1 //===-- llvm/CodeGen/ISDOpcodes.h - CodeGen opcodes -------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares codegen opcodes and related utilities.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CODEGEN_ISDOPCODES_H
14 #define LLVM_CODEGEN_ISDOPCODES_H
15 
16 #include "llvm/CodeGen/ValueTypes.h"
17 
18 namespace llvm {
19 
20 /// ISD namespace - This namespace contains an enum which represents all of the
21 /// SelectionDAG node types and value types.
22 ///
23 namespace ISD {
24 
25 //===--------------------------------------------------------------------===//
26 /// ISD::NodeType enum - This enum defines the target-independent operators
27 /// for a SelectionDAG.
28 ///
29 /// Targets may also define target-dependent operator codes for SDNodes. For
30 /// example, on x86, these are the enum values in the X86ISD namespace.
31 /// Targets should aim to use target-independent operators to model their
32 /// instruction sets as much as possible, and only use target-dependent
33 /// operators when they have special requirements.
34 ///
35 /// Finally, during and after selection proper, SNodes may use special
36 /// operator codes that correspond directly with MachineInstr opcodes. These
37 /// are used to represent selected instructions. See the isMachineOpcode()
38 /// and getMachineOpcode() member functions of SDNode.
39 ///
40 enum NodeType {
41 
42   /// DELETED_NODE - This is an illegal value that is used to catch
43   /// errors.  This opcode is not a legal opcode for any node.
44   DELETED_NODE,
45 
46   /// EntryToken - This is the marker used to indicate the start of a region.
47   EntryToken,
48 
49   /// TokenFactor - This node takes multiple tokens as input and produces a
50   /// single token result. This is used to represent the fact that the operand
51   /// operators are independent of each other.
52   TokenFactor,
53 
54   /// AssertSext, AssertZext - These nodes record if a register contains a
55   /// value that has already been zero or sign extended from a narrower type.
56   /// These nodes take two operands.  The first is the node that has already
57   /// been extended, and the second is a value type node indicating the width
58   /// of the extension.
59   /// NOTE: In case of the source value (or any vector element value) is
60   /// poisoned the assertion will not be true for that value.
61   AssertSext,
62   AssertZext,
63 
64   /// AssertAlign - These nodes record if a register contains a value that
65   /// has a known alignment and the trailing bits are known to be zero.
66   /// NOTE: In case of the source value (or any vector element value) is
67   /// poisoned the assertion will not be true for that value.
68   AssertAlign,
69 
70   /// Various leaf nodes.
71   BasicBlock,
72   VALUETYPE,
73   CONDCODE,
74   Register,
75   RegisterMask,
76   Constant,
77   ConstantFP,
78   GlobalAddress,
79   GlobalTLSAddress,
80   FrameIndex,
81   JumpTable,
82   ConstantPool,
83   ExternalSymbol,
84   BlockAddress,
85 
86   /// The address of the GOT
87   GLOBAL_OFFSET_TABLE,
88 
89   /// FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and
90   /// llvm.returnaddress on the DAG.  These nodes take one operand, the index
91   /// of the frame or return address to return.  An index of zero corresponds
92   /// to the current function's frame or return address, an index of one to
93   /// the parent's frame or return address, and so on.
94   FRAMEADDR,
95   RETURNADDR,
96 
97   /// ADDROFRETURNADDR - Represents the llvm.addressofreturnaddress intrinsic.
98   /// This node takes no operand, returns a target-specific pointer to the
99   /// place in the stack frame where the return address of the current
100   /// function is stored.
101   ADDROFRETURNADDR,
102 
103   /// SPONENTRY - Represents the llvm.sponentry intrinsic. Takes no argument
104   /// and returns the stack pointer value at the entry of the current
105   /// function calling this intrinsic.
106   SPONENTRY,
107 
108   /// LOCAL_RECOVER - Represents the llvm.localrecover intrinsic.
109   /// Materializes the offset from the local object pointer of another
110   /// function to a particular local object passed to llvm.localescape. The
111   /// operand is the MCSymbol label used to represent this offset, since
112   /// typically the offset is not known until after code generation of the
113   /// parent.
114   LOCAL_RECOVER,
115 
116   /// READ_REGISTER, WRITE_REGISTER - This node represents llvm.register on
117   /// the DAG, which implements the named register global variables extension.
118   READ_REGISTER,
119   WRITE_REGISTER,
120 
121   /// FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to
122   /// first (possible) on-stack argument. This is needed for correct stack
123   /// adjustment during unwind.
124   FRAME_TO_ARGS_OFFSET,
125 
126   /// EH_DWARF_CFA - This node represents the pointer to the DWARF Canonical
127   /// Frame Address (CFA), generally the value of the stack pointer at the
128   /// call site in the previous frame.
129   EH_DWARF_CFA,
130 
131   /// OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents
132   /// 'eh_return' gcc dwarf builtin, which is used to return from
133   /// exception. The general meaning is: adjust stack by OFFSET and pass
134   /// execution to HANDLER. Many platform-related details also :)
135   EH_RETURN,
136 
137   /// RESULT, OUTCHAIN = EH_SJLJ_SETJMP(INCHAIN, buffer)
138   /// This corresponds to the eh.sjlj.setjmp intrinsic.
139   /// It takes an input chain and a pointer to the jump buffer as inputs
140   /// and returns an outchain.
141   EH_SJLJ_SETJMP,
142 
143   /// OUTCHAIN = EH_SJLJ_LONGJMP(INCHAIN, buffer)
144   /// This corresponds to the eh.sjlj.longjmp intrinsic.
145   /// It takes an input chain and a pointer to the jump buffer as inputs
146   /// and returns an outchain.
147   EH_SJLJ_LONGJMP,
148 
149   /// OUTCHAIN = EH_SJLJ_SETUP_DISPATCH(INCHAIN)
150   /// The target initializes the dispatch table here.
151   EH_SJLJ_SETUP_DISPATCH,
152 
153   /// TargetConstant* - Like Constant*, but the DAG does not do any folding,
154   /// simplification, or lowering of the constant. They are used for constants
155   /// which are known to fit in the immediate fields of their users, or for
156   /// carrying magic numbers which are not values which need to be
157   /// materialized in registers.
158   TargetConstant,
159   TargetConstantFP,
160 
161   /// TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
162   /// anything else with this node, and this is valid in the target-specific
163   /// dag, turning into a GlobalAddress operand.
164   TargetGlobalAddress,
165   TargetGlobalTLSAddress,
166   TargetFrameIndex,
167   TargetJumpTable,
168   TargetConstantPool,
169   TargetExternalSymbol,
170   TargetBlockAddress,
171 
172   MCSymbol,
173 
174   /// TargetIndex - Like a constant pool entry, but with completely
175   /// target-dependent semantics. Holds target flags, a 32-bit index, and a
176   /// 64-bit index. Targets can use this however they like.
177   TargetIndex,
178 
179   /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
180   /// This node represents a target intrinsic function with no side effects.
181   /// The first operand is the ID number of the intrinsic from the
182   /// llvm::Intrinsic namespace.  The operands to the intrinsic follow.  The
183   /// node returns the result of the intrinsic.
184   INTRINSIC_WO_CHAIN,
185 
186   /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
187   /// This node represents a target intrinsic function with side effects that
188   /// returns a result.  The first operand is a chain pointer.  The second is
189   /// the ID number of the intrinsic from the llvm::Intrinsic namespace.  The
190   /// operands to the intrinsic follow.  The node has two results, the result
191   /// of the intrinsic and an output chain.
192   INTRINSIC_W_CHAIN,
193 
194   /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
195   /// This node represents a target intrinsic function with side effects that
196   /// does not return a result.  The first operand is a chain pointer.  The
197   /// second is the ID number of the intrinsic from the llvm::Intrinsic
198   /// namespace.  The operands to the intrinsic follow.
199   INTRINSIC_VOID,
200 
201   /// CopyToReg - This node has three operands: a chain, a register number to
202   /// set to this value, and a value.
203   CopyToReg,
204 
205   /// CopyFromReg - This node indicates that the input value is a virtual or
206   /// physical register that is defined outside of the scope of this
207   /// SelectionDAG.  The register is available from the RegisterSDNode object.
208   CopyFromReg,
209 
210   /// UNDEF - An undefined node.
211   UNDEF,
212 
213   // FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or
214   // is evaluated to UNDEF), or returns VAL otherwise. Note that each
215   // read of UNDEF can yield different value, but FREEZE(UNDEF) cannot.
216   FREEZE,
217 
218   /// EXTRACT_ELEMENT - This is used to get the lower or upper (determined by
219   /// a Constant, which is required to be operand #1) half of the integer or
220   /// float value specified as operand #0.  This is only for use before
221   /// legalization, for values that will be broken into multiple registers.
222   EXTRACT_ELEMENT,
223 
224   /// BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
225   /// Given two values of the same integer value type, this produces a value
226   /// twice as big.  Like EXTRACT_ELEMENT, this can only be used before
227   /// legalization. The lower part of the composite value should be in
228   /// element 0 and the upper part should be in element 1.
229   BUILD_PAIR,
230 
231   /// MERGE_VALUES - This node takes multiple discrete operands and returns
232   /// them all as its individual results.  This nodes has exactly the same
233   /// number of inputs and outputs. This node is useful for some pieces of the
234   /// code generator that want to think about a single node with multiple
235   /// results, not multiple nodes.
236   MERGE_VALUES,
237 
238   /// Simple integer binary arithmetic operators.
239   ADD,
240   SUB,
241   MUL,
242   SDIV,
243   UDIV,
244   SREM,
245   UREM,
246 
247   /// SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing
248   /// a signed/unsigned value of type i[2*N], and return the full value as
249   /// two results, each of type iN.
250   SMUL_LOHI,
251   UMUL_LOHI,
252 
253   /// SDIVREM/UDIVREM - Divide two integers and produce both a quotient and
254   /// remainder result.
255   SDIVREM,
256   UDIVREM,
257 
258   /// CARRY_FALSE - This node is used when folding other nodes,
259   /// like ADDC/SUBC, which indicate the carry result is always false.
260   CARRY_FALSE,
261 
262   /// Carry-setting nodes for multiple precision addition and subtraction.
263   /// These nodes take two operands of the same value type, and produce two
264   /// results.  The first result is the normal add or sub result, the second
265   /// result is the carry flag result.
266   /// FIXME: These nodes are deprecated in favor of ADDCARRY and SUBCARRY.
267   /// They are kept around for now to provide a smooth transition path
268   /// toward the use of ADDCARRY/SUBCARRY and will eventually be removed.
269   ADDC,
270   SUBC,
271 
272   /// Carry-using nodes for multiple precision addition and subtraction. These
273   /// nodes take three operands: The first two are the normal lhs and rhs to
274   /// the add or sub, and the third is the input carry flag.  These nodes
275   /// produce two results; the normal result of the add or sub, and the output
276   /// carry flag.  These nodes both read and write a carry flag to allow them
277   /// to them to be chained together for add and sub of arbitrarily large
278   /// values.
279   ADDE,
280   SUBE,
281 
282   /// Carry-using nodes for multiple precision addition and subtraction.
283   /// These nodes take three operands: The first two are the normal lhs and
284   /// rhs to the add or sub, and the third is a boolean value that is 1 if and
285   /// only if there is an incoming carry/borrow. These nodes produce two
286   /// results: the normal result of the add or sub, and a boolean value that is
287   /// 1 if and only if there is an outgoing carry/borrow.
288   ///
289   /// Care must be taken if these opcodes are lowered to hardware instructions
290   /// that use the inverse logic -- 0 if and only if there is an
291   /// incoming/outgoing carry/borrow.  In such cases, you must preserve the
292   /// semantics of these opcodes by inverting the incoming carry/borrow, feeding
293   /// it to the add/sub hardware instruction, and then inverting the outgoing
294   /// carry/borrow.
295   ///
296   /// The use of these opcodes is preferable to adde/sube if the target supports
297   /// it, as the carry is a regular value rather than a glue, which allows
298   /// further optimisation.
299   ///
300   /// These opcodes are different from [US]{ADD,SUB}O in that ADDCARRY/SUBCARRY
301   /// consume and produce a carry/borrow, whereas [US]{ADD,SUB}O produce an
302   /// overflow.
303   ADDCARRY,
304   SUBCARRY,
305 
306   /// Carry-using overflow-aware nodes for multiple precision addition and
307   /// subtraction. These nodes take three operands: The first two are normal lhs
308   /// and rhs to the add or sub, and the third is a boolean indicating if there
309   /// is an incoming carry. They produce two results: the normal result of the
310   /// add or sub, and a boolean that indicates if an overflow occurred (*not*
311   /// flag, because it may be a store to memory, etc.). If the type of the
312   /// boolean is not i1 then the high bits conform to getBooleanContents.
313   SADDO_CARRY,
314   SSUBO_CARRY,
315 
316   /// RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
317   /// These nodes take two operands: the normal LHS and RHS to the add. They
318   /// produce two results: the normal result of the add, and a boolean that
319   /// indicates if an overflow occurred (*not* a flag, because it may be store
320   /// to memory, etc.).  If the type of the boolean is not i1 then the high
321   /// bits conform to getBooleanContents.
322   /// These nodes are generated from llvm.[su]add.with.overflow intrinsics.
323   SADDO,
324   UADDO,
325 
326   /// Same for subtraction.
327   SSUBO,
328   USUBO,
329 
330   /// Same for multiplication.
331   SMULO,
332   UMULO,
333 
334   /// RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2
335   /// integers with the same bit width (W). If the true value of LHS + RHS
336   /// exceeds the largest value that can be represented by W bits, the
337   /// resulting value is this maximum value. Otherwise, if this value is less
338   /// than the smallest value that can be represented by W bits, the
339   /// resulting value is this minimum value.
340   SADDSAT,
341   UADDSAT,
342 
343   /// RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2
344   /// integers with the same bit width (W). If the true value of LHS - RHS
345   /// exceeds the largest value that can be represented by W bits, the
346   /// resulting value is this maximum value. Otherwise, if this value is less
347   /// than the smallest value that can be represented by W bits, the
348   /// resulting value is this minimum value.
349   SSUBSAT,
350   USUBSAT,
351 
352   /// RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift. The first
353   /// operand is the value to be shifted, and the second argument is the amount
354   /// to shift by. Both must be integers of the same bit width (W). If the true
355   /// value of LHS << RHS exceeds the largest value that can be represented by
356   /// W bits, the resulting value is this maximum value, Otherwise, if this
357   /// value is less than the smallest value that can be represented by W bits,
358   /// the resulting value is this minimum value.
359   SSHLSAT,
360   USHLSAT,
361 
362   /// RESULT = [US]MULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication
363   /// on 2 integers with the same width and scale. SCALE represents the scale
364   /// of both operands as fixed point numbers. This SCALE parameter must be a
365   /// constant integer. A scale of zero is effectively performing
366   /// multiplication on 2 integers.
367   SMULFIX,
368   UMULFIX,
369 
370   /// Same as the corresponding unsaturated fixed point instructions, but the
371   /// result is clamped between the min and max values representable by the
372   /// bits of the first 2 operands.
373   SMULFIXSAT,
374   UMULFIXSAT,
375 
376   /// RESULT = [US]DIVFIX(LHS, RHS, SCALE) - Perform fixed point division on
377   /// 2 integers with the same width and scale. SCALE represents the scale
378   /// of both operands as fixed point numbers. This SCALE parameter must be a
379   /// constant integer.
380   SDIVFIX,
381   UDIVFIX,
382 
383   /// Same as the corresponding unsaturated fixed point instructions, but the
384   /// result is clamped between the min and max values representable by the
385   /// bits of the first 2 operands.
386   SDIVFIXSAT,
387   UDIVFIXSAT,
388 
389   /// Simple binary floating point operators.
390   FADD,
391   FSUB,
392   FMUL,
393   FDIV,
394   FREM,
395 
396   /// Constrained versions of the binary floating point operators.
397   /// These will be lowered to the simple operators before final selection.
398   /// They are used to limit optimizations while the DAG is being
399   /// optimized.
400   STRICT_FADD,
401   STRICT_FSUB,
402   STRICT_FMUL,
403   STRICT_FDIV,
404   STRICT_FREM,
405   STRICT_FMA,
406 
407   /// Constrained versions of libm-equivalent floating point intrinsics.
408   /// These will be lowered to the equivalent non-constrained pseudo-op
409   /// (or expanded to the equivalent library call) before final selection.
410   /// They are used to limit optimizations while the DAG is being optimized.
411   STRICT_FSQRT,
412   STRICT_FPOW,
413   STRICT_FPOWI,
414   STRICT_FSIN,
415   STRICT_FCOS,
416   STRICT_FEXP,
417   STRICT_FEXP2,
418   STRICT_FLOG,
419   STRICT_FLOG10,
420   STRICT_FLOG2,
421   STRICT_FRINT,
422   STRICT_FNEARBYINT,
423   STRICT_FMAXNUM,
424   STRICT_FMINNUM,
425   STRICT_FCEIL,
426   STRICT_FFLOOR,
427   STRICT_FROUND,
428   STRICT_FROUNDEVEN,
429   STRICT_FTRUNC,
430   STRICT_LROUND,
431   STRICT_LLROUND,
432   STRICT_LRINT,
433   STRICT_LLRINT,
434   STRICT_FMAXIMUM,
435   STRICT_FMINIMUM,
436 
437   /// STRICT_FP_TO_[US]INT - Convert a floating point value to a signed or
438   /// unsigned integer. These have the same semantics as fptosi and fptoui
439   /// in IR.
440   /// They are used to limit optimizations while the DAG is being optimized.
441   STRICT_FP_TO_SINT,
442   STRICT_FP_TO_UINT,
443 
444   /// STRICT_[US]INT_TO_FP - Convert a signed or unsigned integer to
445   /// a floating point value. These have the same semantics as sitofp and
446   /// uitofp in IR.
447   /// They are used to limit optimizations while the DAG is being optimized.
448   STRICT_SINT_TO_FP,
449   STRICT_UINT_TO_FP,
450 
451   /// X = STRICT_FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating
452   /// point type down to the precision of the destination VT.  TRUNC is a
453   /// flag, which is always an integer that is zero or one.  If TRUNC is 0,
454   /// this is a normal rounding, if it is 1, this FP_ROUND is known to not
455   /// change the value of Y.
456   ///
457   /// The TRUNC = 1 case is used in cases where we know that the value will
458   /// not be modified by the node, because Y is not using any of the extra
459   /// precision of source type.  This allows certain transformations like
460   /// STRICT_FP_EXTEND(STRICT_FP_ROUND(X,1)) -> X which are not safe for
461   /// STRICT_FP_EXTEND(STRICT_FP_ROUND(X,0)) because the extra bits aren't
462   /// removed.
463   /// It is used to limit optimizations while the DAG is being optimized.
464   STRICT_FP_ROUND,
465 
466   /// X = STRICT_FP_EXTEND(Y) - Extend a smaller FP type into a larger FP
467   /// type.
468   /// It is used to limit optimizations while the DAG is being optimized.
469   STRICT_FP_EXTEND,
470 
471   /// STRICT_FSETCC/STRICT_FSETCCS - Constrained versions of SETCC, used
472   /// for floating-point operands only.  STRICT_FSETCC performs a quiet
473   /// comparison operation, while STRICT_FSETCCS performs a signaling
474   /// comparison operation.
475   STRICT_FSETCC,
476   STRICT_FSETCCS,
477 
478   // FPTRUNC_ROUND - This corresponds to the fptrunc_round intrinsic.
479   FPTRUNC_ROUND,
480 
481   /// FMA - Perform a * b + c with no intermediate rounding step.
482   FMA,
483 
484   /// FMAD - Perform a * b + c, while getting the same result as the
485   /// separately rounded operations.
486   FMAD,
487 
488   /// FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
489   /// DAG node does not require that X and Y have the same type, just that
490   /// they are both floating point.  X and the result must have the same type.
491   /// FCOPYSIGN(f32, f64) is allowed.
492   FCOPYSIGN,
493 
494   /// INT = FGETSIGN(FP) - Return the sign bit of the specified floating point
495   /// value as an integer 0/1 value.
496   FGETSIGN,
497 
498   /// Returns platform specific canonical encoding of a floating point number.
499   FCANONICALIZE,
500 
501   /// Performs a check of floating point class property, defined by IEEE-754.
502   /// The first operand is the floating point value to check. The second operand
503   /// specifies the checked property and is a TargetConstant which specifies
504   /// test in the same way as intrinsic 'is_fpclass'.
505   /// Returns boolean value.
506   IS_FPCLASS,
507 
508   /// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector
509   /// with the specified, possibly variable, elements. The types of the
510   /// operands must match the vector element type, except that integer types
511   /// are allowed to be larger than the element type, in which case the
512   /// operands are implicitly truncated. The types of the operands must all
513   /// be the same.
514   BUILD_VECTOR,
515 
516   /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element
517   /// at IDX replaced with VAL. If the type of VAL is larger than the vector
518   /// element type then VAL is truncated before replacement.
519   ///
520   /// If VECTOR is a scalable vector, then IDX may be larger than the minimum
521   /// vector width. IDX is not first scaled by the runtime scaling factor of
522   /// VECTOR.
523   INSERT_VECTOR_ELT,
524 
525   /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
526   /// identified by the (potentially variable) element number IDX. If the return
527   /// type is an integer type larger than the element type of the vector, the
528   /// result is extended to the width of the return type. In that case, the high
529   /// bits are undefined.
530   ///
531   /// If VECTOR is a scalable vector, then IDX may be larger than the minimum
532   /// vector width. IDX is not first scaled by the runtime scaling factor of
533   /// VECTOR.
534   EXTRACT_VECTOR_ELT,
535 
536   /// CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of
537   /// vector type with the same length and element type, this produces a
538   /// concatenated vector result value, with length equal to the sum of the
539   /// lengths of the input vectors. If VECTOR0 is a fixed-width vector, then
540   /// VECTOR1..VECTORN must all be fixed-width vectors. Similarly, if VECTOR0
541   /// is a scalable vector, then VECTOR1..VECTORN must all be scalable vectors.
542   CONCAT_VECTORS,
543 
544   /// INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2
545   /// inserted into VECTOR1. IDX represents the starting element number at which
546   /// VECTOR2 will be inserted. IDX must be a constant multiple of T's known
547   /// minimum vector length. Let the type of VECTOR2 be T, then if T is a
548   /// scalable vector, IDX is first scaled by the runtime scaling factor of T.
549   /// The elements of VECTOR1 starting at IDX are overwritten with VECTOR2.
550   /// Elements IDX through (IDX + num_elements(T) - 1) must be valid VECTOR1
551   /// indices. If this condition cannot be determined statically but is false at
552   /// runtime, then the result vector is undefined. The IDX parameter must be a
553   /// vector index constant type, which for most targets will be an integer
554   /// pointer type.
555   ///
556   /// This operation supports inserting a fixed-width vector into a scalable
557   /// vector, but not the other way around.
558   INSERT_SUBVECTOR,
559 
560   /// EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
561   /// Let the result type be T, then IDX represents the starting element number
562   /// from which a subvector of type T is extracted. IDX must be a constant
563   /// multiple of T's known minimum vector length. If T is a scalable vector,
564   /// IDX is first scaled by the runtime scaling factor of T. Elements IDX
565   /// through (IDX + num_elements(T) - 1) must be valid VECTOR indices. If this
566   /// condition cannot be determined statically but is false at runtime, then
567   /// the result vector is undefined. The IDX parameter must be a vector index
568   /// constant type, which for most targets will be an integer pointer type.
569   ///
570   /// This operation supports extracting a fixed-width vector from a scalable
571   /// vector, but not the other way around.
572   EXTRACT_SUBVECTOR,
573 
574   /// VECTOR_REVERSE(VECTOR) - Returns a vector, of the same type as VECTOR,
575   /// whose elements are shuffled using the following algorithm:
576   ///   RESULT[i] = VECTOR[VECTOR.ElementCount - 1 - i]
577   VECTOR_REVERSE,
578 
579   /// VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as
580   /// VEC1/VEC2.  A VECTOR_SHUFFLE node also contains an array of constant int
581   /// values that indicate which value (or undef) each result element will
582   /// get.  These constant ints are accessible through the
583   /// ShuffleVectorSDNode class.  This is quite similar to the Altivec
584   /// 'vperm' instruction, except that the indices must be constants and are
585   /// in terms of the element size of VEC1/VEC2, not in terms of bytes.
586   VECTOR_SHUFFLE,
587 
588   /// VECTOR_SPLICE(VEC1, VEC2, IMM) - Returns a subvector of the same type as
589   /// VEC1/VEC2 from CONCAT_VECTORS(VEC1, VEC2), based on the IMM in two ways.
590   /// Let the result type be T, if IMM is positive it represents the starting
591   /// element number (an index) from which a subvector of type T is extracted
592   /// from CONCAT_VECTORS(VEC1, VEC2). If IMM is negative it represents a count
593   /// specifying the number of trailing elements to extract from VEC1, where the
594   /// elements of T are selected using the following algorithm:
595   ///   RESULT[i] = CONCAT_VECTORS(VEC1,VEC2)[VEC1.ElementCount - ABS(IMM) + i]
596   /// If IMM is not in the range [-VL, VL-1] the result vector is undefined. IMM
597   /// is a constant integer.
598   VECTOR_SPLICE,
599 
600   /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
601   /// scalar value into element 0 of the resultant vector type.  The top
602   /// elements 1 to N-1 of the N-element vector are undefined.  The type
603   /// of the operand must match the vector element type, except when they
604   /// are integer types.  In this case the operand is allowed to be wider
605   /// than the vector element type, and is implicitly truncated to it.
606   SCALAR_TO_VECTOR,
607 
608   /// SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL
609   /// duplicated in all lanes. The type of the operand must match the vector
610   /// element type, except when they are integer types.  In this case the
611   /// operand is allowed to be wider than the vector element type, and is
612   /// implicitly truncated to it.
613   SPLAT_VECTOR,
614 
615   /// SPLAT_VECTOR_PARTS(SCALAR1, SCALAR2, ...) - Returns a vector with the
616   /// scalar values joined together and then duplicated in all lanes. This
617   /// represents a SPLAT_VECTOR that has had its scalar operand expanded. This
618   /// allows representing a 64-bit splat on a target with 32-bit integers. The
619   /// total width of the scalars must cover the element width. SCALAR1 contains
620   /// the least significant bits of the value regardless of endianness and all
621   /// scalars should have the same type.
622   SPLAT_VECTOR_PARTS,
623 
624   /// STEP_VECTOR(IMM) - Returns a scalable vector whose lanes are comprised
625   /// of a linear sequence of unsigned values starting from 0 with a step of
626   /// IMM, where IMM must be a TargetConstant with type equal to the vector
627   /// element type. The arithmetic is performed modulo the bitwidth of the
628   /// element.
629   ///
630   /// The operation does not support returning fixed-width vectors or
631   /// non-constant operands.
632   STEP_VECTOR,
633 
634   /// MULHU/MULHS - Multiply high - Multiply two integers of type iN,
635   /// producing an unsigned/signed value of type i[2*N], then return the top
636   /// part.
637   MULHU,
638   MULHS,
639 
640   /// AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of
641   /// type i[N+1], halving the result by shifting it one bit right.
642   /// shr(add(ext(X), ext(Y)), 1)
643   AVGFLOORS,
644   AVGFLOORU,
645   /// AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an
646   /// integer of type i[N+2], add 1 and halve the result by shifting it one bit
647   /// right. shr(add(ext(X), ext(Y), 1), 1)
648   AVGCEILS,
649   AVGCEILU,
650 
651   // ABDS/ABDU - Absolute difference - Return the absolute difference between
652   // two numbers interpreted as signed/unsigned.
653   // i.e trunc(abs(sext(Op0) - sext(Op1))) becomes abds(Op0, Op1)
654   //  or trunc(abs(zext(Op0) - zext(Op1))) becomes abdu(Op0, Op1)
655   ABDS,
656   ABDU,
657 
658   /// [US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned
659   /// integers.
660   SMIN,
661   SMAX,
662   UMIN,
663   UMAX,
664 
665   /// Bitwise operators - logical and, logical or, logical xor.
666   AND,
667   OR,
668   XOR,
669 
670   /// ABS - Determine the unsigned absolute value of a signed integer value of
671   /// the same bitwidth.
672   /// Note: A value of INT_MIN will return INT_MIN, no saturation or overflow
673   /// is performed.
674   ABS,
675 
676   /// Shift and rotation operations.  After legalization, the type of the
677   /// shift amount is known to be TLI.getShiftAmountTy().  Before legalization
678   /// the shift amount can be any type, but care must be taken to ensure it is
679   /// large enough.  TLI.getShiftAmountTy() is i8 on some targets, but before
680   /// legalization, types like i1024 can occur and i8 doesn't have enough bits
681   /// to represent the shift amount.
682   /// When the 1st operand is a vector, the shift amount must be in the same
683   /// type. (TLI.getShiftAmountTy() will return the same type when the input
684   /// type is a vector.)
685   /// For rotates and funnel shifts, the shift amount is treated as an unsigned
686   /// amount modulo the element size of the first operand.
687   ///
688   /// Funnel 'double' shifts take 3 operands, 2 inputs and the shift amount.
689   /// fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
690   /// fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW))
691   SHL,
692   SRA,
693   SRL,
694   ROTL,
695   ROTR,
696   FSHL,
697   FSHR,
698 
699   /// Byte Swap and Counting operators.
700   BSWAP,
701   CTTZ,
702   CTLZ,
703   CTPOP,
704   BITREVERSE,
705   PARITY,
706 
707   /// Bit counting operators with an undefined result for zero inputs.
708   CTTZ_ZERO_UNDEF,
709   CTLZ_ZERO_UNDEF,
710 
711   /// Select(COND, TRUEVAL, FALSEVAL).  If the type of the boolean COND is not
712   /// i1 then the high bits must conform to getBooleanContents.
713   SELECT,
714 
715   /// Select with a vector condition (op #0) and two vector operands (ops #1
716   /// and #2), returning a vector result.  All vectors have the same length.
717   /// Much like the scalar select and setcc, each bit in the condition selects
718   /// whether the corresponding result element is taken from op #1 or op #2.
719   /// At first, the VSELECT condition is of vXi1 type. Later, targets may
720   /// change the condition type in order to match the VSELECT node using a
721   /// pattern. The condition follows the BooleanContent format of the target.
722   VSELECT,
723 
724   /// Select with condition operator - This selects between a true value and
725   /// a false value (ops #2 and #3) based on the boolean result of comparing
726   /// the lhs and rhs (ops #0 and #1) of a conditional expression with the
727   /// condition code in op #4, a CondCodeSDNode.
728   SELECT_CC,
729 
730   /// SetCC operator - This evaluates to a true value iff the condition is
731   /// true.  If the result value type is not i1 then the high bits conform
732   /// to getBooleanContents.  The operands to this are the left and right
733   /// operands to compare (ops #0, and #1) and the condition code to compare
734   /// them with (op #2) as a CondCodeSDNode. If the operands are vector types
735   /// then the result type must also be a vector type.
736   SETCC,
737 
738   /// Like SetCC, ops #0 and #1 are the LHS and RHS operands to compare, but
739   /// op #2 is a boolean indicating if there is an incoming carry. This
740   /// operator checks the result of "LHS - RHS - Carry", and can be used to
741   /// compare two wide integers:
742   /// (setcccarry lhshi rhshi (subcarry lhslo rhslo) cc).
743   /// Only valid for integers.
744   SETCCCARRY,
745 
746   /// SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
747   /// integer shift operations.  The operation ordering is:
748   ///       [Lo,Hi] = op [LoLHS,HiLHS], Amt
749   SHL_PARTS,
750   SRA_PARTS,
751   SRL_PARTS,
752 
753   /// Conversion operators.  These are all single input single output
754   /// operations.  For all of these, the result type must be strictly
755   /// wider or narrower (depending on the operation) than the source
756   /// type.
757 
758   /// SIGN_EXTEND - Used for integer types, replicating the sign bit
759   /// into new bits.
760   SIGN_EXTEND,
761 
762   /// ZERO_EXTEND - Used for integer types, zeroing the new bits.
763   ZERO_EXTEND,
764 
765   /// ANY_EXTEND - Used for integer types.  The high bits are undefined.
766   ANY_EXTEND,
767 
768   /// TRUNCATE - Completely drop the high bits.
769   TRUNCATE,
770 
771   /// [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
772   /// depends on the first letter) to floating point.
773   SINT_TO_FP,
774   UINT_TO_FP,
775 
776   /// SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
777   /// sign extend a small value in a large integer register (e.g. sign
778   /// extending the low 8 bits of a 32-bit register to fill the top 24 bits
779   /// with the 7th bit).  The size of the smaller type is indicated by the 1th
780   /// operand, a ValueType node.
781   SIGN_EXTEND_INREG,
782 
783   /// ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an
784   /// in-register any-extension of the low lanes of an integer vector. The
785   /// result type must have fewer elements than the operand type, and those
786   /// elements must be larger integer types such that the total size of the
787   /// operand type is less than or equal to the size of the result type. Each
788   /// of the low operand elements is any-extended into the corresponding,
789   /// wider result elements with the high bits becoming undef.
790   /// NOTE: The type legalizer prefers to make the operand and result size
791   /// the same to allow expansion to shuffle vector during op legalization.
792   ANY_EXTEND_VECTOR_INREG,
793 
794   /// SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an
795   /// in-register sign-extension of the low lanes of an integer vector. The
796   /// result type must have fewer elements than the operand type, and those
797   /// elements must be larger integer types such that the total size of the
798   /// operand type is less than or equal to the size of the result type. Each
799   /// of the low operand elements is sign-extended into the corresponding,
800   /// wider result elements.
801   /// NOTE: The type legalizer prefers to make the operand and result size
802   /// the same to allow expansion to shuffle vector during op legalization.
803   SIGN_EXTEND_VECTOR_INREG,
804 
805   /// ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an
806   /// in-register zero-extension of the low lanes of an integer vector. The
807   /// result type must have fewer elements than the operand type, and those
808   /// elements must be larger integer types such that the total size of the
809   /// operand type is less than or equal to the size of the result type. Each
810   /// of the low operand elements is zero-extended into the corresponding,
811   /// wider result elements.
812   /// NOTE: The type legalizer prefers to make the operand and result size
813   /// the same to allow expansion to shuffle vector during op legalization.
814   ZERO_EXTEND_VECTOR_INREG,
815 
816   /// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
817   /// integer. These have the same semantics as fptosi and fptoui in IR. If
818   /// the FP value cannot fit in the integer type, the results are undefined.
819   FP_TO_SINT,
820   FP_TO_UINT,
821 
822   /// FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a
823   /// signed or unsigned scalar integer type given in operand 1 with the
824   /// following semantics:
825   ///
826   ///  * If the value is NaN, zero is returned.
827   ///  * If the value is larger/smaller than the largest/smallest integer,
828   ///    the largest/smallest integer is returned (saturation).
829   ///  * Otherwise the result of rounding the value towards zero is returned.
830   ///
831   /// The scalar width of the type given in operand 1 must be equal to, or
832   /// smaller than, the scalar result type width. It may end up being smaller
833   /// than the result width as a result of integer type legalization.
834   ///
835   /// After converting to the scalar integer type in operand 1, the value is
836   /// extended to the result VT. FP_TO_SINT_SAT sign extends and FP_TO_UINT_SAT
837   /// zero extends.
838   FP_TO_SINT_SAT,
839   FP_TO_UINT_SAT,
840 
841   /// X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type
842   /// down to the precision of the destination VT.  TRUNC is a flag, which is
843   /// always an integer that is zero or one.  If TRUNC is 0, this is a
844   /// normal rounding, if it is 1, this FP_ROUND is known to not change the
845   /// value of Y.
846   ///
847   /// The TRUNC = 1 case is used in cases where we know that the value will
848   /// not be modified by the node, because Y is not using any of the extra
849   /// precision of source type.  This allows certain transformations like
850   /// FP_EXTEND(FP_ROUND(X,1)) -> X which are not safe for
851   /// FP_EXTEND(FP_ROUND(X,0)) because the extra bits aren't removed.
852   FP_ROUND,
853 
854   /// Returns current rounding mode:
855   /// -1 Undefined
856   ///  0 Round to 0
857   ///  1 Round to nearest, ties to even
858   ///  2 Round to +inf
859   ///  3 Round to -inf
860   ///  4 Round to nearest, ties to zero
861   /// Result is rounding mode and chain. Input is a chain.
862   /// TODO: Rename this node to GET_ROUNDING.
863   FLT_ROUNDS_,
864 
865   /// Set rounding mode.
866   /// The first operand is a chain pointer. The second specifies the required
867   /// rounding mode, encoded in the same way as used in '``FLT_ROUNDS_``'.
868   SET_ROUNDING,
869 
870   /// X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
871   FP_EXTEND,
872 
873   /// BITCAST - This operator converts between integer, vector and FP
874   /// values, as if the value was stored to memory with one type and loaded
875   /// from the same address with the other type (or equivalently for vector
876   /// format conversions, etc).  The source and result are required to have
877   /// the same bit size (e.g.  f32 <-> i32).  This can also be used for
878   /// int-to-int or fp-to-fp conversions, but that is a noop, deleted by
879   /// getNode().
880   ///
881   /// This operator is subtly different from the bitcast instruction from
882   /// LLVM-IR since this node may change the bits in the register. For
883   /// example, this occurs on big-endian NEON and big-endian MSA where the
884   /// layout of the bits in the register depends on the vector type and this
885   /// operator acts as a shuffle operation for some vector type combinations.
886   BITCAST,
887 
888   /// ADDRSPACECAST - This operator converts between pointers of different
889   /// address spaces.
890   ADDRSPACECAST,
891 
892   /// FP16_TO_FP, FP_TO_FP16 - These operators are used to perform promotions
893   /// and truncation for half-precision (16 bit) floating numbers. These nodes
894   /// form a semi-softened interface for dealing with f16 (as an i16), which
895   /// is often a storage-only type but has native conversions.
896   FP16_TO_FP,
897   FP_TO_FP16,
898   STRICT_FP16_TO_FP,
899   STRICT_FP_TO_FP16,
900 
901   /// BF16_TO_FP, FP_TO_BF16 - These operators are used to perform promotions
902   /// and truncation for bfloat16. These nodes form a semi-softened interface
903   /// for dealing with bf16 (as an i16), which is often a storage-only type but
904   /// has native conversions.
905   BF16_TO_FP,
906   FP_TO_BF16,
907 
908   /// Perform various unary floating-point operations inspired by libm. For
909   /// FPOWI, the result is undefined if if the integer operand doesn't fit into
910   /// sizeof(int).
911   FNEG,
912   FABS,
913   FSQRT,
914   FCBRT,
915   FSIN,
916   FCOS,
917   FPOWI,
918   FPOW,
919   FLOG,
920   FLOG2,
921   FLOG10,
922   FEXP,
923   FEXP2,
924   FCEIL,
925   FTRUNC,
926   FRINT,
927   FNEARBYINT,
928   FROUND,
929   FROUNDEVEN,
930   FFLOOR,
931   LROUND,
932   LLROUND,
933   LRINT,
934   LLRINT,
935 
936   /// FMINNUM/FMAXNUM - Perform floating-point minimum or maximum on two
937   /// values.
938   //
939   /// In the case where a single input is a NaN (either signaling or quiet),
940   /// the non-NaN input is returned.
941   ///
942   /// The return value of (FMINNUM 0.0, -0.0) could be either 0.0 or -0.0.
943   FMINNUM,
944   FMAXNUM,
945 
946   /// FMINNUM_IEEE/FMAXNUM_IEEE - Perform floating-point minimum or maximum on
947   /// two values, following the IEEE-754 2008 definition. This differs from
948   /// FMINNUM/FMAXNUM in the handling of signaling NaNs. If one input is a
949   /// signaling NaN, returns a quiet NaN.
950   FMINNUM_IEEE,
951   FMAXNUM_IEEE,
952 
953   /// FMINIMUM/FMAXIMUM - NaN-propagating minimum/maximum that also treat -0.0
954   /// as less than 0.0. While FMINNUM_IEEE/FMAXNUM_IEEE follow IEEE 754-2008
955   /// semantics, FMINIMUM/FMAXIMUM follow IEEE 754-2018 draft semantics.
956   FMINIMUM,
957   FMAXIMUM,
958 
959   /// FSINCOS - Compute both fsin and fcos as a single operation.
960   FSINCOS,
961 
962   /// LOAD and STORE have token chains as their first operand, then the same
963   /// operands as an LLVM load/store instruction, then an offset node that
964   /// is added / subtracted from the base pointer to form the address (for
965   /// indexed memory ops).
966   LOAD,
967   STORE,
968 
969   /// DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
970   /// to a specified boundary.  This node always has two return values: a new
971   /// stack pointer value and a chain. The first operand is the token chain,
972   /// the second is the number of bytes to allocate, and the third is the
973   /// alignment boundary.  The size is guaranteed to be a multiple of the
974   /// stack alignment, and the alignment is guaranteed to be bigger than the
975   /// stack alignment (if required) or 0 to get standard stack alignment.
976   DYNAMIC_STACKALLOC,
977 
978   /// Control flow instructions.  These all have token chains.
979 
980   /// BR - Unconditional branch.  The first operand is the chain
981   /// operand, the second is the MBB to branch to.
982   BR,
983 
984   /// BRIND - Indirect branch.  The first operand is the chain, the second
985   /// is the value to branch to, which must be of the same type as the
986   /// target's pointer type.
987   BRIND,
988 
989   /// BR_JT - Jumptable branch. The first operand is the chain, the second
990   /// is the jumptable index, the last one is the jumptable entry index.
991   BR_JT,
992 
993   /// BRCOND - Conditional branch.  The first operand is the chain, the
994   /// second is the condition, the third is the block to branch to if the
995   /// condition is true.  If the type of the condition is not i1, then the
996   /// high bits must conform to getBooleanContents. If the condition is undef,
997   /// it nondeterministically jumps to the block.
998   /// TODO: Its semantics w.r.t undef requires further discussion; we need to
999   /// make it sure that it is consistent with optimizations in MIR & the
1000   /// meaning of IMPLICIT_DEF. See https://reviews.llvm.org/D92015
1001   BRCOND,
1002 
1003   /// BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
1004   /// that the condition is represented as condition code, and two nodes to
1005   /// compare, rather than as a combined SetCC node.  The operands in order
1006   /// are chain, cc, lhs, rhs, block to branch to if condition is true. If
1007   /// condition is undef, it nondeterministically jumps to the block.
1008   BR_CC,
1009 
1010   /// INLINEASM - Represents an inline asm block.  This node always has two
1011   /// return values: a chain and a flag result.  The inputs are as follows:
1012   ///   Operand #0  : Input chain.
1013   ///   Operand #1  : a ExternalSymbolSDNode with a pointer to the asm string.
1014   ///   Operand #2  : a MDNodeSDNode with the !srcloc metadata.
1015   ///   Operand #3  : HasSideEffect, IsAlignStack bits.
1016   ///   After this, it is followed by a list of operands with this format:
1017   ///     ConstantSDNode: Flags that encode whether it is a mem or not, the
1018   ///                     of operands that follow, etc.  See InlineAsm.h.
1019   ///     ... however many operands ...
1020   ///   Operand #last: Optional, an incoming flag.
1021   ///
1022   /// The variable width operands are required to represent target addressing
1023   /// modes as a single "operand", even though they may have multiple
1024   /// SDOperands.
1025   INLINEASM,
1026 
1027   /// INLINEASM_BR - Branching version of inline asm. Used by asm-goto.
1028   INLINEASM_BR,
1029 
1030   /// EH_LABEL - Represents a label in mid basic block used to track
1031   /// locations needed for debug and exception handling tables.  These nodes
1032   /// take a chain as input and return a chain.
1033   EH_LABEL,
1034 
1035   /// ANNOTATION_LABEL - Represents a mid basic block label used by
1036   /// annotations. This should remain within the basic block and be ordered
1037   /// with respect to other call instructions, but loads and stores may float
1038   /// past it.
1039   ANNOTATION_LABEL,
1040 
1041   /// CATCHRET - Represents a return from a catch block funclet. Used for
1042   /// MSVC compatible exception handling. Takes a chain operand and a
1043   /// destination basic block operand.
1044   CATCHRET,
1045 
1046   /// CLEANUPRET - Represents a return from a cleanup block funclet.  Used for
1047   /// MSVC compatible exception handling. Takes only a chain operand.
1048   CLEANUPRET,
1049 
1050   /// STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
1051   /// value, the same type as the pointer type for the system, and an output
1052   /// chain.
1053   STACKSAVE,
1054 
1055   /// STACKRESTORE has two operands, an input chain and a pointer to restore
1056   /// to it returns an output chain.
1057   STACKRESTORE,
1058 
1059   /// CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end
1060   /// of a call sequence, and carry arbitrary information that target might
1061   /// want to know.  The first operand is a chain, the rest are specified by
1062   /// the target and not touched by the DAG optimizers.
1063   /// Targets that may use stack to pass call arguments define additional
1064   /// operands:
1065   /// - size of the call frame part that must be set up within the
1066   ///   CALLSEQ_START..CALLSEQ_END pair,
1067   /// - part of the call frame prepared prior to CALLSEQ_START.
1068   /// Both these parameters must be constants, their sum is the total call
1069   /// frame size.
1070   /// CALLSEQ_START..CALLSEQ_END pairs may not be nested.
1071   CALLSEQ_START, // Beginning of a call sequence
1072   CALLSEQ_END,   // End of a call sequence
1073 
1074   /// VAARG - VAARG has four operands: an input chain, a pointer, a SRCVALUE,
1075   /// and the alignment. It returns a pair of values: the vaarg value and a
1076   /// new chain.
1077   VAARG,
1078 
1079   /// VACOPY - VACOPY has 5 operands: an input chain, a destination pointer,
1080   /// a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
1081   /// source.
1082   VACOPY,
1083 
1084   /// VAEND, VASTART - VAEND and VASTART have three operands: an input chain,
1085   /// pointer, and a SRCVALUE.
1086   VAEND,
1087   VASTART,
1088 
1089   // PREALLOCATED_SETUP - This has 2 operands: an input chain and a SRCVALUE
1090   // with the preallocated call Value.
1091   PREALLOCATED_SETUP,
1092   // PREALLOCATED_ARG - This has 3 operands: an input chain, a SRCVALUE
1093   // with the preallocated call Value, and a constant int.
1094   PREALLOCATED_ARG,
1095 
1096   /// SRCVALUE - This is a node type that holds a Value* that is used to
1097   /// make reference to a value in the LLVM IR.
1098   SRCVALUE,
1099 
1100   /// MDNODE_SDNODE - This is a node that holdes an MDNode*, which is used to
1101   /// reference metadata in the IR.
1102   MDNODE_SDNODE,
1103 
1104   /// PCMARKER - This corresponds to the pcmarker intrinsic.
1105   PCMARKER,
1106 
1107   /// READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
1108   /// It produces a chain and one i64 value. The only operand is a chain.
1109   /// If i64 is not legal, the result will be expanded into smaller values.
1110   /// Still, it returns an i64, so targets should set legality for i64.
1111   /// The result is the content of the architecture-specific cycle
1112   /// counter-like register (or other high accuracy low latency clock source).
1113   READCYCLECOUNTER,
1114 
1115   /// HANDLENODE node - Used as a handle for various purposes.
1116   HANDLENODE,
1117 
1118   /// INIT_TRAMPOLINE - This corresponds to the init_trampoline intrinsic.  It
1119   /// takes as input a token chain, the pointer to the trampoline, the pointer
1120   /// to the nested function, the pointer to pass for the 'nest' parameter, a
1121   /// SRCVALUE for the trampoline and another for the nested function
1122   /// (allowing targets to access the original Function*).
1123   /// It produces a token chain as output.
1124   INIT_TRAMPOLINE,
1125 
1126   /// ADJUST_TRAMPOLINE - This corresponds to the adjust_trampoline intrinsic.
1127   /// It takes a pointer to the trampoline and produces a (possibly) new
1128   /// pointer to the same trampoline with platform-specific adjustments
1129   /// applied.  The pointer it returns points to an executable block of code.
1130   ADJUST_TRAMPOLINE,
1131 
1132   /// TRAP - Trapping instruction
1133   TRAP,
1134 
1135   /// DEBUGTRAP - Trap intended to get the attention of a debugger.
1136   DEBUGTRAP,
1137 
1138   /// UBSANTRAP - Trap with an immediate describing the kind of sanitizer
1139   /// failure.
1140   UBSANTRAP,
1141 
1142   /// PREFETCH - This corresponds to a prefetch intrinsic. The first operand
1143   /// is the chain.  The other operands are the address to prefetch,
1144   /// read / write specifier, locality specifier and instruction / data cache
1145   /// specifier.
1146   PREFETCH,
1147 
1148   /// ARITH_FENCE - This corresponds to a arithmetic fence intrinsic. Both its
1149   /// operand and output are the same floating type.
1150   ARITH_FENCE,
1151 
1152   /// OUTCHAIN = ATOMIC_FENCE(INCHAIN, ordering, scope)
1153   /// This corresponds to the fence instruction. It takes an input chain, and
1154   /// two integer constants: an AtomicOrdering and a SynchronizationScope.
1155   ATOMIC_FENCE,
1156 
1157   /// Val, OUTCHAIN = ATOMIC_LOAD(INCHAIN, ptr)
1158   /// This corresponds to "load atomic" instruction.
1159   ATOMIC_LOAD,
1160 
1161   /// OUTCHAIN = ATOMIC_STORE(INCHAIN, ptr, val)
1162   /// This corresponds to "store atomic" instruction.
1163   ATOMIC_STORE,
1164 
1165   /// Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
1166   /// For double-word atomic operations:
1167   /// ValLo, ValHi, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmpLo, cmpHi,
1168   ///                                          swapLo, swapHi)
1169   /// This corresponds to the cmpxchg instruction.
1170   ATOMIC_CMP_SWAP,
1171 
1172   /// Val, Success, OUTCHAIN
1173   ///     = ATOMIC_CMP_SWAP_WITH_SUCCESS(INCHAIN, ptr, cmp, swap)
1174   /// N.b. this is still a strong cmpxchg operation, so
1175   /// Success == "Val == cmp".
1176   ATOMIC_CMP_SWAP_WITH_SUCCESS,
1177 
1178   /// Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt)
1179   /// Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN, ptr, amt)
1180   /// For double-word atomic operations:
1181   /// ValLo, ValHi, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amtLo, amtHi)
1182   /// ValLo, ValHi, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN, ptr, amtLo, amtHi)
1183   /// These correspond to the atomicrmw instruction.
1184   ATOMIC_SWAP,
1185   ATOMIC_LOAD_ADD,
1186   ATOMIC_LOAD_SUB,
1187   ATOMIC_LOAD_AND,
1188   ATOMIC_LOAD_CLR,
1189   ATOMIC_LOAD_OR,
1190   ATOMIC_LOAD_XOR,
1191   ATOMIC_LOAD_NAND,
1192   ATOMIC_LOAD_MIN,
1193   ATOMIC_LOAD_MAX,
1194   ATOMIC_LOAD_UMIN,
1195   ATOMIC_LOAD_UMAX,
1196   ATOMIC_LOAD_FADD,
1197   ATOMIC_LOAD_FSUB,
1198   ATOMIC_LOAD_FMAX,
1199   ATOMIC_LOAD_FMIN,
1200 
1201   // Masked load and store - consecutive vector load and store operations
1202   // with additional mask operand that prevents memory accesses to the
1203   // masked-off lanes.
1204   //
1205   // Val, OutChain = MLOAD(BasePtr, Mask, PassThru)
1206   // OutChain = MSTORE(Value, BasePtr, Mask)
1207   MLOAD,
1208   MSTORE,
1209 
1210   // Masked gather and scatter - load and store operations for a vector of
1211   // random addresses with additional mask operand that prevents memory
1212   // accesses to the masked-off lanes.
1213   //
1214   // Val, OutChain = GATHER(InChain, PassThru, Mask, BasePtr, Index, Scale)
1215   // OutChain = SCATTER(InChain, Value, Mask, BasePtr, Index, Scale)
1216   //
1217   // The Index operand can have more vector elements than the other operands
1218   // due to type legalization. The extra elements are ignored.
1219   MGATHER,
1220   MSCATTER,
1221 
1222   /// This corresponds to the llvm.lifetime.* intrinsics. The first operand
1223   /// is the chain and the second operand is the alloca pointer.
1224   LIFETIME_START,
1225   LIFETIME_END,
1226 
1227   /// GC_TRANSITION_START/GC_TRANSITION_END - These operators mark the
1228   /// beginning and end of GC transition  sequence, and carry arbitrary
1229   /// information that target might need for lowering.  The first operand is
1230   /// a chain, the rest are specified by the target and not touched by the DAG
1231   /// optimizers. GC_TRANSITION_START..GC_TRANSITION_END pairs may not be
1232   /// nested.
1233   GC_TRANSITION_START,
1234   GC_TRANSITION_END,
1235 
1236   /// GET_DYNAMIC_AREA_OFFSET - get offset from native SP to the address of
1237   /// the most recent dynamic alloca. For most targets that would be 0, but
1238   /// for some others (e.g. PowerPC, PowerPC64) that would be compile-time
1239   /// known nonzero constant. The only operand here is the chain.
1240   GET_DYNAMIC_AREA_OFFSET,
1241 
1242   /// Pseudo probe for AutoFDO, as a place holder in a basic block to improve
1243   /// the sample counts quality.
1244   PSEUDO_PROBE,
1245 
1246   /// VSCALE(IMM) - Returns the runtime scaling factor used to calculate the
1247   /// number of elements within a scalable vector. IMM is a constant integer
1248   /// multiplier that is applied to the runtime value.
1249   VSCALE,
1250 
1251   /// Generic reduction nodes. These nodes represent horizontal vector
1252   /// reduction operations, producing a scalar result.
1253   /// The SEQ variants perform reductions in sequential order. The first
1254   /// operand is an initial scalar accumulator value, and the second operand
1255   /// is the vector to reduce.
1256   /// E.g. RES = VECREDUCE_SEQ_FADD f32 ACC, <4 x f32> SRC_VEC
1257   ///  ... is equivalent to
1258   /// RES = (((ACC + SRC_VEC[0]) + SRC_VEC[1]) + SRC_VEC[2]) + SRC_VEC[3]
1259   VECREDUCE_SEQ_FADD,
1260   VECREDUCE_SEQ_FMUL,
1261 
1262   /// These reductions have relaxed evaluation order semantics, and have a
1263   /// single vector operand. The order of evaluation is unspecified. For
1264   /// pow-of-2 vectors, one valid legalizer expansion is to use a tree
1265   /// reduction, i.e.:
1266   /// For RES = VECREDUCE_FADD <8 x f16> SRC_VEC
1267   ///   PART_RDX = FADD SRC_VEC[0:3], SRC_VEC[4:7]
1268   ///   PART_RDX2 = FADD PART_RDX[0:1], PART_RDX[2:3]
1269   ///   RES = FADD PART_RDX2[0], PART_RDX2[1]
1270   /// For non-pow-2 vectors, this can be computed by extracting each element
1271   /// and performing the operation as if it were scalarized.
1272   VECREDUCE_FADD,
1273   VECREDUCE_FMUL,
1274   /// FMIN/FMAX nodes can have flags, for NaN/NoNaN variants.
1275   VECREDUCE_FMAX,
1276   VECREDUCE_FMIN,
1277   /// Integer reductions may have a result type larger than the vector element
1278   /// type. However, the reduction is performed using the vector element type
1279   /// and the value in the top bits is unspecified.
1280   VECREDUCE_ADD,
1281   VECREDUCE_MUL,
1282   VECREDUCE_AND,
1283   VECREDUCE_OR,
1284   VECREDUCE_XOR,
1285   VECREDUCE_SMAX,
1286   VECREDUCE_SMIN,
1287   VECREDUCE_UMAX,
1288   VECREDUCE_UMIN,
1289 
1290   // The `llvm.experimental.stackmap` intrinsic.
1291   // Operands: input chain, glue, <id>, <numShadowBytes>, [live0[, live1...]]
1292   // Outputs: output chain, glue
1293   STACKMAP,
1294 
1295   // The `llvm.experimental.patchpoint.*` intrinsic.
1296   // Operands: input chain, [glue], reg-mask, <id>, <numShadowBytes>, callee,
1297   //   <numArgs>, cc, ...
1298   // Outputs: [rv], output chain, glue
1299   PATCHPOINT,
1300 
1301 // Vector Predication
1302 #define BEGIN_REGISTER_VP_SDNODE(VPSDID, ...) VPSDID,
1303 #include "llvm/IR/VPIntrinsics.def"
1304 
1305   /// BUILTIN_OP_END - This must be the last enum value in this list.
1306   /// The target-specific pre-isel opcode values start here.
1307   BUILTIN_OP_END
1308 };
1309 
1310 /// FIRST_TARGET_STRICTFP_OPCODE - Target-specific pre-isel operations
1311 /// which cannot raise FP exceptions should be less than this value.
1312 /// Those that do must not be less than this value.
1313 static const int FIRST_TARGET_STRICTFP_OPCODE = BUILTIN_OP_END + 400;
1314 
1315 /// FIRST_TARGET_MEMORY_OPCODE - Target-specific pre-isel operations
1316 /// which do not reference a specific memory location should be less than
1317 /// this value. Those that do must not be less than this value, and can
1318 /// be used with SelectionDAG::getMemIntrinsicNode.
1319 static const int FIRST_TARGET_MEMORY_OPCODE = BUILTIN_OP_END + 500;
1320 
1321 /// Whether this is bitwise logic opcode.
1322 inline bool isBitwiseLogicOp(unsigned Opcode) {
1323   return Opcode == ISD::AND || Opcode == ISD::OR || Opcode == ISD::XOR;
1324 }
1325 
1326 /// Get underlying scalar opcode for VECREDUCE opcode.
1327 /// For example ISD::AND for ISD::VECREDUCE_AND.
1328 NodeType getVecReduceBaseOpcode(unsigned VecReduceOpcode);
1329 
1330 /// Whether this is a vector-predicated Opcode.
1331 bool isVPOpcode(unsigned Opcode);
1332 
1333 /// Whether this is a vector-predicated binary operation opcode.
1334 bool isVPBinaryOp(unsigned Opcode);
1335 
1336 /// Whether this is a vector-predicated reduction opcode.
1337 bool isVPReduction(unsigned Opcode);
1338 
1339 /// The operand position of the vector mask.
1340 Optional<unsigned> getVPMaskIdx(unsigned Opcode);
1341 
1342 /// The operand position of the explicit vector length parameter.
1343 Optional<unsigned> getVPExplicitVectorLengthIdx(unsigned Opcode);
1344 
1345 //===--------------------------------------------------------------------===//
1346 /// MemIndexedMode enum - This enum defines the load / store indexed
1347 /// addressing modes.
1348 ///
1349 /// UNINDEXED    "Normal" load / store. The effective address is already
1350 ///              computed and is available in the base pointer. The offset
1351 ///              operand is always undefined. In addition to producing a
1352 ///              chain, an unindexed load produces one value (result of the
1353 ///              load); an unindexed store does not produce a value.
1354 ///
1355 /// PRE_INC      Similar to the unindexed mode where the effective address is
1356 /// PRE_DEC      the value of the base pointer add / subtract the offset.
1357 ///              It considers the computation as being folded into the load /
1358 ///              store operation (i.e. the load / store does the address
1359 ///              computation as well as performing the memory transaction).
1360 ///              The base operand is always undefined. In addition to
1361 ///              producing a chain, pre-indexed load produces two values
1362 ///              (result of the load and the result of the address
1363 ///              computation); a pre-indexed store produces one value (result
1364 ///              of the address computation).
1365 ///
1366 /// POST_INC     The effective address is the value of the base pointer. The
1367 /// POST_DEC     value of the offset operand is then added to / subtracted
1368 ///              from the base after memory transaction. In addition to
1369 ///              producing a chain, post-indexed load produces two values
1370 ///              (the result of the load and the result of the base +/- offset
1371 ///              computation); a post-indexed store produces one value (the
1372 ///              the result of the base +/- offset computation).
1373 enum MemIndexedMode { UNINDEXED = 0, PRE_INC, PRE_DEC, POST_INC, POST_DEC };
1374 
1375 static const int LAST_INDEXED_MODE = POST_DEC + 1;
1376 
1377 //===--------------------------------------------------------------------===//
1378 /// MemIndexType enum - This enum defines how to interpret MGATHER/SCATTER's
1379 /// index parameter when calculating addresses.
1380 ///
1381 /// SIGNED_SCALED     Addr = Base + ((signed)Index * Scale)
1382 /// UNSIGNED_SCALED   Addr = Base + ((unsigned)Index * Scale)
1383 ///
1384 /// NOTE: The value of Scale is typically only known to the node owning the
1385 /// IndexType, with a value of 1 the equivalent of being unscaled.
1386 enum MemIndexType { SIGNED_SCALED = 0, UNSIGNED_SCALED };
1387 
1388 static const int LAST_MEM_INDEX_TYPE = UNSIGNED_SCALED + 1;
1389 
1390 inline bool isIndexTypeSigned(MemIndexType IndexType) {
1391   return IndexType == SIGNED_SCALED;
1392 }
1393 
1394 //===--------------------------------------------------------------------===//
1395 /// LoadExtType enum - This enum defines the three variants of LOADEXT
1396 /// (load with extension).
1397 ///
1398 /// SEXTLOAD loads the integer operand and sign extends it to a larger
1399 ///          integer result type.
1400 /// ZEXTLOAD loads the integer operand and zero extends it to a larger
1401 ///          integer result type.
1402 /// EXTLOAD  is used for two things: floating point extending loads and
1403 ///          integer extending loads [the top bits are undefined].
1404 enum LoadExtType { NON_EXTLOAD = 0, EXTLOAD, SEXTLOAD, ZEXTLOAD };
1405 
1406 static const int LAST_LOADEXT_TYPE = ZEXTLOAD + 1;
1407 
1408 NodeType getExtForLoadExtType(bool IsFP, LoadExtType);
1409 
1410 //===--------------------------------------------------------------------===//
1411 /// ISD::CondCode enum - These are ordered carefully to make the bitfields
1412 /// below work out, when considering SETFALSE (something that never exists
1413 /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
1414 /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
1415 /// to.  If the "N" column is 1, the result of the comparison is undefined if
1416 /// the input is a NAN.
1417 ///
1418 /// All of these (except for the 'always folded ops') should be handled for
1419 /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
1420 /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
1421 ///
1422 /// Note that these are laid out in a specific order to allow bit-twiddling
1423 /// to transform conditions.
1424 enum CondCode {
1425   // Opcode       N U L G E       Intuitive operation
1426   SETFALSE, //      0 0 0 0       Always false (always folded)
1427   SETOEQ,   //      0 0 0 1       True if ordered and equal
1428   SETOGT,   //      0 0 1 0       True if ordered and greater than
1429   SETOGE,   //      0 0 1 1       True if ordered and greater than or equal
1430   SETOLT,   //      0 1 0 0       True if ordered and less than
1431   SETOLE,   //      0 1 0 1       True if ordered and less than or equal
1432   SETONE,   //      0 1 1 0       True if ordered and operands are unequal
1433   SETO,     //      0 1 1 1       True if ordered (no nans)
1434   SETUO,    //      1 0 0 0       True if unordered: isnan(X) | isnan(Y)
1435   SETUEQ,   //      1 0 0 1       True if unordered or equal
1436   SETUGT,   //      1 0 1 0       True if unordered or greater than
1437   SETUGE,   //      1 0 1 1       True if unordered, greater than, or equal
1438   SETULT,   //      1 1 0 0       True if unordered or less than
1439   SETULE,   //      1 1 0 1       True if unordered, less than, or equal
1440   SETUNE,   //      1 1 1 0       True if unordered or not equal
1441   SETTRUE,  //      1 1 1 1       Always true (always folded)
1442   // Don't care operations: undefined if the input is a nan.
1443   SETFALSE2, //   1 X 0 0 0       Always false (always folded)
1444   SETEQ,     //   1 X 0 0 1       True if equal
1445   SETGT,     //   1 X 0 1 0       True if greater than
1446   SETGE,     //   1 X 0 1 1       True if greater than or equal
1447   SETLT,     //   1 X 1 0 0       True if less than
1448   SETLE,     //   1 X 1 0 1       True if less than or equal
1449   SETNE,     //   1 X 1 1 0       True if not equal
1450   SETTRUE2,  //   1 X 1 1 1       Always true (always folded)
1451 
1452   SETCC_INVALID // Marker value.
1453 };
1454 
1455 /// Return true if this is a setcc instruction that performs a signed
1456 /// comparison when used with integer operands.
1457 inline bool isSignedIntSetCC(CondCode Code) {
1458   return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
1459 }
1460 
1461 /// Return true if this is a setcc instruction that performs an unsigned
1462 /// comparison when used with integer operands.
1463 inline bool isUnsignedIntSetCC(CondCode Code) {
1464   return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
1465 }
1466 
1467 /// Return true if this is a setcc instruction that performs an equality
1468 /// comparison when used with integer operands.
1469 inline bool isIntEqualitySetCC(CondCode Code) {
1470   return Code == SETEQ || Code == SETNE;
1471 }
1472 
1473 /// Return true if the specified condition returns true if the two operands to
1474 /// the condition are equal. Note that if one of the two operands is a NaN,
1475 /// this value is meaningless.
1476 inline bool isTrueWhenEqual(CondCode Cond) { return ((int)Cond & 1) != 0; }
1477 
1478 /// This function returns 0 if the condition is always false if an operand is
1479 /// a NaN, 1 if the condition is always true if the operand is a NaN, and 2 if
1480 /// the condition is undefined if the operand is a NaN.
1481 inline unsigned getUnorderedFlavor(CondCode Cond) {
1482   return ((int)Cond >> 3) & 3;
1483 }
1484 
1485 /// Return the operation corresponding to !(X op Y), where 'op' is a valid
1486 /// SetCC operation.
1487 CondCode getSetCCInverse(CondCode Operation, EVT Type);
1488 
1489 inline bool isExtOpcode(unsigned Opcode) {
1490   return Opcode == ISD::ANY_EXTEND || Opcode == ISD::ZERO_EXTEND ||
1491          Opcode == ISD::SIGN_EXTEND;
1492 }
1493 
1494 namespace GlobalISel {
1495 /// Return the operation corresponding to !(X op Y), where 'op' is a valid
1496 /// SetCC operation. The U bit of the condition code has different meanings
1497 /// between floating point and integer comparisons and LLT's don't provide
1498 /// this distinction. As such we need to be told whether the comparison is
1499 /// floating point or integer-like. Pointers should use integer-like
1500 /// comparisons.
1501 CondCode getSetCCInverse(CondCode Operation, bool isIntegerLike);
1502 } // end namespace GlobalISel
1503 
1504 /// Return the operation corresponding to (Y op X) when given the operation
1505 /// for (X op Y).
1506 CondCode getSetCCSwappedOperands(CondCode Operation);
1507 
1508 /// Return the result of a logical OR between different comparisons of
1509 /// identical values: ((X op1 Y) | (X op2 Y)). This function returns
1510 /// SETCC_INVALID if it is not possible to represent the resultant comparison.
1511 CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, EVT Type);
1512 
1513 /// Return the result of a logical AND between different comparisons of
1514 /// identical values: ((X op1 Y) & (X op2 Y)). This function returns
1515 /// SETCC_INVALID if it is not possible to represent the resultant comparison.
1516 CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, EVT Type);
1517 
1518 } // namespace ISD
1519 
1520 } // namespace llvm
1521 
1522 #endif
1523