1 //===- LiveIntervals.h - Live Interval Analysis -----------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LiveInterval analysis pass.  Given some
10 /// numbering of each the machine instructions (in this implemention depth-first
11 /// order) an interval [i, j) is said to be a live interval for register v if
12 /// there is no instruction with number j' > j such that v is live at j' and
13 /// there is no instruction with number i' < i such that v is live at i'. In
14 /// this implementation intervals can have holes, i.e. an interval might look
15 /// like [1,20), [50,65), [1000,1001).
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #ifndef LLVM_CODEGEN_LIVEINTERVALS_H
20 #define LLVM_CODEGEN_LIVEINTERVALS_H
21 
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/IndexedMap.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/CodeGen/LiveInterval.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineFunctionPass.h"
28 #include "llvm/CodeGen/SlotIndexes.h"
29 #include "llvm/CodeGen/TargetRegisterInfo.h"
30 #include "llvm/MC/LaneBitmask.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Compiler.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include <cassert>
35 #include <cstdint>
36 #include <utility>
37 
38 namespace llvm {
39 
40 extern cl::opt<bool> UseSegmentSetForPhysRegs;
41 
42 class BitVector;
43 class LiveIntervalCalc;
44 class MachineBlockFrequencyInfo;
45 class MachineDominatorTree;
46 class MachineFunction;
47 class MachineInstr;
48 class MachineRegisterInfo;
49 class raw_ostream;
50 class TargetInstrInfo;
51 class VirtRegMap;
52 
53   class LiveIntervals : public MachineFunctionPass {
54     MachineFunction *MF = nullptr;
55     MachineRegisterInfo *MRI = nullptr;
56     const TargetRegisterInfo *TRI = nullptr;
57     const TargetInstrInfo *TII = nullptr;
58     SlotIndexes *Indexes = nullptr;
59     MachineDominatorTree *DomTree = nullptr;
60     LiveIntervalCalc *LICalc = nullptr;
61 
62     /// Special pool allocator for VNInfo's (LiveInterval val#).
63     VNInfo::Allocator VNInfoAllocator;
64 
65     /// Live interval pointers for all the virtual registers.
66     IndexedMap<LiveInterval*, VirtReg2IndexFunctor> VirtRegIntervals;
67 
68     /// Sorted list of instructions with register mask operands. Always use the
69     /// 'r' slot, RegMasks are normal clobbers, not early clobbers.
70     SmallVector<SlotIndex, 8> RegMaskSlots;
71 
72     /// This vector is parallel to RegMaskSlots, it holds a pointer to the
73     /// corresponding register mask.  This pointer can be recomputed as:
74     ///
75     ///   MI = Indexes->getInstructionFromIndex(RegMaskSlot[N]);
76     ///   unsigned OpNum = findRegMaskOperand(MI);
77     ///   RegMaskBits[N] = MI->getOperand(OpNum).getRegMask();
78     ///
79     /// This is kept in a separate vector partly because some standard
80     /// libraries don't support lower_bound() with mixed objects, partly to
81     /// improve locality when searching in RegMaskSlots.
82     /// Also see the comment in LiveInterval::find().
83     SmallVector<const uint32_t*, 8> RegMaskBits;
84 
85     /// For each basic block number, keep (begin, size) pairs indexing into the
86     /// RegMaskSlots and RegMaskBits arrays.
87     /// Note that basic block numbers may not be layout contiguous, that's why
88     /// we can't just keep track of the first register mask in each basic
89     /// block.
90     SmallVector<std::pair<unsigned, unsigned>, 8> RegMaskBlocks;
91 
92     /// Keeps a live range set for each register unit to track fixed physreg
93     /// interference.
94     SmallVector<LiveRange*, 0> RegUnitRanges;
95 
96   public:
97     static char ID;
98 
99     LiveIntervals();
100     ~LiveIntervals() override;
101 
102     /// Calculate the spill weight to assign to a single instruction.
103     static float getSpillWeight(bool isDef, bool isUse,
104                                 const MachineBlockFrequencyInfo *MBFI,
105                                 const MachineInstr &MI);
106 
107     /// Calculate the spill weight to assign to a single instruction.
108     static float getSpillWeight(bool isDef, bool isUse,
109                                 const MachineBlockFrequencyInfo *MBFI,
110                                 const MachineBasicBlock *MBB);
111 
112     LiveInterval &getInterval(Register Reg) {
113       if (hasInterval(Reg))
114         return *VirtRegIntervals[Reg.id()];
115 
116       return createAndComputeVirtRegInterval(Reg);
117     }
118 
119     const LiveInterval &getInterval(Register Reg) const {
120       return const_cast<LiveIntervals*>(this)->getInterval(Reg);
121     }
122 
123     bool hasInterval(Register Reg) const {
124       return VirtRegIntervals.inBounds(Reg.id()) &&
125              VirtRegIntervals[Reg.id()];
126     }
127 
128     /// Interval creation.
129     LiveInterval &createEmptyInterval(Register Reg) {
130       assert(!hasInterval(Reg) && "Interval already exists!");
131       VirtRegIntervals.grow(Reg.id());
132       VirtRegIntervals[Reg.id()] = createInterval(Reg);
133       return *VirtRegIntervals[Reg.id()];
134     }
135 
136     LiveInterval &createAndComputeVirtRegInterval(Register Reg) {
137       LiveInterval &LI = createEmptyInterval(Reg);
138       computeVirtRegInterval(LI);
139       return LI;
140     }
141 
142     /// Return an existing interval for \p Reg.
143     /// If \p Reg has no interval then this creates a new empty one instead.
144     /// Note: does not trigger interval computation.
145     LiveInterval &getOrCreateEmptyInterval(Register Reg) {
146       return hasInterval(Reg) ? getInterval(Reg) : createEmptyInterval(Reg);
147     }
148 
149     /// Interval removal.
150     void removeInterval(Register Reg) {
151       delete VirtRegIntervals[Reg];
152       VirtRegIntervals[Reg] = nullptr;
153     }
154 
155     /// Given a register and an instruction, adds a live segment from that
156     /// instruction to the end of its MBB.
157     LiveInterval::Segment addSegmentToEndOfBlock(Register Reg,
158                                                  MachineInstr &startInst);
159 
160     /// After removing some uses of a register, shrink its live range to just
161     /// the remaining uses. This method does not compute reaching defs for new
162     /// uses, and it doesn't remove dead defs.
163     /// Dead PHIDef values are marked as unused. New dead machine instructions
164     /// are added to the dead vector. Returns true if the interval may have been
165     /// separated into multiple connected components.
166     bool shrinkToUses(LiveInterval *li,
167                       SmallVectorImpl<MachineInstr*> *dead = nullptr);
168 
169     /// Specialized version of
170     /// shrinkToUses(LiveInterval *li, SmallVectorImpl<MachineInstr*> *dead)
171     /// that works on a subregister live range and only looks at uses matching
172     /// the lane mask of the subregister range.
173     /// This may leave the subrange empty which needs to be cleaned up with
174     /// LiveInterval::removeEmptySubranges() afterwards.
175     void shrinkToUses(LiveInterval::SubRange &SR, Register Reg);
176 
177     /// Extend the live range \p LR to reach all points in \p Indices. The
178     /// points in the \p Indices array must be jointly dominated by the union
179     /// of the existing defs in \p LR and points in \p Undefs.
180     ///
181     /// PHI-defs are added as needed to maintain SSA form.
182     ///
183     /// If a SlotIndex in \p Indices is the end index of a basic block, \p LR
184     /// will be extended to be live out of the basic block.
185     /// If a SlotIndex in \p Indices is jointy dominated only by points in
186     /// \p Undefs, the live range will not be extended to that point.
187     ///
188     /// See also LiveRangeCalc::extend().
189     void extendToIndices(LiveRange &LR, ArrayRef<SlotIndex> Indices,
190                          ArrayRef<SlotIndex> Undefs);
191 
192     void extendToIndices(LiveRange &LR, ArrayRef<SlotIndex> Indices) {
193       extendToIndices(LR, Indices, /*Undefs=*/{});
194     }
195 
196     /// If \p LR has a live value at \p Kill, prune its live range by removing
197     /// any liveness reachable from Kill. Add live range end points to
198     /// EndPoints such that extendToIndices(LI, EndPoints) will reconstruct the
199     /// value's live range.
200     ///
201     /// Calling pruneValue() and extendToIndices() can be used to reconstruct
202     /// SSA form after adding defs to a virtual register.
203     void pruneValue(LiveRange &LR, SlotIndex Kill,
204                     SmallVectorImpl<SlotIndex> *EndPoints);
205 
206     /// This function should not be used. Its intent is to tell you that you are
207     /// doing something wrong if you call pruneValue directly on a
208     /// LiveInterval. Indeed, you are supposed to call pruneValue on the main
209     /// LiveRange and all the LiveRanges of the subranges if any.
210     LLVM_ATTRIBUTE_UNUSED void pruneValue(LiveInterval &, SlotIndex,
211                                           SmallVectorImpl<SlotIndex> *) {
212       llvm_unreachable(
213           "Use pruneValue on the main LiveRange and on each subrange");
214     }
215 
216     SlotIndexes *getSlotIndexes() const {
217       return Indexes;
218     }
219 
220     /// Returns true if the specified machine instr has been removed or was
221     /// never entered in the map.
222     bool isNotInMIMap(const MachineInstr &Instr) const {
223       return !Indexes->hasIndex(Instr);
224     }
225 
226     /// Returns the base index of the given instruction.
227     SlotIndex getInstructionIndex(const MachineInstr &Instr) const {
228       return Indexes->getInstructionIndex(Instr);
229     }
230 
231     /// Returns the instruction associated with the given index.
232     MachineInstr* getInstructionFromIndex(SlotIndex index) const {
233       return Indexes->getInstructionFromIndex(index);
234     }
235 
236     /// Return the first index in the given basic block.
237     SlotIndex getMBBStartIdx(const MachineBasicBlock *mbb) const {
238       return Indexes->getMBBStartIdx(mbb);
239     }
240 
241     /// Return the last index in the given basic block.
242     SlotIndex getMBBEndIdx(const MachineBasicBlock *mbb) const {
243       return Indexes->getMBBEndIdx(mbb);
244     }
245 
246     bool isLiveInToMBB(const LiveRange &LR,
247                        const MachineBasicBlock *mbb) const {
248       return LR.liveAt(getMBBStartIdx(mbb));
249     }
250 
251     bool isLiveOutOfMBB(const LiveRange &LR,
252                         const MachineBasicBlock *mbb) const {
253       return LR.liveAt(getMBBEndIdx(mbb).getPrevSlot());
254     }
255 
256     MachineBasicBlock* getMBBFromIndex(SlotIndex index) const {
257       return Indexes->getMBBFromIndex(index);
258     }
259 
260     void insertMBBInMaps(MachineBasicBlock *MBB) {
261       Indexes->insertMBBInMaps(MBB);
262       assert(unsigned(MBB->getNumber()) == RegMaskBlocks.size() &&
263              "Blocks must be added in order.");
264       RegMaskBlocks.push_back(std::make_pair(RegMaskSlots.size(), 0));
265     }
266 
267     SlotIndex InsertMachineInstrInMaps(MachineInstr &MI) {
268       return Indexes->insertMachineInstrInMaps(MI);
269     }
270 
271     void InsertMachineInstrRangeInMaps(MachineBasicBlock::iterator B,
272                                        MachineBasicBlock::iterator E) {
273       for (MachineBasicBlock::iterator I = B; I != E; ++I)
274         Indexes->insertMachineInstrInMaps(*I);
275     }
276 
277     void RemoveMachineInstrFromMaps(MachineInstr &MI) {
278       Indexes->removeMachineInstrFromMaps(MI);
279     }
280 
281     SlotIndex ReplaceMachineInstrInMaps(MachineInstr &MI, MachineInstr &NewMI) {
282       return Indexes->replaceMachineInstrInMaps(MI, NewMI);
283     }
284 
285     VNInfo::Allocator& getVNInfoAllocator() { return VNInfoAllocator; }
286 
287     void getAnalysisUsage(AnalysisUsage &AU) const override;
288     void releaseMemory() override;
289 
290     /// Pass entry point; Calculates LiveIntervals.
291     bool runOnMachineFunction(MachineFunction&) override;
292 
293     /// Implement the dump method.
294     void print(raw_ostream &O, const Module* = nullptr) const override;
295 
296     /// If LI is confined to a single basic block, return a pointer to that
297     /// block.  If LI is live in to or out of any block, return NULL.
298     MachineBasicBlock *intervalIsInOneMBB(const LiveInterval &LI) const;
299 
300     /// Returns true if VNI is killed by any PHI-def values in LI.
301     /// This may conservatively return true to avoid expensive computations.
302     bool hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const;
303 
304     /// Add kill flags to any instruction that kills a virtual register.
305     void addKillFlags(const VirtRegMap*);
306 
307     /// Call this method to notify LiveIntervals that instruction \p MI has been
308     /// moved within a basic block. This will update the live intervals for all
309     /// operands of \p MI. Moves between basic blocks are not supported.
310     ///
311     /// \param UpdateFlags Update live intervals for nonallocatable physregs.
312     void handleMove(MachineInstr &MI, bool UpdateFlags = false);
313 
314     /// Update intervals of operands of all instructions in the newly
315     /// created bundle specified by \p BundleStart.
316     ///
317     /// \param UpdateFlags Update live intervals for nonallocatable physregs.
318     ///
319     /// Assumes existing liveness is accurate.
320     /// \pre BundleStart should be the first instruction in the Bundle.
321     /// \pre BundleStart should not have a have SlotIndex as one will be assigned.
322     void handleMoveIntoNewBundle(MachineInstr &BundleStart,
323                                  bool UpdateFlags = false);
324 
325     /// Update live intervals for instructions in a range of iterators. It is
326     /// intended for use after target hooks that may insert or remove
327     /// instructions, and is only efficient for a small number of instructions.
328     ///
329     /// OrigRegs is a vector of registers that were originally used by the
330     /// instructions in the range between the two iterators.
331     ///
332     /// Currently, the only changes that are supported are simple removal
333     /// and addition of uses.
334     void repairIntervalsInRange(MachineBasicBlock *MBB,
335                                 MachineBasicBlock::iterator Begin,
336                                 MachineBasicBlock::iterator End,
337                                 ArrayRef<Register> OrigRegs);
338 
339     // Register mask functions.
340     //
341     // Machine instructions may use a register mask operand to indicate that a
342     // large number of registers are clobbered by the instruction.  This is
343     // typically used for calls.
344     //
345     // For compile time performance reasons, these clobbers are not recorded in
346     // the live intervals for individual physical registers.  Instead,
347     // LiveIntervalAnalysis maintains a sorted list of instructions with
348     // register mask operands.
349 
350     /// Returns a sorted array of slot indices of all instructions with
351     /// register mask operands.
352     ArrayRef<SlotIndex> getRegMaskSlots() const { return RegMaskSlots; }
353 
354     /// Returns a sorted array of slot indices of all instructions with register
355     /// mask operands in the basic block numbered \p MBBNum.
356     ArrayRef<SlotIndex> getRegMaskSlotsInBlock(unsigned MBBNum) const {
357       std::pair<unsigned, unsigned> P = RegMaskBlocks[MBBNum];
358       return getRegMaskSlots().slice(P.first, P.second);
359     }
360 
361     /// Returns an array of register mask pointers corresponding to
362     /// getRegMaskSlots().
363     ArrayRef<const uint32_t*> getRegMaskBits() const { return RegMaskBits; }
364 
365     /// Returns an array of mask pointers corresponding to
366     /// getRegMaskSlotsInBlock(MBBNum).
367     ArrayRef<const uint32_t*> getRegMaskBitsInBlock(unsigned MBBNum) const {
368       std::pair<unsigned, unsigned> P = RegMaskBlocks[MBBNum];
369       return getRegMaskBits().slice(P.first, P.second);
370     }
371 
372     /// Test if \p LI is live across any register mask instructions, and
373     /// compute a bit mask of physical registers that are not clobbered by any
374     /// of them.
375     ///
376     /// Returns false if \p LI doesn't cross any register mask instructions. In
377     /// that case, the bit vector is not filled in.
378     bool checkRegMaskInterference(const LiveInterval &LI,
379                                   BitVector &UsableRegs);
380 
381     // Register unit functions.
382     //
383     // Fixed interference occurs when MachineInstrs use physregs directly
384     // instead of virtual registers. This typically happens when passing
385     // arguments to a function call, or when instructions require operands in
386     // fixed registers.
387     //
388     // Each physreg has one or more register units, see MCRegisterInfo. We
389     // track liveness per register unit to handle aliasing registers more
390     // efficiently.
391 
392     /// Return the live range for register unit \p Unit. It will be computed if
393     /// it doesn't exist.
394     LiveRange &getRegUnit(unsigned Unit) {
395       LiveRange *LR = RegUnitRanges[Unit];
396       if (!LR) {
397         // Compute missing ranges on demand.
398         // Use segment set to speed-up initial computation of the live range.
399         RegUnitRanges[Unit] = LR = new LiveRange(UseSegmentSetForPhysRegs);
400         computeRegUnitRange(*LR, Unit);
401       }
402       return *LR;
403     }
404 
405     /// Return the live range for register unit \p Unit if it has already been
406     /// computed, or nullptr if it hasn't been computed yet.
407     LiveRange *getCachedRegUnit(unsigned Unit) {
408       return RegUnitRanges[Unit];
409     }
410 
411     const LiveRange *getCachedRegUnit(unsigned Unit) const {
412       return RegUnitRanges[Unit];
413     }
414 
415     /// Remove computed live range for register unit \p Unit. Subsequent uses
416     /// should rely on on-demand recomputation.
417     void removeRegUnit(unsigned Unit) {
418       delete RegUnitRanges[Unit];
419       RegUnitRanges[Unit] = nullptr;
420     }
421 
422     /// Remove associated live ranges for the register units associated with \p
423     /// Reg. Subsequent uses should rely on on-demand recomputation.  \note This
424     /// method can result in inconsistent liveness tracking if multiple phyical
425     /// registers share a regunit, and should be used cautiously.
426     void removeAllRegUnitsForPhysReg(MCRegister Reg) {
427       for (MCRegUnit Unit : TRI->regunits(Reg))
428         removeRegUnit(Unit);
429     }
430 
431     /// Remove value numbers and related live segments starting at position
432     /// \p Pos that are part of any liverange of physical register \p Reg or one
433     /// of its subregisters.
434     void removePhysRegDefAt(MCRegister Reg, SlotIndex Pos);
435 
436     /// Remove value number and related live segments of \p LI and its subranges
437     /// that start at position \p Pos.
438     void removeVRegDefAt(LiveInterval &LI, SlotIndex Pos);
439 
440     /// Split separate components in LiveInterval \p LI into separate intervals.
441     void splitSeparateComponents(LiveInterval &LI,
442                                  SmallVectorImpl<LiveInterval*> &SplitLIs);
443 
444     /// For live interval \p LI with correct SubRanges construct matching
445     /// information for the main live range. Expects the main live range to not
446     /// have any segments or value numbers.
447     void constructMainRangeFromSubranges(LiveInterval &LI);
448 
449   private:
450     /// Compute live intervals for all virtual registers.
451     void computeVirtRegs();
452 
453     /// Compute RegMaskSlots and RegMaskBits.
454     void computeRegMasks();
455 
456     /// Walk the values in \p LI and check for dead values:
457     /// - Dead PHIDef values are marked as unused.
458     /// - Dead operands are marked as such.
459     /// - Completely dead machine instructions are added to the \p dead vector
460     ///   if it is not nullptr.
461     /// Returns true if any PHI value numbers have been removed which may
462     /// have separated the interval into multiple connected components.
463     bool computeDeadValues(LiveInterval &LI,
464                            SmallVectorImpl<MachineInstr*> *dead);
465 
466     static LiveInterval *createInterval(Register Reg);
467 
468     void printInstrs(raw_ostream &O) const;
469     void dumpInstrs() const;
470 
471     void computeLiveInRegUnits();
472     void computeRegUnitRange(LiveRange&, unsigned Unit);
473     bool computeVirtRegInterval(LiveInterval&);
474 
475     using ShrinkToUsesWorkList = SmallVector<std::pair<SlotIndex, VNInfo*>, 16>;
476     void extendSegmentsToUses(LiveRange &Segments,
477                               ShrinkToUsesWorkList &WorkList, Register Reg,
478                               LaneBitmask LaneMask);
479 
480     /// Helper function for repairIntervalsInRange(), walks backwards and
481     /// creates/modifies live segments in \p LR to match the operands found.
482     /// Only full operands or operands with subregisters matching \p LaneMask
483     /// are considered.
484     void repairOldRegInRange(MachineBasicBlock::iterator Begin,
485                              MachineBasicBlock::iterator End,
486                              const SlotIndex endIdx, LiveRange &LR,
487                              Register Reg,
488                              LaneBitmask LaneMask = LaneBitmask::getAll());
489 
490     class HMEditor;
491   };
492 
493 } // end namespace llvm
494 
495 #endif
496