1 //===-- llvm/CodeGen/LiveVariables.h - Live Variable Analysis ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the LiveVariables analysis pass.  For each machine
10 // instruction in the function, this pass calculates the set of registers that
11 // are immediately dead after the instruction (i.e., the instruction calculates
12 // the value, but it is never used) and the set of registers that are used by
13 // the instruction, but are never used after the instruction (i.e., they are
14 // killed).
15 //
16 // This class computes live variables using a sparse implementation based on
17 // the machine code SSA form.  This class computes live variable information for
18 // each virtual and _register allocatable_ physical register in a function.  It
19 // uses the dominance properties of SSA form to efficiently compute live
20 // variables for virtual registers, and assumes that physical registers are only
21 // live within a single basic block (allowing it to do a single local analysis
22 // to resolve physical register lifetimes in each basic block).  If a physical
23 // register is not register allocatable, it is not tracked.  This is useful for
24 // things like the stack pointer and condition codes.
25 //
26 //===----------------------------------------------------------------------===//
27 
28 #ifndef LLVM_CODEGEN_LIVEVARIABLES_H
29 #define LLVM_CODEGEN_LIVEVARIABLES_H
30 
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/IndexedMap.h"
33 #include "llvm/ADT/SmallSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/SparseBitVector.h"
36 #include "llvm/CodeGen/MachineFunctionPass.h"
37 #include "llvm/CodeGen/MachineInstr.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/InitializePasses.h"
40 
41 namespace llvm {
42 
43 class MachineBasicBlock;
44 class MachineRegisterInfo;
45 
46 class LiveVariables : public MachineFunctionPass {
47 public:
48   static char ID; // Pass identification, replacement for typeid
49   LiveVariables() : MachineFunctionPass(ID) {
50     initializeLiveVariablesPass(*PassRegistry::getPassRegistry());
51   }
52 
53   /// VarInfo - This represents the regions where a virtual register is live in
54   /// the program.  We represent this with three different pieces of
55   /// information: the set of blocks in which the instruction is live
56   /// throughout, the set of blocks in which the instruction is actually used,
57   /// and the set of non-phi instructions that are the last users of the value.
58   ///
59   /// In the common case where a value is defined and killed in the same block,
60   /// There is one killing instruction, and AliveBlocks is empty.
61   ///
62   /// Otherwise, the value is live out of the block.  If the value is live
63   /// throughout any blocks, these blocks are listed in AliveBlocks.  Blocks
64   /// where the liveness range ends are not included in AliveBlocks, instead
65   /// being captured by the Kills set.  In these blocks, the value is live into
66   /// the block (unless the value is defined and killed in the same block) and
67   /// lives until the specified instruction.  Note that there cannot ever be a
68   /// value whose Kills set contains two instructions from the same basic block.
69   ///
70   /// PHI nodes complicate things a bit.  If a PHI node is the last user of a
71   /// value in one of its predecessor blocks, it is not listed in the kills set,
72   /// but does include the predecessor block in the AliveBlocks set (unless that
73   /// block also defines the value).  This leads to the (perfectly sensical)
74   /// situation where a value is defined in a block, and the last use is a phi
75   /// node in the successor.  In this case, AliveBlocks is empty (the value is
76   /// not live across any  blocks) and Kills is empty (phi nodes are not
77   /// included). This is sensical because the value must be live to the end of
78   /// the block, but is not live in any successor blocks.
79   struct VarInfo {
80     /// AliveBlocks - Set of blocks in which this value is alive completely
81     /// through.  This is a bit set which uses the basic block number as an
82     /// index.
83     ///
84     SparseBitVector<> AliveBlocks;
85 
86     /// Kills - List of MachineInstruction's which are the last use of this
87     /// virtual register (kill it) in their basic block.
88     ///
89     std::vector<MachineInstr*> Kills;
90 
91     /// removeKill - Delete a kill corresponding to the specified
92     /// machine instruction. Returns true if there was a kill
93     /// corresponding to this instruction, false otherwise.
94     bool removeKill(MachineInstr &MI) {
95       std::vector<MachineInstr *>::iterator I = find(Kills, &MI);
96       if (I == Kills.end())
97         return false;
98       Kills.erase(I);
99       return true;
100     }
101 
102     /// findKill - Find a kill instruction in MBB. Return NULL if none is found.
103     MachineInstr *findKill(const MachineBasicBlock *MBB) const;
104 
105     /// isLiveIn - Is Reg live in to MBB? This means that Reg is live through
106     /// MBB, or it is killed in MBB. If Reg is only used by PHI instructions in
107     /// MBB, it is not considered live in.
108     bool isLiveIn(const MachineBasicBlock &MBB,
109                   unsigned Reg,
110                   MachineRegisterInfo &MRI);
111 
112     void dump() const;
113   };
114 
115 private:
116   /// VirtRegInfo - This list is a mapping from virtual register number to
117   /// variable information.
118   ///
119   IndexedMap<VarInfo, VirtReg2IndexFunctor> VirtRegInfo;
120 
121   /// PHIJoins - list of virtual registers that are PHI joins. These registers
122   /// may have multiple definitions, and they require special handling when
123   /// building live intervals.
124   SparseBitVector<> PHIJoins;
125 
126 private:   // Intermediate data structures
127   MachineFunction *MF;
128 
129   MachineRegisterInfo* MRI;
130 
131   const TargetRegisterInfo *TRI;
132 
133   // PhysRegInfo - Keep track of which instruction was the last def of a
134   // physical register. This is a purely local property, because all physical
135   // register references are presumed dead across basic blocks.
136   std::vector<MachineInstr *> PhysRegDef;
137 
138   // PhysRegInfo - Keep track of which instruction was the last use of a
139   // physical register. This is a purely local property, because all physical
140   // register references are presumed dead across basic blocks.
141   std::vector<MachineInstr *> PhysRegUse;
142 
143   std::vector<SmallVector<unsigned, 4>> PHIVarInfo;
144 
145   // DistanceMap - Keep track the distance of a MI from the start of the
146   // current basic block.
147   DenseMap<MachineInstr*, unsigned> DistanceMap;
148 
149   /// HandlePhysRegKill - Add kills of Reg and its sub-registers to the
150   /// uses. Pay special attention to the sub-register uses which may come below
151   /// the last use of the whole register.
152   bool HandlePhysRegKill(unsigned Reg, MachineInstr *MI);
153 
154   /// HandleRegMask - Call HandlePhysRegKill for all registers clobbered by Mask.
155   void HandleRegMask(const MachineOperand&);
156 
157   void HandlePhysRegUse(unsigned Reg, MachineInstr &MI);
158   void HandlePhysRegDef(unsigned Reg, MachineInstr *MI,
159                         SmallVectorImpl<unsigned> &Defs);
160   void UpdatePhysRegDefs(MachineInstr &MI, SmallVectorImpl<unsigned> &Defs);
161 
162   /// FindLastRefOrPartRef - Return the last reference or partial reference of
163   /// the specified register.
164   MachineInstr *FindLastRefOrPartRef(unsigned Reg);
165 
166   /// FindLastPartialDef - Return the last partial def of the specified
167   /// register. Also returns the sub-registers that're defined by the
168   /// instruction.
169   MachineInstr *FindLastPartialDef(unsigned Reg,
170                                    SmallSet<unsigned,4> &PartDefRegs);
171 
172   /// analyzePHINodes - Gather information about the PHI nodes in here. In
173   /// particular, we want to map the variable information of a virtual
174   /// register which is used in a PHI node. We map that to the BB the vreg
175   /// is coming from.
176   void analyzePHINodes(const MachineFunction& Fn);
177 
178   void runOnInstr(MachineInstr &MI, SmallVectorImpl<unsigned> &Defs);
179 
180   void runOnBlock(MachineBasicBlock *MBB, unsigned NumRegs);
181 public:
182 
183   bool runOnMachineFunction(MachineFunction &MF) override;
184 
185   /// RegisterDefIsDead - Return true if the specified instruction defines the
186   /// specified register, but that definition is dead.
187   bool RegisterDefIsDead(MachineInstr &MI, unsigned Reg) const;
188 
189   //===--------------------------------------------------------------------===//
190   //  API to update live variable information
191 
192   /// replaceKillInstruction - Update register kill info by replacing a kill
193   /// instruction with a new one.
194   void replaceKillInstruction(unsigned Reg, MachineInstr &OldMI,
195                               MachineInstr &NewMI);
196 
197   /// addVirtualRegisterKilled - Add information about the fact that the
198   /// specified register is killed after being used by the specified
199   /// instruction. If AddIfNotFound is true, add a implicit operand if it's
200   /// not found.
201   void addVirtualRegisterKilled(unsigned IncomingReg, MachineInstr &MI,
202                                 bool AddIfNotFound = false) {
203     if (MI.addRegisterKilled(IncomingReg, TRI, AddIfNotFound))
204       getVarInfo(IncomingReg).Kills.push_back(&MI);
205   }
206 
207   /// removeVirtualRegisterKilled - Remove the specified kill of the virtual
208   /// register from the live variable information. Returns true if the
209   /// variable was marked as killed by the specified instruction,
210   /// false otherwise.
211   bool removeVirtualRegisterKilled(unsigned reg, MachineInstr &MI) {
212     if (!getVarInfo(reg).removeKill(MI))
213       return false;
214 
215     bool Removed = false;
216     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
217       MachineOperand &MO = MI.getOperand(i);
218       if (MO.isReg() && MO.isKill() && MO.getReg() == reg) {
219         MO.setIsKill(false);
220         Removed = true;
221         break;
222       }
223     }
224 
225     assert(Removed && "Register is not used by this instruction!");
226     (void)Removed;
227     return true;
228   }
229 
230   /// removeVirtualRegistersKilled - Remove all killed info for the specified
231   /// instruction.
232   void removeVirtualRegistersKilled(MachineInstr &MI);
233 
234   /// addVirtualRegisterDead - Add information about the fact that the specified
235   /// register is dead after being used by the specified instruction. If
236   /// AddIfNotFound is true, add a implicit operand if it's not found.
237   void addVirtualRegisterDead(unsigned IncomingReg, MachineInstr &MI,
238                               bool AddIfNotFound = false) {
239     if (MI.addRegisterDead(IncomingReg, TRI, AddIfNotFound))
240       getVarInfo(IncomingReg).Kills.push_back(&MI);
241   }
242 
243   /// removeVirtualRegisterDead - Remove the specified kill of the virtual
244   /// register from the live variable information. Returns true if the
245   /// variable was marked dead at the specified instruction, false
246   /// otherwise.
247   bool removeVirtualRegisterDead(unsigned reg, MachineInstr &MI) {
248     if (!getVarInfo(reg).removeKill(MI))
249       return false;
250 
251     bool Removed = false;
252     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
253       MachineOperand &MO = MI.getOperand(i);
254       if (MO.isReg() && MO.isDef() && MO.getReg() == reg) {
255         MO.setIsDead(false);
256         Removed = true;
257         break;
258       }
259     }
260     assert(Removed && "Register is not defined by this instruction!");
261     (void)Removed;
262     return true;
263   }
264 
265   void getAnalysisUsage(AnalysisUsage &AU) const override;
266 
267   void releaseMemory() override {
268     VirtRegInfo.clear();
269   }
270 
271   /// getVarInfo - Return the VarInfo structure for the specified VIRTUAL
272   /// register.
273   VarInfo &getVarInfo(unsigned RegIdx);
274 
275   void MarkVirtRegAliveInBlock(VarInfo& VRInfo, MachineBasicBlock* DefBlock,
276                                MachineBasicBlock *BB);
277   void MarkVirtRegAliveInBlock(VarInfo& VRInfo, MachineBasicBlock* DefBlock,
278                                MachineBasicBlock *BB,
279                                std::vector<MachineBasicBlock*> &WorkList);
280   void HandleVirtRegDef(unsigned reg, MachineInstr &MI);
281   void HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB, MachineInstr &MI);
282 
283   bool isLiveIn(unsigned Reg, const MachineBasicBlock &MBB) {
284     return getVarInfo(Reg).isLiveIn(MBB, Reg, *MRI);
285   }
286 
287   /// isLiveOut - Determine if Reg is live out from MBB, when not considering
288   /// PHI nodes. This means that Reg is either killed by a successor block or
289   /// passed through one.
290   bool isLiveOut(unsigned Reg, const MachineBasicBlock &MBB);
291 
292   /// addNewBlock - Add a new basic block BB between DomBB and SuccBB. All
293   /// variables that are live out of DomBB and live into SuccBB will be marked
294   /// as passing live through BB. This method assumes that the machine code is
295   /// still in SSA form.
296   void addNewBlock(MachineBasicBlock *BB,
297                    MachineBasicBlock *DomBB,
298                    MachineBasicBlock *SuccBB);
299 
300   /// isPHIJoin - Return true if Reg is a phi join register.
301   bool isPHIJoin(unsigned Reg) { return PHIJoins.test(Reg); }
302 
303   /// setPHIJoin - Mark Reg as a phi join register.
304   void setPHIJoin(unsigned Reg) { PHIJoins.set(Reg); }
305 };
306 
307 } // End llvm namespace
308 
309 #endif
310