMBB, MachineBasicBlock *DefaultMBB,
357       MachineIRBuilder &MIB, MachineFunction::iterator BBI,
358       BranchProbability UnhandledProbs, SwitchCG::CaseClusterIt I,
359       MachineBasicBlock *Fallthrough, bool FallthroughUnreachable);
360 
361   bool lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I, Value *Cond,
362                                 MachineBasicBlock *Fallthrough,
363                                 bool FallthroughUnreachable,
364                                 BranchProbability UnhandledProbs,
365                                 MachineBasicBlock *CurMBB,
366                                 MachineIRBuilder &MIB,
367                                 MachineBasicBlock *SwitchMBB);
368 
369   bool lowerBitTestWorkItem(
370       SwitchCG::SwitchWorkListItem W, MachineBasicBlock *SwitchMBB,
371       MachineBasicBlock *CurMBB, MachineBasicBlock *DefaultMBB,
372       MachineIRBuilder &MIB, MachineFunction::iterator BBI,
373       BranchProbability DefaultProb, BranchProbability UnhandledProbs,
374       SwitchCG::CaseClusterIt I, MachineBasicBlock *Fallthrough,
375       bool FallthroughUnreachable);
376 
377   bool lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W, Value *Cond,
378                            MachineBasicBlock *SwitchMBB,
379                            MachineBasicBlock *DefaultMBB,
380                            MachineIRBuilder &MIB);
381 
382   bool translateSwitch(const User &U, MachineIRBuilder &MIRBuilder);
383   // End switch lowering section.
384 
385   bool translateIndirectBr(const User &U, MachineIRBuilder &MIRBuilder);
386 
387   bool translateExtractValue(const User &U, MachineIRBuilder &MIRBuilder);
388 
389   bool translateInsertValue(const User &U, MachineIRBuilder &MIRBuilder);
390 
391   bool translateSelect(const User &U, MachineIRBuilder &MIRBuilder);
392 
393   bool translateGetElementPtr(const User &U, MachineIRBuilder &MIRBuilder);
394 
395   bool translateAlloca(const User &U, MachineIRBuilder &MIRBuilder);
396 
397   /// Translate return (ret) instruction.
398   /// The target needs to implement CallLowering::lowerReturn for
399   /// this to succeed.
400   /// \pre \p U is a return instruction.
401   bool translateRet(const User &U, MachineIRBuilder &MIRBuilder);
402 
403   bool translateFNeg(const User &U, MachineIRBuilder &MIRBuilder);
404 
405   bool translateAdd(const User &U, MachineIRBuilder &MIRBuilder) {
406     return translateBinaryOp(TargetOpcode::G_ADD, U, MIRBuilder);
407   }
408   bool translateSub(const User &U, MachineIRBuilder &MIRBuilder) {
409     return translateBinaryOp(TargetOpcode::G_SUB, U, MIRBuilder);
410   }
411   bool translateAnd(const User &U, MachineIRBuilder &MIRBuilder) {
412     return translateBinaryOp(TargetOpcode::G_AND, U, MIRBuilder);
413   }
414   bool translateMul(const User &U, MachineIRBuilder &MIRBuilder) {
415     return translateBinaryOp(TargetOpcode::G_MUL, U, MIRBuilder);
416   }
417   bool translateOr(const User &U, MachineIRBuilder &MIRBuilder) {
418     return translateBinaryOp(TargetOpcode::G_OR, U, MIRBuilder);
419   }
420   bool translateXor(const User &U, MachineIRBuilder &MIRBuilder) {
421     return translateBinaryOp(TargetOpcode::G_XOR, U, MIRBuilder);
422   }
423 
424   bool translateUDiv(const User &U, MachineIRBuilder &MIRBuilder) {
425     return translateBinaryOp(TargetOpcode::G_UDIV, U, MIRBuilder);
426   }
427   bool translateSDiv(const User &U, MachineIRBuilder &MIRBuilder) {
428     return translateBinaryOp(TargetOpcode::G_SDIV, U, MIRBuilder);
429   }
430   bool translateURem(const User &U, MachineIRBuilder &MIRBuilder) {
431     return translateBinaryOp(TargetOpcode::G_UREM, U, MIRBuilder);
432   }
433   bool translateSRem(const User &U, MachineIRBuilder &MIRBuilder) {
434     return translateBinaryOp(TargetOpcode::G_SREM, U, MIRBuilder);
435   }
436   bool translateIntToPtr(const User &U, MachineIRBuilder &MIRBuilder) {
437     return translateCast(TargetOpcode::G_INTTOPTR, U, MIRBuilder);
438   }
439   bool translatePtrToInt(const User &U, MachineIRBuilder &MIRBuilder) {
440     return translateCast(TargetOpcode::G_PTRTOINT, U, MIRBuilder);
441   }
442   bool translateTrunc(const User &U, MachineIRBuilder &MIRBuilder) {
443     return translateCast(TargetOpcode::G_TRUNC, U, MIRBuilder);
444   }
445   bool translateFPTrunc(const User &U, MachineIRBuilder &MIRBuilder) {
446     return translateCast(TargetOpcode::G_FPTRUNC, U, MIRBuilder);
447   }
448   bool translateFPExt(const User &U, MachineIRBuilder &MIRBuilder) {
449     return translateCast(TargetOpcode::G_FPEXT, U, MIRBuilder);
450   }
451   bool translateFPToUI(const User &U, MachineIRBuilder &MIRBuilder) {
452     return translateCast(TargetOpcode::G_FPTOUI, U, MIRBuilder);
453   }
454   bool translateFPToSI(const User &U, MachineIRBuilder &MIRBuilder) {
455     return translateCast(TargetOpcode::G_FPTOSI, U, MIRBuilder);
456   }
457   bool translateUIToFP(const User &U, MachineIRBuilder &MIRBuilder) {
458     return translateCast(TargetOpcode::G_UITOFP, U, MIRBuilder);
459   }
460   bool translateSIToFP(const User &U, MachineIRBuilder &MIRBuilder) {
461     return translateCast(TargetOpcode::G_SITOFP, U, MIRBuilder);
462   }
463   bool translateUnreachable(const User &U, MachineIRBuilder &MIRBuilder);
464 
465   bool translateSExt(const User &U, MachineIRBuilder &MIRBuilder) {
466     return translateCast(TargetOpcode::G_SEXT, U, MIRBuilder);
467   }
468 
469   bool translateZExt(const User &U, MachineIRBuilder &MIRBuilder) {
470     return translateCast(TargetOpcode::G_ZEXT, U, MIRBuilder);
471   }
472 
473   bool translateShl(const User &U, MachineIRBuilder &MIRBuilder) {
474     return translateBinaryOp(TargetOpcode::G_SHL, U, MIRBuilder);
475   }
476   bool translateLShr(const User &U, MachineIRBuilder &MIRBuilder) {
477     return translateBinaryOp(TargetOpcode::G_LSHR, U, MIRBuilder);
478   }
479   bool translateAShr(const User &U, MachineIRBuilder &MIRBuilder) {
480     return translateBinaryOp(TargetOpcode::G_ASHR, U, MIRBuilder);
481   }
482 
483   bool translateFAdd(const User &U, MachineIRBuilder &MIRBuilder) {
484     return translateBinaryOp(TargetOpcode::G_FADD, U, MIRBuilder);
485   }
486   bool translateFSub(const User &U, MachineIRBuilder &MIRBuilder) {
487     return translateBinaryOp(TargetOpcode::G_FSUB, U, MIRBuilder);
488   }
489   bool translateFMul(const User &U, MachineIRBuilder &MIRBuilder) {
490     return translateBinaryOp(TargetOpcode::G_FMUL, U, MIRBuilder);
491   }
492   bool translateFDiv(const User &U, MachineIRBuilder &MIRBuilder) {
493     return translateBinaryOp(TargetOpcode::G_FDIV, U, MIRBuilder);
494   }
495   bool translateFRem(const User &U, MachineIRBuilder &MIRBuilder) {
496     return translateBinaryOp(TargetOpcode::G_FREM, U, MIRBuilder);
497   }
498 
499   bool translateVAArg(const User &U, MachineIRBuilder &MIRBuilder);
500 
501   bool translateInsertElement(const User &U, MachineIRBuilder &MIRBuilder);
502 
503   bool translateExtractElement(const User &U, MachineIRBuilder &MIRBuilder);
504 
505   bool translateShuffleVector(const User &U, MachineIRBuilder &MIRBuilder);
506 
507   bool translateAtomicCmpXchg(const User &U, MachineIRBuilder &MIRBuilder);
508   bool translateAtomicRMW(const User &U, MachineIRBuilder &MIRBuilder);
509   bool translateFence(const User &U, MachineIRBuilder &MIRBuilder);
510   bool translateFreeze(const User &U, MachineIRBuilder &MIRBuilder);
511 
512   // Stubs to keep the compiler happy while we implement the rest of the
513   // translation.
514   bool translateResume(const User &U, MachineIRBuilder &MIRBuilder) {
515     return false;
516   }
517   bool translateCleanupRet(const User &U, MachineIRBuilder &MIRBuilder) {
518     return false;
519   }
520   bool translateCatchRet(const User &U, MachineIRBuilder &MIRBuilder) {
521     return false;
522   }
523   bool translateCatchSwitch(const User &U, MachineIRBuilder &MIRBuilder) {
524     return false;
525   }
526   bool translateAddrSpaceCast(const User &U, MachineIRBuilder &MIRBuilder) {
527     return translateCast(TargetOpcode::G_ADDRSPACE_CAST, U, MIRBuilder);
528   }
529   bool translateCleanupPad(const User &U, MachineIRBuilder &MIRBuilder) {
530     return false;
531   }
532   bool translateCatchPad(const User &U, MachineIRBuilder &MIRBuilder) {
533     return false;
534   }
535   bool translateUserOp1(const User &U, MachineIRBuilder &MIRBuilder) {
536     return false;
537   }
538   bool translateUserOp2(const User &U, MachineIRBuilder &MIRBuilder) {
539     return false;
540   }
541 
542   /// @}
543 
544   // Builder for machine instruction a la IRBuilder.
545   // I.e., compared to regular MIBuilder, this one also inserts the instruction
546   // in the current block, it can creates block, etc., basically a kind of
547   // IRBuilder, but for Machine IR.
548   // CSEMIRBuilder CurBuilder;
549   std::unique_ptr<MachineIRBuilder> CurBuilder;
550 
551   // Builder set to the entry block (just after ABI lowering instructions). Used
552   // as a convenient location for Constants.
553   // CSEMIRBuilder EntryBuilder;
554   std::unique_ptr<MachineIRBuilder> EntryBuilder;
555 
556   // The MachineFunction currently being translated.
557   MachineFunction *MF;
558 
559   /// MachineRegisterInfo used to create virtual registers.
560   MachineRegisterInfo *MRI = nullptr;
561 
562   const DataLayout *DL;
563 
564   /// Current target configuration. Controls how the pass handles errors.
565   const TargetPassConfig *TPC;
566 
567   CodeGenOpt::Level OptLevel;
568 
569   /// Current optimization remark emitter. Used to report failures.
570   std::unique_ptr<OptimizationRemarkEmitter> ORE;
571 
572   AAResults *AA;
573   FunctionLoweringInfo FuncInfo;
574 
575   // True when either the Target Machine specifies no optimizations or the
576   // function has the optnone attribute.
577   bool EnableOpts = false;
578 
579   /// True when the block contains a tail call. This allows the IRTranslator to
580   /// stop translating such blocks early.
581   bool HasTailCall = false;
582 
583   StackProtectorDescriptor SPDescriptor;
584 
585   /// Switch analysis and optimization.
586   class GISelSwitchLowering : public SwitchCG::SwitchLowering {
587   public:
588     GISelSwitchLowering(IRTranslator *irt, FunctionLoweringInfo &funcinfo)
589         : SwitchLowering(funcinfo), IRT(irt) {
590       assert(irt && "irt is null!");
591     }
592 
593     void addSuccessorWithProb(
594         MachineBasicBlock *Src, MachineBasicBlock *Dst,
595         BranchProbability Prob = BranchProbability::getUnknown()) override {
596       IRT->addSuccessorWithProb(Src, Dst, Prob);
597     }
598 
599     virtual ~GISelSwitchLowering() = default;
600 
601   private:
602     IRTranslator *IRT;
603   };
604 
605   std::unique_ptr<GISelSwitchLowering> SL;
606 
607   // * Insert all the code needed to materialize the constants
608   // at the proper place. E.g., Entry block or dominator block
609   // of each constant depending on how fancy we want to be.
610   // * Clear the different maps.
611   void finalizeFunction();
612 
613   // Processing steps done per block. E.g. emitting jump tables, stack
614   // protectors etc. Returns true if no errors, false if there was a problem
615   // that caused an abort.
616   bool finalizeBasicBlock(const BasicBlock &BB, MachineBasicBlock &MBB);
617 
618   /// Codegen a new tail for a stack protector check ParentMBB which has had its
619   /// tail spliced into a stack protector check success bb.
620   ///
621   /// For a high level explanation of how this fits into the stack protector
622   /// generation see the comment on the declaration of class
623   /// StackProtectorDescriptor.
624   ///
625   /// \return true if there were no problems.
626   bool emitSPDescriptorParent(StackProtectorDescriptor &SPD,
627                               MachineBasicBlock *ParentBB);
628 
629   /// Codegen the failure basic block for a stack protector check.
630   ///
631   /// A failure stack protector machine basic block consists simply of a call to
632   /// __stack_chk_fail().
633   ///
634   /// For a high level explanation of how this fits into the stack protector
635   /// generation see the comment on the declaration of class
636   /// StackProtectorDescriptor.
637   ///
638   /// \return true if there were no problems.
639   bool emitSPDescriptorFailure(StackProtectorDescriptor &SPD,
640                                MachineBasicBlock *FailureBB);
641 
642   /// Get the VRegs that represent \p Val.
643   /// Non-aggregate types have just one corresponding VReg and the list can be
644   /// used as a single "unsigned". Aggregates get flattened. If such VRegs do
645   /// not exist, they are created.
646   ArrayRef<Register> getOrCreateVRegs(const Value &Val);
647 
648   Register getOrCreateVReg(const Value &Val) {
649     auto Regs = getOrCreateVRegs(Val);
650     if (Regs.empty())
651       return 0;
652     assert(Regs.size() == 1 &&
653            "attempt to get single VReg for aggregate or void");
654     return Regs[0];
655   }
656 
657   /// Allocate some vregs and offsets in the VMap. Then populate just the
658   /// offsets while leaving the vregs empty.
659   ValueToVRegInfo::VRegListT &allocateVRegs(const Value &Val);
660 
661   /// Get the frame index that represents \p Val.
662   /// If such VReg does not exist, it is created.
663   int getOrCreateFrameIndex(const AllocaInst &AI);
664 
665   /// Get the alignment of the given memory operation instruction. This will
666   /// either be the explicitly specified value or the ABI-required alignment for
667   /// the type being accessed (according to the Module's DataLayout).
668   Align getMemOpAlign(const Instruction &I);
669 
670   /// Get the MachineBasicBlock that represents \p BB. Specifically, the block
671   /// returned will be the head of the translated block (suitable for branch
672   /// destinations).
673   MachineBasicBlock &getMBB(const BasicBlock &BB);
674 
675   /// Record \p NewPred as a Machine predecessor to `Edge.second`, corresponding
676   /// to `Edge.first` at the IR level. This is used when IRTranslation creates
677   /// multiple MachineBasicBlocks for a given IR block and the CFG is no longer
678   /// represented simply by the IR-level CFG.
679   void addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred);
680 
681   /// Returns the Machine IR predecessors for the given IR CFG edge. Usually
682   /// this is just the single MachineBasicBlock corresponding to the predecessor
683   /// in the IR. More complex lowering can result in multiple MachineBasicBlocks
684   /// preceding the original though (e.g. switch instructions).
685   SmallVector<MachineBasicBlock *, 1> getMachinePredBBs(CFGEdge Edge) {
686     auto RemappedEdge = MachinePreds.find(Edge);
687     if (RemappedEdge != MachinePreds.end())
688       return RemappedEdge->second;
689     return SmallVector<MachineBasicBlock *, 4>(1, &getMBB(*Edge.first));
690   }
691 
692   /// Return branch probability calculated by BranchProbabilityInfo for IR
693   /// blocks.
694   BranchProbability getEdgeProbability(const MachineBasicBlock *Src,
695                                        const MachineBasicBlock *Dst) const;
696 
697   void addSuccessorWithProb(
698       MachineBasicBlock *Src, MachineBasicBlock *Dst,
699       BranchProbability Prob = BranchProbability::getUnknown());
700 
701 public:
702   IRTranslator(CodeGenOpt::Level OptLevel = CodeGenOpt::None);
703 
704   StringRef getPassName() const override { return "IRTranslator"; }
705 
706   void getAnalysisUsage(AnalysisUsage &AU) const override;
707 
708   // Algo:
709   //   CallLowering = MF.subtarget.getCallLowering()
710   //   F = MF.getParent()
711   //   MIRBuilder.reset(MF)
712   //   getMBB(F.getEntryBB())
713   //   CallLowering->translateArguments(MIRBuilder, F, ValToVReg)
714   //   for each bb in F
715   //     getMBB(bb)
716   //     for each inst in bb
717   //       if (!translate(MIRBuilder, inst, ValToVReg, ConstantToSequence))
718   //         report_fatal_error("Don't know how to translate input");
719   //   finalize()
720   bool runOnMachineFunction(MachineFunction &MF) override;
721 };
722 
723 } // end namespace llvm
724 
725 #endif // LLVM_CODEGEN_GLOBALISEL_IRTRANSLATOR_H
726