1 //===-- llvm/CodeGen/ISDOpcodes.h - CodeGen opcodes -------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares codegen opcodes and related utilities.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CODEGEN_ISDOPCODES_H
14 #define LLVM_CODEGEN_ISDOPCODES_H
15 
16 #include "llvm/CodeGen/ValueTypes.h"
17 
18 namespace llvm {
19 
20 /// ISD namespace - This namespace contains an enum which represents all of the
21 /// SelectionDAG node types and value types.
22 ///
23 namespace ISD {
24 
25 //===--------------------------------------------------------------------===//
26 /// ISD::NodeType enum - This enum defines the target-independent operators
27 /// for a SelectionDAG.
28 ///
29 /// Targets may also define target-dependent operator codes for SDNodes. For
30 /// example, on x86, these are the enum values in the X86ISD namespace.
31 /// Targets should aim to use target-independent operators to model their
32 /// instruction sets as much as possible, and only use target-dependent
33 /// operators when they have special requirements.
34 ///
35 /// Finally, during and after selection proper, SNodes may use special
36 /// operator codes that correspond directly with MachineInstr opcodes. These
37 /// are used to represent selected instructions. See the isMachineOpcode()
38 /// and getMachineOpcode() member functions of SDNode.
39 ///
40 enum NodeType {
41 
42   /// DELETED_NODE - This is an illegal value that is used to catch
43   /// errors.  This opcode is not a legal opcode for any node.
44   DELETED_NODE,
45 
46   /// EntryToken - This is the marker used to indicate the start of a region.
47   EntryToken,
48 
49   /// TokenFactor - This node takes multiple tokens as input and produces a
50   /// single token result. This is used to represent the fact that the operand
51   /// operators are independent of each other.
52   TokenFactor,
53 
54   /// AssertSext, AssertZext - These nodes record if a register contains a
55   /// value that has already been zero or sign extended from a narrower type.
56   /// These nodes take two operands.  The first is the node that has already
57   /// been extended, and the second is a value type node indicating the width
58   /// of the extension.
59   /// NOTE: In case of the source value (or any vector element value) is
60   /// poisoned the assertion will not be true for that value.
61   AssertSext,
62   AssertZext,
63 
64   /// AssertAlign - These nodes record if a register contains a value that
65   /// has a known alignment and the trailing bits are known to be zero.
66   /// NOTE: In case of the source value (or any vector element value) is
67   /// poisoned the assertion will not be true for that value.
68   AssertAlign,
69 
70   /// Various leaf nodes.
71   BasicBlock,
72   VALUETYPE,
73   CONDCODE,
74   Register,
75   RegisterMask,
76   Constant,
77   ConstantFP,
78   GlobalAddress,
79   GlobalTLSAddress,
80   FrameIndex,
81   JumpTable,
82   ConstantPool,
83   ExternalSymbol,
84   BlockAddress,
85 
86   /// The address of the GOT
87   GLOBAL_OFFSET_TABLE,
88 
89   /// FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and
90   /// llvm.returnaddress on the DAG.  These nodes take one operand, the index
91   /// of the frame or return address to return.  An index of zero corresponds
92   /// to the current function's frame or return address, an index of one to
93   /// the parent's frame or return address, and so on.
94   FRAMEADDR,
95   RETURNADDR,
96 
97   /// ADDROFRETURNADDR - Represents the llvm.addressofreturnaddress intrinsic.
98   /// This node takes no operand, returns a target-specific pointer to the
99   /// place in the stack frame where the return address of the current
100   /// function is stored.
101   ADDROFRETURNADDR,
102 
103   /// SPONENTRY - Represents the llvm.sponentry intrinsic. Takes no argument
104   /// and returns the stack pointer value at the entry of the current
105   /// function calling this intrinsic.
106   SPONENTRY,
107 
108   /// LOCAL_RECOVER - Represents the llvm.localrecover intrinsic.
109   /// Materializes the offset from the local object pointer of another
110   /// function to a particular local object passed to llvm.localescape. The
111   /// operand is the MCSymbol label used to represent this offset, since
112   /// typically the offset is not known until after code generation of the
113   /// parent.
114   LOCAL_RECOVER,
115 
116   /// READ_REGISTER, WRITE_REGISTER - This node represents llvm.register on
117   /// the DAG, which implements the named register global variables extension.
118   READ_REGISTER,
119   WRITE_REGISTER,
120 
121   /// FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to
122   /// first (possible) on-stack argument. This is needed for correct stack
123   /// adjustment during unwind.
124   FRAME_TO_ARGS_OFFSET,
125 
126   /// EH_DWARF_CFA - This node represents the pointer to the DWARF Canonical
127   /// Frame Address (CFA), generally the value of the stack pointer at the
128   /// call site in the previous frame.
129   EH_DWARF_CFA,
130 
131   /// OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents
132   /// 'eh_return' gcc dwarf builtin, which is used to return from
133   /// exception. The general meaning is: adjust stack by OFFSET and pass
134   /// execution to HANDLER. Many platform-related details also :)
135   EH_RETURN,
136 
137   /// RESULT, OUTCHAIN = EH_SJLJ_SETJMP(INCHAIN, buffer)
138   /// This corresponds to the eh.sjlj.setjmp intrinsic.
139   /// It takes an input chain and a pointer to the jump buffer as inputs
140   /// and returns an outchain.
141   EH_SJLJ_SETJMP,
142 
143   /// OUTCHAIN = EH_SJLJ_LONGJMP(INCHAIN, buffer)
144   /// This corresponds to the eh.sjlj.longjmp intrinsic.
145   /// It takes an input chain and a pointer to the jump buffer as inputs
146   /// and returns an outchain.
147   EH_SJLJ_LONGJMP,
148 
149   /// OUTCHAIN = EH_SJLJ_SETUP_DISPATCH(INCHAIN)
150   /// The target initializes the dispatch table here.
151   EH_SJLJ_SETUP_DISPATCH,
152 
153   /// TargetConstant* - Like Constant*, but the DAG does not do any folding,
154   /// simplification, or lowering of the constant. They are used for constants
155   /// which are known to fit in the immediate fields of their users, or for
156   /// carrying magic numbers which are not values which need to be
157   /// materialized in registers.
158   TargetConstant,
159   TargetConstantFP,
160 
161   /// TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
162   /// anything else with this node, and this is valid in the target-specific
163   /// dag, turning into a GlobalAddress operand.
164   TargetGlobalAddress,
165   TargetGlobalTLSAddress,
166   TargetFrameIndex,
167   TargetJumpTable,
168   TargetConstantPool,
169   TargetExternalSymbol,
170   TargetBlockAddress,
171 
172   MCSymbol,
173 
174   /// TargetIndex - Like a constant pool entry, but with completely
175   /// target-dependent semantics. Holds target flags, a 32-bit index, and a
176   /// 64-bit index. Targets can use this however they like.
177   TargetIndex,
178 
179   /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
180   /// This node represents a target intrinsic function with no side effects.
181   /// The first operand is the ID number of the intrinsic from the
182   /// llvm::Intrinsic namespace.  The operands to the intrinsic follow.  The
183   /// node returns the result of the intrinsic.
184   INTRINSIC_WO_CHAIN,
185 
186   /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
187   /// This node represents a target intrinsic function with side effects that
188   /// returns a result.  The first operand is a chain pointer.  The second is
189   /// the ID number of the intrinsic from the llvm::Intrinsic namespace.  The
190   /// operands to the intrinsic follow.  The node has two results, the result
191   /// of the intrinsic and an output chain.
192   INTRINSIC_W_CHAIN,
193 
194   /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
195   /// This node represents a target intrinsic function with side effects that
196   /// does not return a result.  The first operand is a chain pointer.  The
197   /// second is the ID number of the intrinsic from the llvm::Intrinsic
198   /// namespace.  The operands to the intrinsic follow.
199   INTRINSIC_VOID,
200 
201   /// CopyToReg - This node has three operands: a chain, a register number to
202   /// set to this value, and a value.
203   CopyToReg,
204 
205   /// CopyFromReg - This node indicates that the input value is a virtual or
206   /// physical register that is defined outside of the scope of this
207   /// SelectionDAG.  The register is available from the RegisterSDNode object.
208   CopyFromReg,
209 
210   /// UNDEF - An undefined node.
211   UNDEF,
212 
213   // FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or
214   // is evaluated to UNDEF), or returns VAL otherwise. Note that each
215   // read of UNDEF can yield different value, but FREEZE(UNDEF) cannot.
216   FREEZE,
217 
218   /// EXTRACT_ELEMENT - This is used to get the lower or upper (determined by
219   /// a Constant, which is required to be operand #1) half of the integer or
220   /// float value specified as operand #0.  This is only for use before
221   /// legalization, for values that will be broken into multiple registers.
222   EXTRACT_ELEMENT,
223 
224   /// BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
225   /// Given two values of the same integer value type, this produces a value
226   /// twice as big.  Like EXTRACT_ELEMENT, this can only be used before
227   /// legalization. The lower part of the composite value should be in
228   /// element 0 and the upper part should be in element 1.
229   BUILD_PAIR,
230 
231   /// MERGE_VALUES - This node takes multiple discrete operands and returns
232   /// them all as its individual results.  This nodes has exactly the same
233   /// number of inputs and outputs. This node is useful for some pieces of the
234   /// code generator that want to think about a single node with multiple
235   /// results, not multiple nodes.
236   MERGE_VALUES,
237 
238   /// Simple integer binary arithmetic operators.
239   ADD,
240   SUB,
241   MUL,
242   SDIV,
243   UDIV,
244   SREM,
245   UREM,
246 
247   /// SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing
248   /// a signed/unsigned value of type i[2*N], and return the full value as
249   /// two results, each of type iN.
250   SMUL_LOHI,
251   UMUL_LOHI,
252 
253   /// SDIVREM/UDIVREM - Divide two integers and produce both a quotient and
254   /// remainder result.
255   SDIVREM,
256   UDIVREM,
257 
258   /// CARRY_FALSE - This node is used when folding other nodes,
259   /// like ADDC/SUBC, which indicate the carry result is always false.
260   CARRY_FALSE,
261 
262   /// Carry-setting nodes for multiple precision addition and subtraction.
263   /// These nodes take two operands of the same value type, and produce two
264   /// results.  The first result is the normal add or sub result, the second
265   /// result is the carry flag result.
266   /// FIXME: These nodes are deprecated in favor of UADDO_CARRY and USUBO_CARRY.
267   /// They are kept around for now to provide a smooth transition path
268   /// toward the use of UADDO_CARRY/USUBO_CARRY and will eventually be removed.
269   ADDC,
270   SUBC,
271 
272   /// Carry-using nodes for multiple precision addition and subtraction. These
273   /// nodes take three operands: The first two are the normal lhs and rhs to
274   /// the add or sub, and the third is the input carry flag.  These nodes
275   /// produce two results; the normal result of the add or sub, and the output
276   /// carry flag.  These nodes both read and write a carry flag to allow them
277   /// to them to be chained together for add and sub of arbitrarily large
278   /// values.
279   ADDE,
280   SUBE,
281 
282   /// Carry-using nodes for multiple precision addition and subtraction.
283   /// These nodes take three operands: The first two are the normal lhs and
284   /// rhs to the add or sub, and the third is a boolean value that is 1 if and
285   /// only if there is an incoming carry/borrow. These nodes produce two
286   /// results: the normal result of the add or sub, and a boolean value that is
287   /// 1 if and only if there is an outgoing carry/borrow.
288   ///
289   /// Care must be taken if these opcodes are lowered to hardware instructions
290   /// that use the inverse logic -- 0 if and only if there is an
291   /// incoming/outgoing carry/borrow.  In such cases, you must preserve the
292   /// semantics of these opcodes by inverting the incoming carry/borrow, feeding
293   /// it to the add/sub hardware instruction, and then inverting the outgoing
294   /// carry/borrow.
295   ///
296   /// The use of these opcodes is preferable to adde/sube if the target supports
297   /// it, as the carry is a regular value rather than a glue, which allows
298   /// further optimisation.
299   ///
300   /// These opcodes are different from [US]{ADD,SUB}O in that
301   /// U{ADD,SUB}O_CARRY consume and produce a carry/borrow, whereas
302   /// [US]{ADD,SUB}O produce an overflow.
303   UADDO_CARRY,
304   USUBO_CARRY,
305 
306   /// Carry-using overflow-aware nodes for multiple precision addition and
307   /// subtraction. These nodes take three operands: The first two are normal lhs
308   /// and rhs to the add or sub, and the third is a boolean indicating if there
309   /// is an incoming carry. They produce two results: the normal result of the
310   /// add or sub, and a boolean that indicates if an overflow occurred (*not*
311   /// flag, because it may be a store to memory, etc.). If the type of the
312   /// boolean is not i1 then the high bits conform to getBooleanContents.
313   SADDO_CARRY,
314   SSUBO_CARRY,
315 
316   /// RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
317   /// These nodes take two operands: the normal LHS and RHS to the add. They
318   /// produce two results: the normal result of the add, and a boolean that
319   /// indicates if an overflow occurred (*not* a flag, because it may be store
320   /// to memory, etc.).  If the type of the boolean is not i1 then the high
321   /// bits conform to getBooleanContents.
322   /// These nodes are generated from llvm.[su]add.with.overflow intrinsics.
323   SADDO,
324   UADDO,
325 
326   /// Same for subtraction.
327   SSUBO,
328   USUBO,
329 
330   /// Same for multiplication.
331   SMULO,
332   UMULO,
333 
334   /// RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2
335   /// integers with the same bit width (W). If the true value of LHS + RHS
336   /// exceeds the largest value that can be represented by W bits, the
337   /// resulting value is this maximum value. Otherwise, if this value is less
338   /// than the smallest value that can be represented by W bits, the
339   /// resulting value is this minimum value.
340   SADDSAT,
341   UADDSAT,
342 
343   /// RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2
344   /// integers with the same bit width (W). If the true value of LHS - RHS
345   /// exceeds the largest value that can be represented by W bits, the
346   /// resulting value is this maximum value. Otherwise, if this value is less
347   /// than the smallest value that can be represented by W bits, the
348   /// resulting value is this minimum value.
349   SSUBSAT,
350   USUBSAT,
351 
352   /// RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift. The first
353   /// operand is the value to be shifted, and the second argument is the amount
354   /// to shift by. Both must be integers of the same bit width (W). If the true
355   /// value of LHS << RHS exceeds the largest value that can be represented by
356   /// W bits, the resulting value is this maximum value, Otherwise, if this
357   /// value is less than the smallest value that can be represented by W bits,
358   /// the resulting value is this minimum value.
359   SSHLSAT,
360   USHLSAT,
361 
362   /// RESULT = [US]MULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication
363   /// on 2 integers with the same width and scale. SCALE represents the scale
364   /// of both operands as fixed point numbers. This SCALE parameter must be a
365   /// constant integer. A scale of zero is effectively performing
366   /// multiplication on 2 integers.
367   SMULFIX,
368   UMULFIX,
369 
370   /// Same as the corresponding unsaturated fixed point instructions, but the
371   /// result is clamped between the min and max values representable by the
372   /// bits of the first 2 operands.
373   SMULFIXSAT,
374   UMULFIXSAT,
375 
376   /// RESULT = [US]DIVFIX(LHS, RHS, SCALE) - Perform fixed point division on
377   /// 2 integers with the same width and scale. SCALE represents the scale
378   /// of both operands as fixed point numbers. This SCALE parameter must be a
379   /// constant integer.
380   SDIVFIX,
381   UDIVFIX,
382 
383   /// Same as the corresponding unsaturated fixed point instructions, but the
384   /// result is clamped between the min and max values representable by the
385   /// bits of the first 2 operands.
386   SDIVFIXSAT,
387   UDIVFIXSAT,
388 
389   /// Simple binary floating point operators.
390   FADD,
391   FSUB,
392   FMUL,
393   FDIV,
394   FREM,
395 
396   /// Constrained versions of the binary floating point operators.
397   /// These will be lowered to the simple operators before final selection.
398   /// They are used to limit optimizations while the DAG is being
399   /// optimized.
400   STRICT_FADD,
401   STRICT_FSUB,
402   STRICT_FMUL,
403   STRICT_FDIV,
404   STRICT_FREM,
405   STRICT_FMA,
406 
407   /// Constrained versions of libm-equivalent floating point intrinsics.
408   /// These will be lowered to the equivalent non-constrained pseudo-op
409   /// (or expanded to the equivalent library call) before final selection.
410   /// They are used to limit optimizations while the DAG is being optimized.
411   STRICT_FSQRT,
412   STRICT_FPOW,
413   STRICT_FPOWI,
414   STRICT_FLDEXP,
415   STRICT_FSIN,
416   STRICT_FCOS,
417   STRICT_FEXP,
418   STRICT_FEXP2,
419   STRICT_FLOG,
420   STRICT_FLOG10,
421   STRICT_FLOG2,
422   STRICT_FRINT,
423   STRICT_FNEARBYINT,
424   STRICT_FMAXNUM,
425   STRICT_FMINNUM,
426   STRICT_FCEIL,
427   STRICT_FFLOOR,
428   STRICT_FROUND,
429   STRICT_FROUNDEVEN,
430   STRICT_FTRUNC,
431   STRICT_LROUND,
432   STRICT_LLROUND,
433   STRICT_LRINT,
434   STRICT_LLRINT,
435   STRICT_FMAXIMUM,
436   STRICT_FMINIMUM,
437 
438   /// STRICT_FP_TO_[US]INT - Convert a floating point value to a signed or
439   /// unsigned integer. These have the same semantics as fptosi and fptoui
440   /// in IR.
441   /// They are used to limit optimizations while the DAG is being optimized.
442   STRICT_FP_TO_SINT,
443   STRICT_FP_TO_UINT,
444 
445   /// STRICT_[US]INT_TO_FP - Convert a signed or unsigned integer to
446   /// a floating point value. These have the same semantics as sitofp and
447   /// uitofp in IR.
448   /// They are used to limit optimizations while the DAG is being optimized.
449   STRICT_SINT_TO_FP,
450   STRICT_UINT_TO_FP,
451 
452   /// X = STRICT_FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating
453   /// point type down to the precision of the destination VT.  TRUNC is a
454   /// flag, which is always an integer that is zero or one.  If TRUNC is 0,
455   /// this is a normal rounding, if it is 1, this FP_ROUND is known to not
456   /// change the value of Y.
457   ///
458   /// The TRUNC = 1 case is used in cases where we know that the value will
459   /// not be modified by the node, because Y is not using any of the extra
460   /// precision of source type.  This allows certain transformations like
461   /// STRICT_FP_EXTEND(STRICT_FP_ROUND(X,1)) -> X which are not safe for
462   /// STRICT_FP_EXTEND(STRICT_FP_ROUND(X,0)) because the extra bits aren't
463   /// removed.
464   /// It is used to limit optimizations while the DAG is being optimized.
465   STRICT_FP_ROUND,
466 
467   /// X = STRICT_FP_EXTEND(Y) - Extend a smaller FP type into a larger FP
468   /// type.
469   /// It is used to limit optimizations while the DAG is being optimized.
470   STRICT_FP_EXTEND,
471 
472   /// STRICT_FSETCC/STRICT_FSETCCS - Constrained versions of SETCC, used
473   /// for floating-point operands only.  STRICT_FSETCC performs a quiet
474   /// comparison operation, while STRICT_FSETCCS performs a signaling
475   /// comparison operation.
476   STRICT_FSETCC,
477   STRICT_FSETCCS,
478 
479   // FPTRUNC_ROUND - This corresponds to the fptrunc_round intrinsic.
480   FPTRUNC_ROUND,
481 
482   /// FMA - Perform a * b + c with no intermediate rounding step.
483   FMA,
484 
485   /// FMAD - Perform a * b + c, while getting the same result as the
486   /// separately rounded operations.
487   FMAD,
488 
489   /// FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
490   /// DAG node does not require that X and Y have the same type, just that
491   /// they are both floating point.  X and the result must have the same type.
492   /// FCOPYSIGN(f32, f64) is allowed.
493   FCOPYSIGN,
494 
495   /// INT = FGETSIGN(FP) - Return the sign bit of the specified floating point
496   /// value as an integer 0/1 value.
497   FGETSIGN,
498 
499   /// Returns platform specific canonical encoding of a floating point number.
500   FCANONICALIZE,
501 
502   /// Performs a check of floating point class property, defined by IEEE-754.
503   /// The first operand is the floating point value to check. The second operand
504   /// specifies the checked property and is a TargetConstant which specifies
505   /// test in the same way as intrinsic 'is_fpclass'.
506   /// Returns boolean value.
507   IS_FPCLASS,
508 
509   /// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector
510   /// with the specified, possibly variable, elements. The types of the
511   /// operands must match the vector element type, except that integer types
512   /// are allowed to be larger than the element type, in which case the
513   /// operands are implicitly truncated. The types of the operands must all
514   /// be the same.
515   BUILD_VECTOR,
516 
517   /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element
518   /// at IDX replaced with VAL. If the type of VAL is larger than the vector
519   /// element type then VAL is truncated before replacement.
520   ///
521   /// If VECTOR is a scalable vector, then IDX may be larger than the minimum
522   /// vector width. IDX is not first scaled by the runtime scaling factor of
523   /// VECTOR.
524   INSERT_VECTOR_ELT,
525 
526   /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
527   /// identified by the (potentially variable) element number IDX. If the return
528   /// type is an integer type larger than the element type of the vector, the
529   /// result is extended to the width of the return type. In that case, the high
530   /// bits are undefined.
531   ///
532   /// If VECTOR is a scalable vector, then IDX may be larger than the minimum
533   /// vector width. IDX is not first scaled by the runtime scaling factor of
534   /// VECTOR.
535   EXTRACT_VECTOR_ELT,
536 
537   /// CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of
538   /// vector type with the same length and element type, this produces a
539   /// concatenated vector result value, with length equal to the sum of the
540   /// lengths of the input vectors. If VECTOR0 is a fixed-width vector, then
541   /// VECTOR1..VECTORN must all be fixed-width vectors. Similarly, if VECTOR0
542   /// is a scalable vector, then VECTOR1..VECTORN must all be scalable vectors.
543   CONCAT_VECTORS,
544 
545   /// INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2
546   /// inserted into VECTOR1. IDX represents the starting element number at which
547   /// VECTOR2 will be inserted. IDX must be a constant multiple of T's known
548   /// minimum vector length. Let the type of VECTOR2 be T, then if T is a
549   /// scalable vector, IDX is first scaled by the runtime scaling factor of T.
550   /// The elements of VECTOR1 starting at IDX are overwritten with VECTOR2.
551   /// Elements IDX through (IDX + num_elements(T) - 1) must be valid VECTOR1
552   /// indices. If this condition cannot be determined statically but is false at
553   /// runtime, then the result vector is undefined. The IDX parameter must be a
554   /// vector index constant type, which for most targets will be an integer
555   /// pointer type.
556   ///
557   /// This operation supports inserting a fixed-width vector into a scalable
558   /// vector, but not the other way around.
559   INSERT_SUBVECTOR,
560 
561   /// EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
562   /// Let the result type be T, then IDX represents the starting element number
563   /// from which a subvector of type T is extracted. IDX must be a constant
564   /// multiple of T's known minimum vector length. If T is a scalable vector,
565   /// IDX is first scaled by the runtime scaling factor of T. Elements IDX
566   /// through (IDX + num_elements(T) - 1) must be valid VECTOR indices. If this
567   /// condition cannot be determined statically but is false at runtime, then
568   /// the result vector is undefined. The IDX parameter must be a vector index
569   /// constant type, which for most targets will be an integer pointer type.
570   ///
571   /// This operation supports extracting a fixed-width vector from a scalable
572   /// vector, but not the other way around.
573   EXTRACT_SUBVECTOR,
574 
575   /// VECTOR_DEINTERLEAVE(VEC1, VEC2) - Returns two vectors with all input and
576   /// output vectors having the same type. The first output contains the even
577   /// indices from CONCAT_VECTORS(VEC1, VEC2), with the second output
578   /// containing the odd indices. The relative order of elements within an
579   /// output match that of the concatenated input.
580   VECTOR_DEINTERLEAVE,
581 
582   /// VECTOR_INTERLEAVE(VEC1, VEC2) - Returns two vectors with all input and
583   /// output vectors having the same type. The first output contains the
584   /// result of interleaving the low half of CONCAT_VECTORS(VEC1, VEC2), with
585   /// the second output containing the result of interleaving the high half.
586   VECTOR_INTERLEAVE,
587 
588   /// VECTOR_REVERSE(VECTOR) - Returns a vector, of the same type as VECTOR,
589   /// whose elements are shuffled using the following algorithm:
590   ///   RESULT[i] = VECTOR[VECTOR.ElementCount - 1 - i]
591   VECTOR_REVERSE,
592 
593   /// VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as
594   /// VEC1/VEC2.  A VECTOR_SHUFFLE node also contains an array of constant int
595   /// values that indicate which value (or undef) each result element will
596   /// get.  These constant ints are accessible through the
597   /// ShuffleVectorSDNode class.  This is quite similar to the Altivec
598   /// 'vperm' instruction, except that the indices must be constants and are
599   /// in terms of the element size of VEC1/VEC2, not in terms of bytes.
600   VECTOR_SHUFFLE,
601 
602   /// VECTOR_SPLICE(VEC1, VEC2, IMM) - Returns a subvector of the same type as
603   /// VEC1/VEC2 from CONCAT_VECTORS(VEC1, VEC2), based on the IMM in two ways.
604   /// Let the result type be T, if IMM is positive it represents the starting
605   /// element number (an index) from which a subvector of type T is extracted
606   /// from CONCAT_VECTORS(VEC1, VEC2). If IMM is negative it represents a count
607   /// specifying the number of trailing elements to extract from VEC1, where the
608   /// elements of T are selected using the following algorithm:
609   ///   RESULT[i] = CONCAT_VECTORS(VEC1,VEC2)[VEC1.ElementCount - ABS(IMM) + i]
610   /// If IMM is not in the range [-VL, VL-1] the result vector is undefined. IMM
611   /// is a constant integer.
612   VECTOR_SPLICE,
613 
614   /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
615   /// scalar value into element 0 of the resultant vector type.  The top
616   /// elements 1 to N-1 of the N-element vector are undefined.  The type
617   /// of the operand must match the vector element type, except when they
618   /// are integer types.  In this case the operand is allowed to be wider
619   /// than the vector element type, and is implicitly truncated to it.
620   SCALAR_TO_VECTOR,
621 
622   /// SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL
623   /// duplicated in all lanes. The type of the operand must match the vector
624   /// element type, except when they are integer types.  In this case the
625   /// operand is allowed to be wider than the vector element type, and is
626   /// implicitly truncated to it.
627   SPLAT_VECTOR,
628 
629   /// SPLAT_VECTOR_PARTS(SCALAR1, SCALAR2, ...) - Returns a vector with the
630   /// scalar values joined together and then duplicated in all lanes. This
631   /// represents a SPLAT_VECTOR that has had its scalar operand expanded. This
632   /// allows representing a 64-bit splat on a target with 32-bit integers. The
633   /// total width of the scalars must cover the element width. SCALAR1 contains
634   /// the least significant bits of the value regardless of endianness and all
635   /// scalars should have the same type.
636   SPLAT_VECTOR_PARTS,
637 
638   /// STEP_VECTOR(IMM) - Returns a scalable vector whose lanes are comprised
639   /// of a linear sequence of unsigned values starting from 0 with a step of
640   /// IMM, where IMM must be a TargetConstant with type equal to the vector
641   /// element type. The arithmetic is performed modulo the bitwidth of the
642   /// element.
643   ///
644   /// The operation does not support returning fixed-width vectors or
645   /// non-constant operands.
646   STEP_VECTOR,
647 
648   /// MULHU/MULHS - Multiply high - Multiply two integers of type iN,
649   /// producing an unsigned/signed value of type i[2*N], then return the top
650   /// part.
651   MULHU,
652   MULHS,
653 
654   /// AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of
655   /// type i[N+1], halving the result by shifting it one bit right.
656   /// shr(add(ext(X), ext(Y)), 1)
657   AVGFLOORS,
658   AVGFLOORU,
659   /// AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an
660   /// integer of type i[N+2], add 1 and halve the result by shifting it one bit
661   /// right. shr(add(ext(X), ext(Y), 1), 1)
662   AVGCEILS,
663   AVGCEILU,
664 
665   // ABDS/ABDU - Absolute difference - Return the absolute difference between
666   // two numbers interpreted as signed/unsigned.
667   // i.e trunc(abs(sext(Op0) - sext(Op1))) becomes abds(Op0, Op1)
668   //  or trunc(abs(zext(Op0) - zext(Op1))) becomes abdu(Op0, Op1)
669   ABDS,
670   ABDU,
671 
672   /// [US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned
673   /// integers.
674   SMIN,
675   SMAX,
676   UMIN,
677   UMAX,
678 
679   /// Bitwise operators - logical and, logical or, logical xor.
680   AND,
681   OR,
682   XOR,
683 
684   /// ABS - Determine the unsigned absolute value of a signed integer value of
685   /// the same bitwidth.
686   /// Note: A value of INT_MIN will return INT_MIN, no saturation or overflow
687   /// is performed.
688   ABS,
689 
690   /// Shift and rotation operations.  After legalization, the type of the
691   /// shift amount is known to be TLI.getShiftAmountTy().  Before legalization
692   /// the shift amount can be any type, but care must be taken to ensure it is
693   /// large enough.  TLI.getShiftAmountTy() is i8 on some targets, but before
694   /// legalization, types like i1024 can occur and i8 doesn't have enough bits
695   /// to represent the shift amount.
696   /// When the 1st operand is a vector, the shift amount must be in the same
697   /// type. (TLI.getShiftAmountTy() will return the same type when the input
698   /// type is a vector.)
699   /// For rotates and funnel shifts, the shift amount is treated as an unsigned
700   /// amount modulo the element size of the first operand.
701   ///
702   /// Funnel 'double' shifts take 3 operands, 2 inputs and the shift amount.
703   /// fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
704   /// fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW))
705   SHL,
706   SRA,
707   SRL,
708   ROTL,
709   ROTR,
710   FSHL,
711   FSHR,
712 
713   /// Byte Swap and Counting operators.
714   BSWAP,
715   CTTZ,
716   CTLZ,
717   CTPOP,
718   BITREVERSE,
719   PARITY,
720 
721   /// Bit counting operators with an undefined result for zero inputs.
722   CTTZ_ZERO_UNDEF,
723   CTLZ_ZERO_UNDEF,
724 
725   /// Select(COND, TRUEVAL, FALSEVAL).  If the type of the boolean COND is not
726   /// i1 then the high bits must conform to getBooleanContents.
727   SELECT,
728 
729   /// Select with a vector condition (op #0) and two vector operands (ops #1
730   /// and #2), returning a vector result.  All vectors have the same length.
731   /// Much like the scalar select and setcc, each bit in the condition selects
732   /// whether the corresponding result element is taken from op #1 or op #2.
733   /// At first, the VSELECT condition is of vXi1 type. Later, targets may
734   /// change the condition type in order to match the VSELECT node using a
735   /// pattern. The condition follows the BooleanContent format of the target.
736   VSELECT,
737 
738   /// Select with condition operator - This selects between a true value and
739   /// a false value (ops #2 and #3) based on the boolean result of comparing
740   /// the lhs and rhs (ops #0 and #1) of a conditional expression with the
741   /// condition code in op #4, a CondCodeSDNode.
742   SELECT_CC,
743 
744   /// SetCC operator - This evaluates to a true value iff the condition is
745   /// true.  If the result value type is not i1 then the high bits conform
746   /// to getBooleanContents.  The operands to this are the left and right
747   /// operands to compare (ops #0, and #1) and the condition code to compare
748   /// them with (op #2) as a CondCodeSDNode. If the operands are vector types
749   /// then the result type must also be a vector type.
750   SETCC,
751 
752   /// Like SetCC, ops #0 and #1 are the LHS and RHS operands to compare, but
753   /// op #2 is a boolean indicating if there is an incoming carry. This
754   /// operator checks the result of "LHS - RHS - Carry", and can be used to
755   /// compare two wide integers:
756   /// (setcccarry lhshi rhshi (usubo_carry lhslo rhslo) cc).
757   /// Only valid for integers.
758   SETCCCARRY,
759 
760   /// SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
761   /// integer shift operations.  The operation ordering is:
762   ///       [Lo,Hi] = op [LoLHS,HiLHS], Amt
763   SHL_PARTS,
764   SRA_PARTS,
765   SRL_PARTS,
766 
767   /// Conversion operators.  These are all single input single output
768   /// operations.  For all of these, the result type must be strictly
769   /// wider or narrower (depending on the operation) than the source
770   /// type.
771 
772   /// SIGN_EXTEND - Used for integer types, replicating the sign bit
773   /// into new bits.
774   SIGN_EXTEND,
775 
776   /// ZERO_EXTEND - Used for integer types, zeroing the new bits.
777   ZERO_EXTEND,
778 
779   /// ANY_EXTEND - Used for integer types.  The high bits are undefined.
780   ANY_EXTEND,
781 
782   /// TRUNCATE - Completely drop the high bits.
783   TRUNCATE,
784 
785   /// [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
786   /// depends on the first letter) to floating point.
787   SINT_TO_FP,
788   UINT_TO_FP,
789 
790   /// SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
791   /// sign extend a small value in a large integer register (e.g. sign
792   /// extending the low 8 bits of a 32-bit register to fill the top 24 bits
793   /// with the 7th bit).  The size of the smaller type is indicated by the 1th
794   /// operand, a ValueType node.
795   SIGN_EXTEND_INREG,
796 
797   /// ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an
798   /// in-register any-extension of the low lanes of an integer vector. The
799   /// result type must have fewer elements than the operand type, and those
800   /// elements must be larger integer types such that the total size of the
801   /// operand type is less than or equal to the size of the result type. Each
802   /// of the low operand elements is any-extended into the corresponding,
803   /// wider result elements with the high bits becoming undef.
804   /// NOTE: The type legalizer prefers to make the operand and result size
805   /// the same to allow expansion to shuffle vector during op legalization.
806   ANY_EXTEND_VECTOR_INREG,
807 
808   /// SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an
809   /// in-register sign-extension of the low lanes of an integer vector. The
810   /// result type must have fewer elements than the operand type, and those
811   /// elements must be larger integer types such that the total size of the
812   /// operand type is less than or equal to the size of the result type. Each
813   /// of the low operand elements is sign-extended into the corresponding,
814   /// wider result elements.
815   /// NOTE: The type legalizer prefers to make the operand and result size
816   /// the same to allow expansion to shuffle vector during op legalization.
817   SIGN_EXTEND_VECTOR_INREG,
818 
819   /// ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an
820   /// in-register zero-extension of the low lanes of an integer vector. The
821   /// result type must have fewer elements than the operand type, and those
822   /// elements must be larger integer types such that the total size of the
823   /// operand type is less than or equal to the size of the result type. Each
824   /// of the low operand elements is zero-extended into the corresponding,
825   /// wider result elements.
826   /// NOTE: The type legalizer prefers to make the operand and result size
827   /// the same to allow expansion to shuffle vector during op legalization.
828   ZERO_EXTEND_VECTOR_INREG,
829 
830   /// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
831   /// integer. These have the same semantics as fptosi and fptoui in IR. If
832   /// the FP value cannot fit in the integer type, the results are undefined.
833   FP_TO_SINT,
834   FP_TO_UINT,
835 
836   /// FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a
837   /// signed or unsigned scalar integer type given in operand 1 with the
838   /// following semantics:
839   ///
840   ///  * If the value is NaN, zero is returned.
841   ///  * If the value is larger/smaller than the largest/smallest integer,
842   ///    the largest/smallest integer is returned (saturation).
843   ///  * Otherwise the result of rounding the value towards zero is returned.
844   ///
845   /// The scalar width of the type given in operand 1 must be equal to, or
846   /// smaller than, the scalar result type width. It may end up being smaller
847   /// than the result width as a result of integer type legalization.
848   ///
849   /// After converting to the scalar integer type in operand 1, the value is
850   /// extended to the result VT. FP_TO_SINT_SAT sign extends and FP_TO_UINT_SAT
851   /// zero extends.
852   FP_TO_SINT_SAT,
853   FP_TO_UINT_SAT,
854 
855   /// X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type
856   /// down to the precision of the destination VT.  TRUNC is a flag, which is
857   /// always an integer that is zero or one.  If TRUNC is 0, this is a
858   /// normal rounding, if it is 1, this FP_ROUND is known to not change the
859   /// value of Y.
860   ///
861   /// The TRUNC = 1 case is used in cases where we know that the value will
862   /// not be modified by the node, because Y is not using any of the extra
863   /// precision of source type.  This allows certain transformations like
864   /// FP_EXTEND(FP_ROUND(X,1)) -> X which are not safe for
865   /// FP_EXTEND(FP_ROUND(X,0)) because the extra bits aren't removed.
866   FP_ROUND,
867 
868   /// Returns current rounding mode:
869   /// -1 Undefined
870   ///  0 Round to 0
871   ///  1 Round to nearest, ties to even
872   ///  2 Round to +inf
873   ///  3 Round to -inf
874   ///  4 Round to nearest, ties to zero
875   /// Result is rounding mode and chain. Input is a chain.
876   GET_ROUNDING,
877 
878   /// Set rounding mode.
879   /// The first operand is a chain pointer. The second specifies the required
880   /// rounding mode, encoded in the same way as used in '``GET_ROUNDING``'.
881   SET_ROUNDING,
882 
883   /// X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
884   FP_EXTEND,
885 
886   /// BITCAST - This operator converts between integer, vector and FP
887   /// values, as if the value was stored to memory with one type and loaded
888   /// from the same address with the other type (or equivalently for vector
889   /// format conversions, etc).  The source and result are required to have
890   /// the same bit size (e.g.  f32 <-> i32).  This can also be used for
891   /// int-to-int or fp-to-fp conversions, but that is a noop, deleted by
892   /// getNode().
893   ///
894   /// This operator is subtly different from the bitcast instruction from
895   /// LLVM-IR since this node may change the bits in the register. For
896   /// example, this occurs on big-endian NEON and big-endian MSA where the
897   /// layout of the bits in the register depends on the vector type and this
898   /// operator acts as a shuffle operation for some vector type combinations.
899   BITCAST,
900 
901   /// ADDRSPACECAST - This operator converts between pointers of different
902   /// address spaces.
903   ADDRSPACECAST,
904 
905   /// FP16_TO_FP, FP_TO_FP16 - These operators are used to perform promotions
906   /// and truncation for half-precision (16 bit) floating numbers. These nodes
907   /// form a semi-softened interface for dealing with f16 (as an i16), which
908   /// is often a storage-only type but has native conversions.
909   FP16_TO_FP,
910   FP_TO_FP16,
911   STRICT_FP16_TO_FP,
912   STRICT_FP_TO_FP16,
913 
914   /// BF16_TO_FP, FP_TO_BF16 - These operators are used to perform promotions
915   /// and truncation for bfloat16. These nodes form a semi-softened interface
916   /// for dealing with bf16 (as an i16), which is often a storage-only type but
917   /// has native conversions.
918   BF16_TO_FP,
919   FP_TO_BF16,
920 
921   /// Perform various unary floating-point operations inspired by libm. For
922   /// FPOWI, the result is undefined if if the integer operand doesn't fit into
923   /// sizeof(int).
924   FNEG,
925   FABS,
926   FSQRT,
927   FCBRT,
928   FSIN,
929   FCOS,
930   FPOW,
931   FPOWI,
932   /// FLDEXP - ldexp, inspired by libm (op0 * 2**op1).
933   FLDEXP,
934 
935   /// FFREXP - frexp, extract fractional and exponent component of a
936   /// floating-point value. Returns the two components as separate return
937   /// values.
938   FFREXP,
939 
940   FLOG,
941   FLOG2,
942   FLOG10,
943   FEXP,
944   FEXP2,
945   FCEIL,
946   FTRUNC,
947   FRINT,
948   FNEARBYINT,
949   FROUND,
950   FROUNDEVEN,
951   FFLOOR,
952   LROUND,
953   LLROUND,
954   LRINT,
955   LLRINT,
956 
957   /// FMINNUM/FMAXNUM - Perform floating-point minimum or maximum on two
958   /// values.
959   //
960   /// In the case where a single input is a NaN (either signaling or quiet),
961   /// the non-NaN input is returned.
962   ///
963   /// The return value of (FMINNUM 0.0, -0.0) could be either 0.0 or -0.0.
964   FMINNUM,
965   FMAXNUM,
966 
967   /// FMINNUM_IEEE/FMAXNUM_IEEE - Perform floating-point minimum or maximum on
968   /// two values, following the IEEE-754 2008 definition. This differs from
969   /// FMINNUM/FMAXNUM in the handling of signaling NaNs. If one input is a
970   /// signaling NaN, returns a quiet NaN.
971   FMINNUM_IEEE,
972   FMAXNUM_IEEE,
973 
974   /// FMINIMUM/FMAXIMUM - NaN-propagating minimum/maximum that also treat -0.0
975   /// as less than 0.0. While FMINNUM_IEEE/FMAXNUM_IEEE follow IEEE 754-2008
976   /// semantics, FMINIMUM/FMAXIMUM follow IEEE 754-2018 draft semantics.
977   FMINIMUM,
978   FMAXIMUM,
979 
980   /// FSINCOS - Compute both fsin and fcos as a single operation.
981   FSINCOS,
982 
983   /// Gets the current floating-point environment. The first operand is a token
984   /// chain. The results are FP environment, represented by an integer value,
985   /// and a token chain.
986   GET_FPENV,
987 
988   /// Sets the current floating-point environment. The first operand is a token
989   /// chain, the second is FP environment, represented by an integer value. The
990   /// result is a token chain.
991   SET_FPENV,
992 
993   /// Set floating-point environment to default state. The first operand and the
994   /// result are token chains.
995   RESET_FPENV,
996 
997   /// Gets the current floating-point environment. The first operand is a token
998   /// chain, the second is a pointer to memory, where FP environment is stored
999   /// to. The result is a token chain.
1000   GET_FPENV_MEM,
1001 
1002   /// Sets the current floating point environment. The first operand is a token
1003   /// chain, the second is a pointer to memory, where FP environment is loaded
1004   /// from. The result is a token chain.
1005   SET_FPENV_MEM,
1006 
1007   /// LOAD and STORE have token chains as their first operand, then the same
1008   /// operands as an LLVM load/store instruction, then an offset node that
1009   /// is added / subtracted from the base pointer to form the address (for
1010   /// indexed memory ops).
1011   LOAD,
1012   STORE,
1013 
1014   /// DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
1015   /// to a specified boundary.  This node always has two return values: a new
1016   /// stack pointer value and a chain. The first operand is the token chain,
1017   /// the second is the number of bytes to allocate, and the third is the
1018   /// alignment boundary.  The size is guaranteed to be a multiple of the
1019   /// stack alignment, and the alignment is guaranteed to be bigger than the
1020   /// stack alignment (if required) or 0 to get standard stack alignment.
1021   DYNAMIC_STACKALLOC,
1022 
1023   /// Control flow instructions.  These all have token chains.
1024 
1025   /// BR - Unconditional branch.  The first operand is the chain
1026   /// operand, the second is the MBB to branch to.
1027   BR,
1028 
1029   /// BRIND - Indirect branch.  The first operand is the chain, the second
1030   /// is the value to branch to, which must be of the same type as the
1031   /// target's pointer type.
1032   BRIND,
1033 
1034   /// BR_JT - Jumptable branch. The first operand is the chain, the second
1035   /// is the jumptable index, the last one is the jumptable entry index.
1036   BR_JT,
1037 
1038   /// BRCOND - Conditional branch.  The first operand is the chain, the
1039   /// second is the condition, the third is the block to branch to if the
1040   /// condition is true.  If the type of the condition is not i1, then the
1041   /// high bits must conform to getBooleanContents. If the condition is undef,
1042   /// it nondeterministically jumps to the block.
1043   /// TODO: Its semantics w.r.t undef requires further discussion; we need to
1044   /// make it sure that it is consistent with optimizations in MIR & the
1045   /// meaning of IMPLICIT_DEF. See https://reviews.llvm.org/D92015
1046   BRCOND,
1047 
1048   /// BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
1049   /// that the condition is represented as condition code, and two nodes to
1050   /// compare, rather than as a combined SetCC node.  The operands in order
1051   /// are chain, cc, lhs, rhs, block to branch to if condition is true. If
1052   /// condition is undef, it nondeterministically jumps to the block.
1053   BR_CC,
1054 
1055   /// INLINEASM - Represents an inline asm block.  This node always has two
1056   /// return values: a chain and a flag result.  The inputs are as follows:
1057   ///   Operand #0  : Input chain.
1058   ///   Operand #1  : a ExternalSymbolSDNode with a pointer to the asm string.
1059   ///   Operand #2  : a MDNodeSDNode with the !srcloc metadata.
1060   ///   Operand #3  : HasSideEffect, IsAlignStack bits.
1061   ///   After this, it is followed by a list of operands with this format:
1062   ///     ConstantSDNode: Flags that encode whether it is a mem or not, the
1063   ///                     of operands that follow, etc.  See InlineAsm.h.
1064   ///     ... however many operands ...
1065   ///   Operand #last: Optional, an incoming flag.
1066   ///
1067   /// The variable width operands are required to represent target addressing
1068   /// modes as a single "operand", even though they may have multiple
1069   /// SDOperands.
1070   INLINEASM,
1071 
1072   /// INLINEASM_BR - Branching version of inline asm. Used by asm-goto.
1073   INLINEASM_BR,
1074 
1075   /// EH_LABEL - Represents a label in mid basic block used to track
1076   /// locations needed for debug and exception handling tables.  These nodes
1077   /// take a chain as input and return a chain.
1078   EH_LABEL,
1079 
1080   /// ANNOTATION_LABEL - Represents a mid basic block label used by
1081   /// annotations. This should remain within the basic block and be ordered
1082   /// with respect to other call instructions, but loads and stores may float
1083   /// past it.
1084   ANNOTATION_LABEL,
1085 
1086   /// CATCHRET - Represents a return from a catch block funclet. Used for
1087   /// MSVC compatible exception handling. Takes a chain operand and a
1088   /// destination basic block operand.
1089   CATCHRET,
1090 
1091   /// CLEANUPRET - Represents a return from a cleanup block funclet.  Used for
1092   /// MSVC compatible exception handling. Takes only a chain operand.
1093   CLEANUPRET,
1094 
1095   /// STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
1096   /// value, the same type as the pointer type for the system, and an output
1097   /// chain.
1098   STACKSAVE,
1099 
1100   /// STACKRESTORE has two operands, an input chain and a pointer to restore
1101   /// to it returns an output chain.
1102   STACKRESTORE,
1103 
1104   /// CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end
1105   /// of a call sequence, and carry arbitrary information that target might
1106   /// want to know.  The first operand is a chain, the rest are specified by
1107   /// the target and not touched by the DAG optimizers.
1108   /// Targets that may use stack to pass call arguments define additional
1109   /// operands:
1110   /// - size of the call frame part that must be set up within the
1111   ///   CALLSEQ_START..CALLSEQ_END pair,
1112   /// - part of the call frame prepared prior to CALLSEQ_START.
1113   /// Both these parameters must be constants, their sum is the total call
1114   /// frame size.
1115   /// CALLSEQ_START..CALLSEQ_END pairs may not be nested.
1116   CALLSEQ_START, // Beginning of a call sequence
1117   CALLSEQ_END,   // End of a call sequence
1118 
1119   /// VAARG - VAARG has four operands: an input chain, a pointer, a SRCVALUE,
1120   /// and the alignment. It returns a pair of values: the vaarg value and a
1121   /// new chain.
1122   VAARG,
1123 
1124   /// VACOPY - VACOPY has 5 operands: an input chain, a destination pointer,
1125   /// a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
1126   /// source.
1127   VACOPY,
1128 
1129   /// VAEND, VASTART - VAEND and VASTART have three operands: an input chain,
1130   /// pointer, and a SRCVALUE.
1131   VAEND,
1132   VASTART,
1133 
1134   // PREALLOCATED_SETUP - This has 2 operands: an input chain and a SRCVALUE
1135   // with the preallocated call Value.
1136   PREALLOCATED_SETUP,
1137   // PREALLOCATED_ARG - This has 3 operands: an input chain, a SRCVALUE
1138   // with the preallocated call Value, and a constant int.
1139   PREALLOCATED_ARG,
1140 
1141   /// SRCVALUE - This is a node type that holds a Value* that is used to
1142   /// make reference to a value in the LLVM IR.
1143   SRCVALUE,
1144 
1145   /// MDNODE_SDNODE - This is a node that holdes an MDNode*, which is used to
1146   /// reference metadata in the IR.
1147   MDNODE_SDNODE,
1148 
1149   /// PCMARKER - This corresponds to the pcmarker intrinsic.
1150   PCMARKER,
1151 
1152   /// READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
1153   /// It produces a chain and one i64 value. The only operand is a chain.
1154   /// If i64 is not legal, the result will be expanded into smaller values.
1155   /// Still, it returns an i64, so targets should set legality for i64.
1156   /// The result is the content of the architecture-specific cycle
1157   /// counter-like register (or other high accuracy low latency clock source).
1158   READCYCLECOUNTER,
1159 
1160   /// HANDLENODE node - Used as a handle for various purposes.
1161   HANDLENODE,
1162 
1163   /// INIT_TRAMPOLINE - This corresponds to the init_trampoline intrinsic.  It
1164   /// takes as input a token chain, the pointer to the trampoline, the pointer
1165   /// to the nested function, the pointer to pass for the 'nest' parameter, a
1166   /// SRCVALUE for the trampoline and another for the nested function
1167   /// (allowing targets to access the original Function*).
1168   /// It produces a token chain as output.
1169   INIT_TRAMPOLINE,
1170 
1171   /// ADJUST_TRAMPOLINE - This corresponds to the adjust_trampoline intrinsic.
1172   /// It takes a pointer to the trampoline and produces a (possibly) new
1173   /// pointer to the same trampoline with platform-specific adjustments
1174   /// applied.  The pointer it returns points to an executable block of code.
1175   ADJUST_TRAMPOLINE,
1176 
1177   /// TRAP - Trapping instruction
1178   TRAP,
1179 
1180   /// DEBUGTRAP - Trap intended to get the attention of a debugger.
1181   DEBUGTRAP,
1182 
1183   /// UBSANTRAP - Trap with an immediate describing the kind of sanitizer
1184   /// failure.
1185   UBSANTRAP,
1186 
1187   /// PREFETCH - This corresponds to a prefetch intrinsic. The first operand
1188   /// is the chain.  The other operands are the address to prefetch,
1189   /// read / write specifier, locality specifier and instruction / data cache
1190   /// specifier.
1191   PREFETCH,
1192 
1193   /// ARITH_FENCE - This corresponds to a arithmetic fence intrinsic. Both its
1194   /// operand and output are the same floating type.
1195   ARITH_FENCE,
1196 
1197   /// MEMBARRIER - Compiler barrier only; generate a no-op.
1198   MEMBARRIER,
1199 
1200   /// OUTCHAIN = ATOMIC_FENCE(INCHAIN, ordering, scope)
1201   /// This corresponds to the fence instruction. It takes an input chain, and
1202   /// two integer constants: an AtomicOrdering and a SynchronizationScope.
1203   ATOMIC_FENCE,
1204 
1205   /// Val, OUTCHAIN = ATOMIC_LOAD(INCHAIN, ptr)
1206   /// This corresponds to "load atomic" instruction.
1207   ATOMIC_LOAD,
1208 
1209   /// OUTCHAIN = ATOMIC_STORE(INCHAIN, ptr, val)
1210   /// This corresponds to "store atomic" instruction.
1211   ATOMIC_STORE,
1212 
1213   /// Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
1214   /// For double-word atomic operations:
1215   /// ValLo, ValHi, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmpLo, cmpHi,
1216   ///                                          swapLo, swapHi)
1217   /// This corresponds to the cmpxchg instruction.
1218   ATOMIC_CMP_SWAP,
1219 
1220   /// Val, Success, OUTCHAIN
1221   ///     = ATOMIC_CMP_SWAP_WITH_SUCCESS(INCHAIN, ptr, cmp, swap)
1222   /// N.b. this is still a strong cmpxchg operation, so
1223   /// Success == "Val == cmp".
1224   ATOMIC_CMP_SWAP_WITH_SUCCESS,
1225 
1226   /// Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt)
1227   /// Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN, ptr, amt)
1228   /// For double-word atomic operations:
1229   /// ValLo, ValHi, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amtLo, amtHi)
1230   /// ValLo, ValHi, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN, ptr, amtLo, amtHi)
1231   /// These correspond to the atomicrmw instruction.
1232   ATOMIC_SWAP,
1233   ATOMIC_LOAD_ADD,
1234   ATOMIC_LOAD_SUB,
1235   ATOMIC_LOAD_AND,
1236   ATOMIC_LOAD_CLR,
1237   ATOMIC_LOAD_OR,
1238   ATOMIC_LOAD_XOR,
1239   ATOMIC_LOAD_NAND,
1240   ATOMIC_LOAD_MIN,
1241   ATOMIC_LOAD_MAX,
1242   ATOMIC_LOAD_UMIN,
1243   ATOMIC_LOAD_UMAX,
1244   ATOMIC_LOAD_FADD,
1245   ATOMIC_LOAD_FSUB,
1246   ATOMIC_LOAD_FMAX,
1247   ATOMIC_LOAD_FMIN,
1248   ATOMIC_LOAD_UINC_WRAP,
1249   ATOMIC_LOAD_UDEC_WRAP,
1250 
1251   // Masked load and store - consecutive vector load and store operations
1252   // with additional mask operand that prevents memory accesses to the
1253   // masked-off lanes.
1254   //
1255   // Val, OutChain = MLOAD(BasePtr, Mask, PassThru)
1256   // OutChain = MSTORE(Value, BasePtr, Mask)
1257   MLOAD,
1258   MSTORE,
1259 
1260   // Masked gather and scatter - load and store operations for a vector of
1261   // random addresses with additional mask operand that prevents memory
1262   // accesses to the masked-off lanes.
1263   //
1264   // Val, OutChain = GATHER(InChain, PassThru, Mask, BasePtr, Index, Scale)
1265   // OutChain = SCATTER(InChain, Value, Mask, BasePtr, Index, Scale)
1266   //
1267   // The Index operand can have more vector elements than the other operands
1268   // due to type legalization. The extra elements are ignored.
1269   MGATHER,
1270   MSCATTER,
1271 
1272   /// This corresponds to the llvm.lifetime.* intrinsics. The first operand
1273   /// is the chain and the second operand is the alloca pointer.
1274   LIFETIME_START,
1275   LIFETIME_END,
1276 
1277   /// GC_TRANSITION_START/GC_TRANSITION_END - These operators mark the
1278   /// beginning and end of GC transition  sequence, and carry arbitrary
1279   /// information that target might need for lowering.  The first operand is
1280   /// a chain, the rest are specified by the target and not touched by the DAG
1281   /// optimizers. GC_TRANSITION_START..GC_TRANSITION_END pairs may not be
1282   /// nested.
1283   GC_TRANSITION_START,
1284   GC_TRANSITION_END,
1285 
1286   /// GET_DYNAMIC_AREA_OFFSET - get offset from native SP to the address of
1287   /// the most recent dynamic alloca. For most targets that would be 0, but
1288   /// for some others (e.g. PowerPC, PowerPC64) that would be compile-time
1289   /// known nonzero constant. The only operand here is the chain.
1290   GET_DYNAMIC_AREA_OFFSET,
1291 
1292   /// Pseudo probe for AutoFDO, as a place holder in a basic block to improve
1293   /// the sample counts quality.
1294   PSEUDO_PROBE,
1295 
1296   /// VSCALE(IMM) - Returns the runtime scaling factor used to calculate the
1297   /// number of elements within a scalable vector. IMM is a constant integer
1298   /// multiplier that is applied to the runtime value.
1299   VSCALE,
1300 
1301   /// Generic reduction nodes. These nodes represent horizontal vector
1302   /// reduction operations, producing a scalar result.
1303   /// The SEQ variants perform reductions in sequential order. The first
1304   /// operand is an initial scalar accumulator value, and the second operand
1305   /// is the vector to reduce.
1306   /// E.g. RES = VECREDUCE_SEQ_FADD f32 ACC, <4 x f32> SRC_VEC
1307   ///  ... is equivalent to
1308   /// RES = (((ACC + SRC_VEC[0]) + SRC_VEC[1]) + SRC_VEC[2]) + SRC_VEC[3]
1309   VECREDUCE_SEQ_FADD,
1310   VECREDUCE_SEQ_FMUL,
1311 
1312   /// These reductions have relaxed evaluation order semantics, and have a
1313   /// single vector operand. The order of evaluation is unspecified. For
1314   /// pow-of-2 vectors, one valid legalizer expansion is to use a tree
1315   /// reduction, i.e.:
1316   /// For RES = VECREDUCE_FADD <8 x f16> SRC_VEC
1317   ///   PART_RDX = FADD SRC_VEC[0:3], SRC_VEC[4:7]
1318   ///   PART_RDX2 = FADD PART_RDX[0:1], PART_RDX[2:3]
1319   ///   RES = FADD PART_RDX2[0], PART_RDX2[1]
1320   /// For non-pow-2 vectors, this can be computed by extracting each element
1321   /// and performing the operation as if it were scalarized.
1322   VECREDUCE_FADD,
1323   VECREDUCE_FMUL,
1324   /// FMIN/FMAX nodes can have flags, for NaN/NoNaN variants.
1325   VECREDUCE_FMAX,
1326   VECREDUCE_FMIN,
1327   /// FMINIMUM/FMAXIMUM nodes propatate NaNs and signed zeroes using the
1328   /// llvm.minimum and llvm.maximum semantics.
1329   VECREDUCE_FMAXIMUM,
1330   VECREDUCE_FMINIMUM,
1331   /// Integer reductions may have a result type larger than the vector element
1332   /// type. However, the reduction is performed using the vector element type
1333   /// and the value in the top bits is unspecified.
1334   VECREDUCE_ADD,
1335   VECREDUCE_MUL,
1336   VECREDUCE_AND,
1337   VECREDUCE_OR,
1338   VECREDUCE_XOR,
1339   VECREDUCE_SMAX,
1340   VECREDUCE_SMIN,
1341   VECREDUCE_UMAX,
1342   VECREDUCE_UMIN,
1343 
1344   // The `llvm.experimental.stackmap` intrinsic.
1345   // Operands: input chain, glue, <id>, <numShadowBytes>, [live0[, live1...]]
1346   // Outputs: output chain, glue
1347   STACKMAP,
1348 
1349   // The `llvm.experimental.patchpoint.*` intrinsic.
1350   // Operands: input chain, [glue], reg-mask, <id>, <numShadowBytes>, callee,
1351   //   <numArgs>, cc, ...
1352   // Outputs: [rv], output chain, glue
1353   PATCHPOINT,
1354 
1355 // Vector Predication
1356 #define BEGIN_REGISTER_VP_SDNODE(VPSDID, ...) VPSDID,
1357 #include "llvm/IR/VPIntrinsics.def"
1358 
1359   /// BUILTIN_OP_END - This must be the last enum value in this list.
1360   /// The target-specific pre-isel opcode values start here.
1361   BUILTIN_OP_END
1362 };
1363 
1364 /// FIRST_TARGET_STRICTFP_OPCODE - Target-specific pre-isel operations
1365 /// which cannot raise FP exceptions should be less than this value.
1366 /// Those that do must not be less than this value.
1367 static const int FIRST_TARGET_STRICTFP_OPCODE = BUILTIN_OP_END + 400;
1368 
1369 /// FIRST_TARGET_MEMORY_OPCODE - Target-specific pre-isel operations
1370 /// which do not reference a specific memory location should be less than
1371 /// this value. Those that do must not be less than this value, and can
1372 /// be used with SelectionDAG::getMemIntrinsicNode.
1373 static const int FIRST_TARGET_MEMORY_OPCODE = BUILTIN_OP_END + 500;
1374 
1375 /// Whether this is bitwise logic opcode.
1376 inline bool isBitwiseLogicOp(unsigned Opcode) {
1377   return Opcode == ISD::AND || Opcode == ISD::OR || Opcode == ISD::XOR;
1378 }
1379 
1380 /// Get underlying scalar opcode for VECREDUCE opcode.
1381 /// For example ISD::AND for ISD::VECREDUCE_AND.
1382 NodeType getVecReduceBaseOpcode(unsigned VecReduceOpcode);
1383 
1384 /// Whether this is a vector-predicated Opcode.
1385 bool isVPOpcode(unsigned Opcode);
1386 
1387 /// Whether this is a vector-predicated binary operation opcode.
1388 bool isVPBinaryOp(unsigned Opcode);
1389 
1390 /// Whether this is a vector-predicated reduction opcode.
1391 bool isVPReduction(unsigned Opcode);
1392 
1393 /// The operand position of the vector mask.
1394 std::optional<unsigned> getVPMaskIdx(unsigned Opcode);
1395 
1396 /// The operand position of the explicit vector length parameter.
1397 std::optional<unsigned> getVPExplicitVectorLengthIdx(unsigned Opcode);
1398 
1399 /// Translate this VP Opcode to its corresponding non-VP Opcode.
1400 std::optional<unsigned> getBaseOpcodeForVP(unsigned Opcode, bool hasFPExcept);
1401 
1402 /// Translate this non-VP Opcode to its corresponding VP Opcode.
1403 unsigned getVPForBaseOpcode(unsigned Opcode);
1404 
1405 //===--------------------------------------------------------------------===//
1406 /// MemIndexedMode enum - This enum defines the load / store indexed
1407 /// addressing modes.
1408 ///
1409 /// UNINDEXED    "Normal" load / store. The effective address is already
1410 ///              computed and is available in the base pointer. The offset
1411 ///              operand is always undefined. In addition to producing a
1412 ///              chain, an unindexed load produces one value (result of the
1413 ///              load); an unindexed store does not produce a value.
1414 ///
1415 /// PRE_INC      Similar to the unindexed mode where the effective address is
1416 /// PRE_DEC      the value of the base pointer add / subtract the offset.
1417 ///              It considers the computation as being folded into the load /
1418 ///              store operation (i.e. the load / store does the address
1419 ///              computation as well as performing the memory transaction).
1420 ///              The base operand is always undefined. In addition to
1421 ///              producing a chain, pre-indexed load produces two values
1422 ///              (result of the load and the result of the address
1423 ///              computation); a pre-indexed store produces one value (result
1424 ///              of the address computation).
1425 ///
1426 /// POST_INC     The effective address is the value of the base pointer. The
1427 /// POST_DEC     value of the offset operand is then added to / subtracted
1428 ///              from the base after memory transaction. In addition to
1429 ///              producing a chain, post-indexed load produces two values
1430 ///              (the result of the load and the result of the base +/- offset
1431 ///              computation); a post-indexed store produces one value (the
1432 ///              the result of the base +/- offset computation).
1433 enum MemIndexedMode { UNINDEXED = 0, PRE_INC, PRE_DEC, POST_INC, POST_DEC };
1434 
1435 static const int LAST_INDEXED_MODE = POST_DEC + 1;
1436 
1437 //===--------------------------------------------------------------------===//
1438 /// MemIndexType enum - This enum defines how to interpret MGATHER/SCATTER's
1439 /// index parameter when calculating addresses.
1440 ///
1441 /// SIGNED_SCALED     Addr = Base + ((signed)Index * Scale)
1442 /// UNSIGNED_SCALED   Addr = Base + ((unsigned)Index * Scale)
1443 ///
1444 /// NOTE: The value of Scale is typically only known to the node owning the
1445 /// IndexType, with a value of 1 the equivalent of being unscaled.
1446 enum MemIndexType { SIGNED_SCALED = 0, UNSIGNED_SCALED };
1447 
1448 static const int LAST_MEM_INDEX_TYPE = UNSIGNED_SCALED + 1;
1449 
1450 inline bool isIndexTypeSigned(MemIndexType IndexType) {
1451   return IndexType == SIGNED_SCALED;
1452 }
1453 
1454 //===--------------------------------------------------------------------===//
1455 /// LoadExtType enum - This enum defines the three variants of LOADEXT
1456 /// (load with extension).
1457 ///
1458 /// SEXTLOAD loads the integer operand and sign extends it to a larger
1459 ///          integer result type.
1460 /// ZEXTLOAD loads the integer operand and zero extends it to a larger
1461 ///          integer result type.
1462 /// EXTLOAD  is used for two things: floating point extending loads and
1463 ///          integer extending loads [the top bits are undefined].
1464 enum LoadExtType { NON_EXTLOAD = 0, EXTLOAD, SEXTLOAD, ZEXTLOAD };
1465 
1466 static const int LAST_LOADEXT_TYPE = ZEXTLOAD + 1;
1467 
1468 NodeType getExtForLoadExtType(bool IsFP, LoadExtType);
1469 
1470 //===--------------------------------------------------------------------===//
1471 /// ISD::CondCode enum - These are ordered carefully to make the bitfields
1472 /// below work out, when considering SETFALSE (something that never exists
1473 /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
1474 /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
1475 /// to.  If the "N" column is 1, the result of the comparison is undefined if
1476 /// the input is a NAN.
1477 ///
1478 /// All of these (except for the 'always folded ops') should be handled for
1479 /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
1480 /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
1481 ///
1482 /// Note that these are laid out in a specific order to allow bit-twiddling
1483 /// to transform conditions.
1484 enum CondCode {
1485   // Opcode       N U L G E       Intuitive operation
1486   SETFALSE, //      0 0 0 0       Always false (always folded)
1487   SETOEQ,   //      0 0 0 1       True if ordered and equal
1488   SETOGT,   //      0 0 1 0       True if ordered and greater than
1489   SETOGE,   //      0 0 1 1       True if ordered and greater than or equal
1490   SETOLT,   //      0 1 0 0       True if ordered and less than
1491   SETOLE,   //      0 1 0 1       True if ordered and less than or equal
1492   SETONE,   //      0 1 1 0       True if ordered and operands are unequal
1493   SETO,     //      0 1 1 1       True if ordered (no nans)
1494   SETUO,    //      1 0 0 0       True if unordered: isnan(X) | isnan(Y)
1495   SETUEQ,   //      1 0 0 1       True if unordered or equal
1496   SETUGT,   //      1 0 1 0       True if unordered or greater than
1497   SETUGE,   //      1 0 1 1       True if unordered, greater than, or equal
1498   SETULT,   //      1 1 0 0       True if unordered or less than
1499   SETULE,   //      1 1 0 1       True if unordered, less than, or equal
1500   SETUNE,   //      1 1 1 0       True if unordered or not equal
1501   SETTRUE,  //      1 1 1 1       Always true (always folded)
1502   // Don't care operations: undefined if the input is a nan.
1503   SETFALSE2, //   1 X 0 0 0       Always false (always folded)
1504   SETEQ,     //   1 X 0 0 1       True if equal
1505   SETGT,     //   1 X 0 1 0       True if greater than
1506   SETGE,     //   1 X 0 1 1       True if greater than or equal
1507   SETLT,     //   1 X 1 0 0       True if less than
1508   SETLE,     //   1 X 1 0 1       True if less than or equal
1509   SETNE,     //   1 X 1 1 0       True if not equal
1510   SETTRUE2,  //   1 X 1 1 1       Always true (always folded)
1511 
1512   SETCC_INVALID // Marker value.
1513 };
1514 
1515 /// Return true if this is a setcc instruction that performs a signed
1516 /// comparison when used with integer operands.
1517 inline bool isSignedIntSetCC(CondCode Code) {
1518   return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
1519 }
1520 
1521 /// Return true if this is a setcc instruction that performs an unsigned
1522 /// comparison when used with integer operands.
1523 inline bool isUnsignedIntSetCC(CondCode Code) {
1524   return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
1525 }
1526 
1527 /// Return true if this is a setcc instruction that performs an equality
1528 /// comparison when used with integer operands.
1529 inline bool isIntEqualitySetCC(CondCode Code) {
1530   return Code == SETEQ || Code == SETNE;
1531 }
1532 
1533 /// Return true if the specified condition returns true if the two operands to
1534 /// the condition are equal. Note that if one of the two operands is a NaN,
1535 /// this value is meaningless.
1536 inline bool isTrueWhenEqual(CondCode Cond) { return ((int)Cond & 1) != 0; }
1537 
1538 /// This function returns 0 if the condition is always false if an operand is
1539 /// a NaN, 1 if the condition is always true if the operand is a NaN, and 2 if
1540 /// the condition is undefined if the operand is a NaN.
1541 inline unsigned getUnorderedFlavor(CondCode Cond) {
1542   return ((int)Cond >> 3) & 3;
1543 }
1544 
1545 /// Return the operation corresponding to !(X op Y), where 'op' is a valid
1546 /// SetCC operation.
1547 CondCode getSetCCInverse(CondCode Operation, EVT Type);
1548 
1549 inline bool isExtOpcode(unsigned Opcode) {
1550   return Opcode == ISD::ANY_EXTEND || Opcode == ISD::ZERO_EXTEND ||
1551          Opcode == ISD::SIGN_EXTEND;
1552 }
1553 
1554 inline bool isExtVecInRegOpcode(unsigned Opcode) {
1555   return Opcode == ISD::ANY_EXTEND_VECTOR_INREG ||
1556          Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
1557          Opcode == ISD::SIGN_EXTEND_VECTOR_INREG;
1558 }
1559 
1560 namespace GlobalISel {
1561 /// Return the operation corresponding to !(X op Y), where 'op' is a valid
1562 /// SetCC operation. The U bit of the condition code has different meanings
1563 /// between floating point and integer comparisons and LLT's don't provide
1564 /// this distinction. As such we need to be told whether the comparison is
1565 /// floating point or integer-like. Pointers should use integer-like
1566 /// comparisons.
1567 CondCode getSetCCInverse(CondCode Operation, bool isIntegerLike);
1568 } // end namespace GlobalISel
1569 
1570 /// Return the operation corresponding to (Y op X) when given the operation
1571 /// for (X op Y).
1572 CondCode getSetCCSwappedOperands(CondCode Operation);
1573 
1574 /// Return the result of a logical OR between different comparisons of
1575 /// identical values: ((X op1 Y) | (X op2 Y)). This function returns
1576 /// SETCC_INVALID if it is not possible to represent the resultant comparison.
1577 CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, EVT Type);
1578 
1579 /// Return the result of a logical AND between different comparisons of
1580 /// identical values: ((X op1 Y) & (X op2 Y)). This function returns
1581 /// SETCC_INVALID if it is not possible to represent the resultant comparison.
1582 CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, EVT Type);
1583 
1584 } // namespace ISD
1585 
1586 } // namespace llvm
1587 
1588 #endif
1589