1 //===-- CodeGen/MachineFrameInfo.h - Abstract Stack Frame Rep. --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The file defines the MachineFrameInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CODEGEN_MACHINEFRAMEINFO_H
14 #define LLVM_CODEGEN_MACHINEFRAMEINFO_H
15 
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/CodeGen/Register.h"
18 #include "llvm/Support/Alignment.h"
19 #include "llvm/Support/DataTypes.h"
20 #include <cassert>
21 #include <vector>
22 
23 namespace llvm {
24 class raw_ostream;
25 class MachineFunction;
26 class MachineBasicBlock;
27 class BitVector;
28 class AllocaInst;
29 
30 /// The CalleeSavedInfo class tracks the information need to locate where a
31 /// callee saved register is in the current frame.
32 /// Callee saved reg can also be saved to a different register rather than
33 /// on the stack by setting DstReg instead of FrameIdx.
34 class CalleeSavedInfo {
35   Register Reg;
36   union {
37     int FrameIdx;
38     unsigned DstReg;
39   };
40   /// Flag indicating whether the register is actually restored in the epilog.
41   /// In most cases, if a register is saved, it is also restored. There are
42   /// some situations, though, when this is not the case. For example, the
43   /// LR register on ARM is usually saved, but on exit from the function its
44   /// saved value may be loaded directly into PC. Since liveness tracking of
45   /// physical registers treats callee-saved registers are live outside of
46   /// the function, LR would be treated as live-on-exit, even though in these
47   /// scenarios it is not. This flag is added to indicate that the saved
48   /// register described by this object is not restored in the epilog.
49   /// The long-term solution is to model the liveness of callee-saved registers
50   /// by implicit uses on the return instructions, however, the required
51   /// changes in the ARM backend would be quite extensive.
52   bool Restored;
53   /// Flag indicating whether the register is spilled to stack or another
54   /// register.
55   bool SpilledToReg;
56 
57 public:
58   explicit CalleeSavedInfo(unsigned R, int FI = 0)
59   : Reg(R), FrameIdx(FI), Restored(true), SpilledToReg(false) {}
60 
61   // Accessors.
62   Register getReg()                        const { return Reg; }
63   int getFrameIdx()                        const { return FrameIdx; }
64   unsigned getDstReg()                     const { return DstReg; }
65   void setFrameIdx(int FI) {
66     FrameIdx = FI;
67     SpilledToReg = false;
68   }
69   void setDstReg(Register SpillReg) {
70     DstReg = SpillReg;
71     SpilledToReg = true;
72   }
73   bool isRestored()                        const { return Restored; }
74   void setRestored(bool R)                       { Restored = R; }
75   bool isSpilledToReg()                    const { return SpilledToReg; }
76 };
77 
78 /// The MachineFrameInfo class represents an abstract stack frame until
79 /// prolog/epilog code is inserted.  This class is key to allowing stack frame
80 /// representation optimizations, such as frame pointer elimination.  It also
81 /// allows more mundane (but still important) optimizations, such as reordering
82 /// of abstract objects on the stack frame.
83 ///
84 /// To support this, the class assigns unique integer identifiers to stack
85 /// objects requested clients.  These identifiers are negative integers for
86 /// fixed stack objects (such as arguments passed on the stack) or nonnegative
87 /// for objects that may be reordered.  Instructions which refer to stack
88 /// objects use a special MO_FrameIndex operand to represent these frame
89 /// indexes.
90 ///
91 /// Because this class keeps track of all references to the stack frame, it
92 /// knows when a variable sized object is allocated on the stack.  This is the
93 /// sole condition which prevents frame pointer elimination, which is an
94 /// important optimization on register-poor architectures.  Because original
95 /// variable sized alloca's in the source program are the only source of
96 /// variable sized stack objects, it is safe to decide whether there will be
97 /// any variable sized objects before all stack objects are known (for
98 /// example, register allocator spill code never needs variable sized
99 /// objects).
100 ///
101 /// When prolog/epilog code emission is performed, the final stack frame is
102 /// built and the machine instructions are modified to refer to the actual
103 /// stack offsets of the object, eliminating all MO_FrameIndex operands from
104 /// the program.
105 ///
106 /// Abstract Stack Frame Information
107 class MachineFrameInfo {
108 public:
109   /// Stack Smashing Protection (SSP) rules require that vulnerable stack
110   /// allocations are located close the stack protector.
111   enum SSPLayoutKind {
112     SSPLK_None,       ///< Did not trigger a stack protector.  No effect on data
113                       ///< layout.
114     SSPLK_LargeArray, ///< Array or nested array >= SSP-buffer-size.  Closest
115                       ///< to the stack protector.
116     SSPLK_SmallArray, ///< Array or nested array < SSP-buffer-size. 2nd closest
117                       ///< to the stack protector.
118     SSPLK_AddrOf      ///< The address of this allocation is exposed and
119                       ///< triggered protection.  3rd closest to the protector.
120   };
121 
122 private:
123   // Represent a single object allocated on the stack.
124   struct StackObject {
125     // The offset of this object from the stack pointer on entry to
126     // the function.  This field has no meaning for a variable sized element.
127     int64_t SPOffset;
128 
129     // The size of this object on the stack. 0 means a variable sized object,
130     // ~0ULL means a dead object.
131     uint64_t Size;
132 
133     // The required alignment of this stack slot.
134     Align Alignment;
135 
136     // If true, the value of the stack object is set before
137     // entering the function and is not modified inside the function. By
138     // default, fixed objects are immutable unless marked otherwise.
139     bool isImmutable;
140 
141     // If true the stack object is used as spill slot. It
142     // cannot alias any other memory objects.
143     bool isSpillSlot;
144 
145     /// If true, this stack slot is used to spill a value (could be deopt
146     /// and/or GC related) over a statepoint. We know that the address of the
147     /// slot can't alias any LLVM IR value.  This is very similar to a Spill
148     /// Slot, but is created by statepoint lowering is SelectionDAG, not the
149     /// register allocator.
150     bool isStatepointSpillSlot = false;
151 
152     /// Identifier for stack memory type analagous to address space. If this is
153     /// non-0, the meaning is target defined. Offsets cannot be directly
154     /// compared between objects with different stack IDs. The object may not
155     /// necessarily reside in the same contiguous memory block as other stack
156     /// objects. Objects with differing stack IDs should not be merged or
157     /// replaced substituted for each other.
158     //
159     /// It is assumed a target uses consecutive, increasing stack IDs starting
160     /// from 1.
161     uint8_t StackID;
162 
163     /// If this stack object is originated from an Alloca instruction
164     /// this value saves the original IR allocation. Can be NULL.
165     const AllocaInst *Alloca;
166 
167     // If true, the object was mapped into the local frame
168     // block and doesn't need additional handling for allocation beyond that.
169     bool PreAllocated = false;
170 
171     // If true, an LLVM IR value might point to this object.
172     // Normally, spill slots and fixed-offset objects don't alias IR-accessible
173     // objects, but there are exceptions (on PowerPC, for example, some byval
174     // arguments have ABI-prescribed offsets).
175     bool isAliased;
176 
177     /// If true, the object has been zero-extended.
178     bool isZExt = false;
179 
180     /// If true, the object has been sign-extended.
181     bool isSExt = false;
182 
183     uint8_t SSPLayout;
184 
185     StackObject(uint64_t Size, Align Alignment, int64_t SPOffset,
186                 bool IsImmutable, bool IsSpillSlot, const AllocaInst *Alloca,
187                 bool IsAliased, uint8_t StackID = 0)
188         : SPOffset(SPOffset), Size(Size), Alignment(Alignment),
189           isImmutable(IsImmutable), isSpillSlot(IsSpillSlot), StackID(StackID),
190           Alloca(Alloca), isAliased(IsAliased), SSPLayout(SSPLK_None) {}
191   };
192 
193   /// The alignment of the stack.
194   Align StackAlignment;
195 
196   /// Can the stack be realigned. This can be false if the target does not
197   /// support stack realignment, or if the user asks us not to realign the
198   /// stack. In this situation, overaligned allocas are all treated as dynamic
199   /// allocations and the target must handle them as part of DYNAMIC_STACKALLOC
200   /// lowering. All non-alloca stack objects have their alignment clamped to the
201   /// base ABI stack alignment.
202   /// FIXME: There is room for improvement in this case, in terms of
203   /// grouping overaligned allocas into a "secondary stack frame" and
204   /// then only use a single alloca to allocate this frame and only a
205   /// single virtual register to access it. Currently, without such an
206   /// optimization, each such alloca gets its own dynamic realignment.
207   bool StackRealignable;
208 
209   /// Whether the function has the \c alignstack attribute.
210   bool ForcedRealign;
211 
212   /// The list of stack objects allocated.
213   std::vector<StackObject> Objects;
214 
215   /// This contains the number of fixed objects contained on
216   /// the stack.  Because fixed objects are stored at a negative index in the
217   /// Objects list, this is also the index to the 0th object in the list.
218   unsigned NumFixedObjects = 0;
219 
220   /// This boolean keeps track of whether any variable
221   /// sized objects have been allocated yet.
222   bool HasVarSizedObjects = false;
223 
224   /// This boolean keeps track of whether there is a call
225   /// to builtin \@llvm.frameaddress.
226   bool FrameAddressTaken = false;
227 
228   /// This boolean keeps track of whether there is a call
229   /// to builtin \@llvm.returnaddress.
230   bool ReturnAddressTaken = false;
231 
232   /// This boolean keeps track of whether there is a call
233   /// to builtin \@llvm.experimental.stackmap.
234   bool HasStackMap = false;
235 
236   /// This boolean keeps track of whether there is a call
237   /// to builtin \@llvm.experimental.patchpoint.
238   bool HasPatchPoint = false;
239 
240   /// The prolog/epilog code inserter calculates the final stack
241   /// offsets for all of the fixed size objects, updating the Objects list
242   /// above.  It then updates StackSize to contain the number of bytes that need
243   /// to be allocated on entry to the function.
244   uint64_t StackSize = 0;
245 
246   /// The amount that a frame offset needs to be adjusted to
247   /// have the actual offset from the stack/frame pointer.  The exact usage of
248   /// this is target-dependent, but it is typically used to adjust between
249   /// SP-relative and FP-relative offsets.  E.G., if objects are accessed via
250   /// SP then OffsetAdjustment is zero; if FP is used, OffsetAdjustment is set
251   /// to the distance between the initial SP and the value in FP.  For many
252   /// targets, this value is only used when generating debug info (via
253   /// TargetRegisterInfo::getFrameIndexReference); when generating code, the
254   /// corresponding adjustments are performed directly.
255   int OffsetAdjustment = 0;
256 
257   /// The prolog/epilog code inserter may process objects that require greater
258   /// alignment than the default alignment the target provides.
259   /// To handle this, MaxAlignment is set to the maximum alignment
260   /// needed by the objects on the current frame.  If this is greater than the
261   /// native alignment maintained by the compiler, dynamic alignment code will
262   /// be needed.
263   ///
264   Align MaxAlignment;
265 
266   /// Set to true if this function adjusts the stack -- e.g.,
267   /// when calling another function. This is only valid during and after
268   /// prolog/epilog code insertion.
269   bool AdjustsStack = false;
270 
271   /// Set to true if this function has any function calls.
272   bool HasCalls = false;
273 
274   /// The frame index for the stack protector.
275   int StackProtectorIdx = -1;
276 
277   /// The frame index for the function context. Used for SjLj exceptions.
278   int FunctionContextIdx = -1;
279 
280   /// This contains the size of the largest call frame if the target uses frame
281   /// setup/destroy pseudo instructions (as defined in the TargetFrameInfo
282   /// class).  This information is important for frame pointer elimination.
283   /// It is only valid during and after prolog/epilog code insertion.
284   unsigned MaxCallFrameSize = ~0u;
285 
286   /// The number of bytes of callee saved registers that the target wants to
287   /// report for the current function in the CodeView S_FRAMEPROC record.
288   unsigned CVBytesOfCalleeSavedRegisters = 0;
289 
290   /// The prolog/epilog code inserter fills in this vector with each
291   /// callee saved register saved in either the frame or a different
292   /// register.  Beyond its use by the prolog/ epilog code inserter,
293   /// this data is used for debug info and exception handling.
294   std::vector<CalleeSavedInfo> CSInfo;
295 
296   /// Has CSInfo been set yet?
297   bool CSIValid = false;
298 
299   /// References to frame indices which are mapped
300   /// into the local frame allocation block. <FrameIdx, LocalOffset>
301   SmallVector<std::pair<int, int64_t>, 32> LocalFrameObjects;
302 
303   /// Size of the pre-allocated local frame block.
304   int64_t LocalFrameSize = 0;
305 
306   /// Required alignment of the local object blob, which is the strictest
307   /// alignment of any object in it.
308   Align LocalFrameMaxAlign;
309 
310   /// Whether the local object blob needs to be allocated together. If not,
311   /// PEI should ignore the isPreAllocated flags on the stack objects and
312   /// just allocate them normally.
313   bool UseLocalStackAllocationBlock = false;
314 
315   /// True if the function dynamically adjusts the stack pointer through some
316   /// opaque mechanism like inline assembly or Win32 EH.
317   bool HasOpaqueSPAdjustment = false;
318 
319   /// True if the function contains operations which will lower down to
320   /// instructions which manipulate the stack pointer.
321   bool HasCopyImplyingStackAdjustment = false;
322 
323   /// True if the function contains a call to the llvm.vastart intrinsic.
324   bool HasVAStart = false;
325 
326   /// True if this is a varargs function that contains a musttail call.
327   bool HasMustTailInVarArgFunc = false;
328 
329   /// True if this function contains a tail call. If so immutable objects like
330   /// function arguments are no longer so. A tail call *can* override fixed
331   /// stack objects like arguments so we can't treat them as immutable.
332   bool HasTailCall = false;
333 
334   /// Not null, if shrink-wrapping found a better place for the prologue.
335   MachineBasicBlock *Save = nullptr;
336   /// Not null, if shrink-wrapping found a better place for the epilogue.
337   MachineBasicBlock *Restore = nullptr;
338 
339 public:
340   explicit MachineFrameInfo(unsigned StackAlignment, bool StackRealignable,
341                             bool ForcedRealign)
342       : StackAlignment(assumeAligned(StackAlignment)),
343         StackRealignable(StackRealignable), ForcedRealign(ForcedRealign) {}
344 
345   /// Return true if there are any stack objects in this function.
346   bool hasStackObjects() const { return !Objects.empty(); }
347 
348   /// This method may be called any time after instruction
349   /// selection is complete to determine if the stack frame for this function
350   /// contains any variable sized objects.
351   bool hasVarSizedObjects() const { return HasVarSizedObjects; }
352 
353   /// Return the index for the stack protector object.
354   int getStackProtectorIndex() const { return StackProtectorIdx; }
355   void setStackProtectorIndex(int I) { StackProtectorIdx = I; }
356   bool hasStackProtectorIndex() const { return StackProtectorIdx != -1; }
357 
358   /// Return the index for the function context object.
359   /// This object is used for SjLj exceptions.
360   int getFunctionContextIndex() const { return FunctionContextIdx; }
361   void setFunctionContextIndex(int I) { FunctionContextIdx = I; }
362 
363   /// This method may be called any time after instruction
364   /// selection is complete to determine if there is a call to
365   /// \@llvm.frameaddress in this function.
366   bool isFrameAddressTaken() const { return FrameAddressTaken; }
367   void setFrameAddressIsTaken(bool T) { FrameAddressTaken = T; }
368 
369   /// This method may be called any time after
370   /// instruction selection is complete to determine if there is a call to
371   /// \@llvm.returnaddress in this function.
372   bool isReturnAddressTaken() const { return ReturnAddressTaken; }
373   void setReturnAddressIsTaken(bool s) { ReturnAddressTaken = s; }
374 
375   /// This method may be called any time after instruction
376   /// selection is complete to determine if there is a call to builtin
377   /// \@llvm.experimental.stackmap.
378   bool hasStackMap() const { return HasStackMap; }
379   void setHasStackMap(bool s = true) { HasStackMap = s; }
380 
381   /// This method may be called any time after instruction
382   /// selection is complete to determine if there is a call to builtin
383   /// \@llvm.experimental.patchpoint.
384   bool hasPatchPoint() const { return HasPatchPoint; }
385   void setHasPatchPoint(bool s = true) { HasPatchPoint = s; }
386 
387   /// Return the minimum frame object index.
388   int getObjectIndexBegin() const { return -NumFixedObjects; }
389 
390   /// Return one past the maximum frame object index.
391   int getObjectIndexEnd() const { return (int)Objects.size()-NumFixedObjects; }
392 
393   /// Return the number of fixed objects.
394   unsigned getNumFixedObjects() const { return NumFixedObjects; }
395 
396   /// Return the number of objects.
397   unsigned getNumObjects() const { return Objects.size(); }
398 
399   /// Map a frame index into the local object block
400   void mapLocalFrameObject(int ObjectIndex, int64_t Offset) {
401     LocalFrameObjects.push_back(std::pair<int, int64_t>(ObjectIndex, Offset));
402     Objects[ObjectIndex + NumFixedObjects].PreAllocated = true;
403   }
404 
405   /// Get the local offset mapping for a for an object.
406   std::pair<int, int64_t> getLocalFrameObjectMap(int i) const {
407     assert (i >= 0 && (unsigned)i < LocalFrameObjects.size() &&
408             "Invalid local object reference!");
409     return LocalFrameObjects[i];
410   }
411 
412   /// Return the number of objects allocated into the local object block.
413   int64_t getLocalFrameObjectCount() const { return LocalFrameObjects.size(); }
414 
415   /// Set the size of the local object blob.
416   void setLocalFrameSize(int64_t sz) { LocalFrameSize = sz; }
417 
418   /// Get the size of the local object blob.
419   int64_t getLocalFrameSize() const { return LocalFrameSize; }
420 
421   /// Required alignment of the local object blob,
422   /// which is the strictest alignment of any object in it.
423   void setLocalFrameMaxAlign(Align Alignment) {
424     LocalFrameMaxAlign = Alignment;
425   }
426 
427   /// Return the required alignment of the local object blob.
428   Align getLocalFrameMaxAlign() const { return LocalFrameMaxAlign; }
429 
430   /// Get whether the local allocation blob should be allocated together or
431   /// let PEI allocate the locals in it directly.
432   bool getUseLocalStackAllocationBlock() const {
433     return UseLocalStackAllocationBlock;
434   }
435 
436   /// setUseLocalStackAllocationBlock - Set whether the local allocation blob
437   /// should be allocated together or let PEI allocate the locals in it
438   /// directly.
439   void setUseLocalStackAllocationBlock(bool v) {
440     UseLocalStackAllocationBlock = v;
441   }
442 
443   /// Return true if the object was pre-allocated into the local block.
444   bool isObjectPreAllocated(int ObjectIdx) const {
445     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
446            "Invalid Object Idx!");
447     return Objects[ObjectIdx+NumFixedObjects].PreAllocated;
448   }
449 
450   /// Return the size of the specified object.
451   int64_t getObjectSize(int ObjectIdx) const {
452     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
453            "Invalid Object Idx!");
454     return Objects[ObjectIdx+NumFixedObjects].Size;
455   }
456 
457   /// Change the size of the specified stack object.
458   void setObjectSize(int ObjectIdx, int64_t Size) {
459     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
460            "Invalid Object Idx!");
461     Objects[ObjectIdx+NumFixedObjects].Size = Size;
462   }
463 
464   /// Return the alignment of the specified stack object.
465   Align getObjectAlign(int ObjectIdx) const {
466     assert(unsigned(ObjectIdx + NumFixedObjects) < Objects.size() &&
467            "Invalid Object Idx!");
468     return Objects[ObjectIdx + NumFixedObjects].Alignment;
469   }
470 
471   /// setObjectAlignment - Change the alignment of the specified stack object.
472   void setObjectAlignment(int ObjectIdx, Align Alignment) {
473     assert(unsigned(ObjectIdx + NumFixedObjects) < Objects.size() &&
474            "Invalid Object Idx!");
475     Objects[ObjectIdx + NumFixedObjects].Alignment = Alignment;
476 
477     // Only ensure max alignment for the default stack.
478     if (getStackID(ObjectIdx) == 0)
479       ensureMaxAlignment(Alignment);
480   }
481 
482   /// Return the underlying Alloca of the specified
483   /// stack object if it exists. Returns 0 if none exists.
484   const AllocaInst* getObjectAllocation(int ObjectIdx) const {
485     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
486            "Invalid Object Idx!");
487     return Objects[ObjectIdx+NumFixedObjects].Alloca;
488   }
489 
490   /// Return the assigned stack offset of the specified object
491   /// from the incoming stack pointer.
492   int64_t getObjectOffset(int ObjectIdx) const {
493     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
494            "Invalid Object Idx!");
495     assert(!isDeadObjectIndex(ObjectIdx) &&
496            "Getting frame offset for a dead object?");
497     return Objects[ObjectIdx+NumFixedObjects].SPOffset;
498   }
499 
500   bool isObjectZExt(int ObjectIdx) const {
501     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
502            "Invalid Object Idx!");
503     return Objects[ObjectIdx+NumFixedObjects].isZExt;
504   }
505 
506   void setObjectZExt(int ObjectIdx, bool IsZExt) {
507     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
508            "Invalid Object Idx!");
509     Objects[ObjectIdx+NumFixedObjects].isZExt = IsZExt;
510   }
511 
512   bool isObjectSExt(int ObjectIdx) const {
513     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
514            "Invalid Object Idx!");
515     return Objects[ObjectIdx+NumFixedObjects].isSExt;
516   }
517 
518   void setObjectSExt(int ObjectIdx, bool IsSExt) {
519     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
520            "Invalid Object Idx!");
521     Objects[ObjectIdx+NumFixedObjects].isSExt = IsSExt;
522   }
523 
524   /// Set the stack frame offset of the specified object. The
525   /// offset is relative to the stack pointer on entry to the function.
526   void setObjectOffset(int ObjectIdx, int64_t SPOffset) {
527     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
528            "Invalid Object Idx!");
529     assert(!isDeadObjectIndex(ObjectIdx) &&
530            "Setting frame offset for a dead object?");
531     Objects[ObjectIdx+NumFixedObjects].SPOffset = SPOffset;
532   }
533 
534   SSPLayoutKind getObjectSSPLayout(int ObjectIdx) const {
535     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
536            "Invalid Object Idx!");
537     return (SSPLayoutKind)Objects[ObjectIdx+NumFixedObjects].SSPLayout;
538   }
539 
540   void setObjectSSPLayout(int ObjectIdx, SSPLayoutKind Kind) {
541     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
542            "Invalid Object Idx!");
543     assert(!isDeadObjectIndex(ObjectIdx) &&
544            "Setting SSP layout for a dead object?");
545     Objects[ObjectIdx+NumFixedObjects].SSPLayout = Kind;
546   }
547 
548   /// Return the number of bytes that must be allocated to hold
549   /// all of the fixed size frame objects.  This is only valid after
550   /// Prolog/Epilog code insertion has finalized the stack frame layout.
551   uint64_t getStackSize() const { return StackSize; }
552 
553   /// Set the size of the stack.
554   void setStackSize(uint64_t Size) { StackSize = Size; }
555 
556   /// Estimate and return the size of the stack frame.
557   uint64_t estimateStackSize(const MachineFunction &MF) const;
558 
559   /// Return the correction for frame offsets.
560   int getOffsetAdjustment() const { return OffsetAdjustment; }
561 
562   /// Set the correction for frame offsets.
563   void setOffsetAdjustment(int Adj) { OffsetAdjustment = Adj; }
564 
565   /// Return the alignment in bytes that this function must be aligned to,
566   /// which is greater than the default stack alignment provided by the target.
567   Align getMaxAlign() const { return MaxAlignment; }
568 
569   /// Make sure the function is at least Align bytes aligned.
570   void ensureMaxAlignment(Align Alignment);
571 
572   /// Return true if this function adjusts the stack -- e.g.,
573   /// when calling another function. This is only valid during and after
574   /// prolog/epilog code insertion.
575   bool adjustsStack() const { return AdjustsStack; }
576   void setAdjustsStack(bool V) { AdjustsStack = V; }
577 
578   /// Return true if the current function has any function calls.
579   bool hasCalls() const { return HasCalls; }
580   void setHasCalls(bool V) { HasCalls = V; }
581 
582   /// Returns true if the function contains opaque dynamic stack adjustments.
583   bool hasOpaqueSPAdjustment() const { return HasOpaqueSPAdjustment; }
584   void setHasOpaqueSPAdjustment(bool B) { HasOpaqueSPAdjustment = B; }
585 
586   /// Returns true if the function contains operations which will lower down to
587   /// instructions which manipulate the stack pointer.
588   bool hasCopyImplyingStackAdjustment() const {
589     return HasCopyImplyingStackAdjustment;
590   }
591   void setHasCopyImplyingStackAdjustment(bool B) {
592     HasCopyImplyingStackAdjustment = B;
593   }
594 
595   /// Returns true if the function calls the llvm.va_start intrinsic.
596   bool hasVAStart() const { return HasVAStart; }
597   void setHasVAStart(bool B) { HasVAStart = B; }
598 
599   /// Returns true if the function is variadic and contains a musttail call.
600   bool hasMustTailInVarArgFunc() const { return HasMustTailInVarArgFunc; }
601   void setHasMustTailInVarArgFunc(bool B) { HasMustTailInVarArgFunc = B; }
602 
603   /// Returns true if the function contains a tail call.
604   bool hasTailCall() const { return HasTailCall; }
605   void setHasTailCall(bool V = true) { HasTailCall = V; }
606 
607   /// Computes the maximum size of a callframe and the AdjustsStack property.
608   /// This only works for targets defining
609   /// TargetInstrInfo::getCallFrameSetupOpcode(), getCallFrameDestroyOpcode(),
610   /// and getFrameSize().
611   /// This is usually computed by the prologue epilogue inserter but some
612   /// targets may call this to compute it earlier.
613   void computeMaxCallFrameSize(const MachineFunction &MF);
614 
615   /// Return the maximum size of a call frame that must be
616   /// allocated for an outgoing function call.  This is only available if
617   /// CallFrameSetup/Destroy pseudo instructions are used by the target, and
618   /// then only during or after prolog/epilog code insertion.
619   ///
620   unsigned getMaxCallFrameSize() const {
621     // TODO: Enable this assert when targets are fixed.
622     //assert(isMaxCallFrameSizeComputed() && "MaxCallFrameSize not computed yet");
623     if (!isMaxCallFrameSizeComputed())
624       return 0;
625     return MaxCallFrameSize;
626   }
627   bool isMaxCallFrameSizeComputed() const {
628     return MaxCallFrameSize != ~0u;
629   }
630   void setMaxCallFrameSize(unsigned S) { MaxCallFrameSize = S; }
631 
632   /// Returns how many bytes of callee-saved registers the target pushed in the
633   /// prologue. Only used for debug info.
634   unsigned getCVBytesOfCalleeSavedRegisters() const {
635     return CVBytesOfCalleeSavedRegisters;
636   }
637   void setCVBytesOfCalleeSavedRegisters(unsigned S) {
638     CVBytesOfCalleeSavedRegisters = S;
639   }
640 
641   /// Create a new object at a fixed location on the stack.
642   /// All fixed objects should be created before other objects are created for
643   /// efficiency. By default, fixed objects are not pointed to by LLVM IR
644   /// values. This returns an index with a negative value.
645   int CreateFixedObject(uint64_t Size, int64_t SPOffset, bool IsImmutable,
646                         bool isAliased = false);
647 
648   /// Create a spill slot at a fixed location on the stack.
649   /// Returns an index with a negative value.
650   int CreateFixedSpillStackObject(uint64_t Size, int64_t SPOffset,
651                                   bool IsImmutable = false);
652 
653   /// Returns true if the specified index corresponds to a fixed stack object.
654   bool isFixedObjectIndex(int ObjectIdx) const {
655     return ObjectIdx < 0 && (ObjectIdx >= -(int)NumFixedObjects);
656   }
657 
658   /// Returns true if the specified index corresponds
659   /// to an object that might be pointed to by an LLVM IR value.
660   bool isAliasedObjectIndex(int ObjectIdx) const {
661     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
662            "Invalid Object Idx!");
663     return Objects[ObjectIdx+NumFixedObjects].isAliased;
664   }
665 
666   /// Returns true if the specified index corresponds to an immutable object.
667   bool isImmutableObjectIndex(int ObjectIdx) const {
668     // Tail calling functions can clobber their function arguments.
669     if (HasTailCall)
670       return false;
671     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
672            "Invalid Object Idx!");
673     return Objects[ObjectIdx+NumFixedObjects].isImmutable;
674   }
675 
676   /// Marks the immutability of an object.
677   void setIsImmutableObjectIndex(int ObjectIdx, bool IsImmutable) {
678     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
679            "Invalid Object Idx!");
680     Objects[ObjectIdx+NumFixedObjects].isImmutable = IsImmutable;
681   }
682 
683   /// Returns true if the specified index corresponds to a spill slot.
684   bool isSpillSlotObjectIndex(int ObjectIdx) const {
685     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
686            "Invalid Object Idx!");
687     return Objects[ObjectIdx+NumFixedObjects].isSpillSlot;
688   }
689 
690   bool isStatepointSpillSlotObjectIndex(int ObjectIdx) const {
691     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
692            "Invalid Object Idx!");
693     return Objects[ObjectIdx+NumFixedObjects].isStatepointSpillSlot;
694   }
695 
696   /// \see StackID
697   uint8_t getStackID(int ObjectIdx) const {
698     return Objects[ObjectIdx+NumFixedObjects].StackID;
699   }
700 
701   /// \see StackID
702   void setStackID(int ObjectIdx, uint8_t ID) {
703     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
704            "Invalid Object Idx!");
705     Objects[ObjectIdx+NumFixedObjects].StackID = ID;
706     // If ID > 0, MaxAlignment may now be overly conservative.
707     // If ID == 0, MaxAlignment will need to be updated separately.
708   }
709 
710   /// Returns true if the specified index corresponds to a dead object.
711   bool isDeadObjectIndex(int ObjectIdx) const {
712     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
713            "Invalid Object Idx!");
714     return Objects[ObjectIdx+NumFixedObjects].Size == ~0ULL;
715   }
716 
717   /// Returns true if the specified index corresponds to a variable sized
718   /// object.
719   bool isVariableSizedObjectIndex(int ObjectIdx) const {
720     assert(unsigned(ObjectIdx + NumFixedObjects) < Objects.size() &&
721            "Invalid Object Idx!");
722     return Objects[ObjectIdx + NumFixedObjects].Size == 0;
723   }
724 
725   void markAsStatepointSpillSlotObjectIndex(int ObjectIdx) {
726     assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
727            "Invalid Object Idx!");
728     Objects[ObjectIdx+NumFixedObjects].isStatepointSpillSlot = true;
729     assert(isStatepointSpillSlotObjectIndex(ObjectIdx) && "inconsistent");
730   }
731 
732   /// Create a new statically sized stack object, returning
733   /// a nonnegative identifier to represent it.
734   int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot,
735                         const AllocaInst *Alloca = nullptr, uint8_t ID = 0);
736 
737   /// Create a new statically sized stack object that represents a spill slot,
738   /// returning a nonnegative identifier to represent it.
739   int CreateSpillStackObject(uint64_t Size, Align Alignment);
740 
741   /// Remove or mark dead a statically sized stack object.
742   void RemoveStackObject(int ObjectIdx) {
743     // Mark it dead.
744     Objects[ObjectIdx+NumFixedObjects].Size = ~0ULL;
745   }
746 
747   /// Notify the MachineFrameInfo object that a variable sized object has been
748   /// created.  This must be created whenever a variable sized object is
749   /// created, whether or not the index returned is actually used.
750   int CreateVariableSizedObject(Align Alignment, const AllocaInst *Alloca);
751 
752   /// Returns a reference to call saved info vector for the current function.
753   const std::vector<CalleeSavedInfo> &getCalleeSavedInfo() const {
754     return CSInfo;
755   }
756   /// \copydoc getCalleeSavedInfo()
757   std::vector<CalleeSavedInfo> &getCalleeSavedInfo() { return CSInfo; }
758 
759   /// Used by prolog/epilog inserter to set the function's callee saved
760   /// information.
761   void setCalleeSavedInfo(std::vector<CalleeSavedInfo> CSI) {
762     CSInfo = std::move(CSI);
763   }
764 
765   /// Has the callee saved info been calculated yet?
766   bool isCalleeSavedInfoValid() const { return CSIValid; }
767 
768   void setCalleeSavedInfoValid(bool v) { CSIValid = v; }
769 
770   MachineBasicBlock *getSavePoint() const { return Save; }
771   void setSavePoint(MachineBasicBlock *NewSave) { Save = NewSave; }
772   MachineBasicBlock *getRestorePoint() const { return Restore; }
773   void setRestorePoint(MachineBasicBlock *NewRestore) { Restore = NewRestore; }
774 
775   /// Return a set of physical registers that are pristine.
776   ///
777   /// Pristine registers hold a value that is useless to the current function,
778   /// but that must be preserved - they are callee saved registers that are not
779   /// saved.
780   ///
781   /// Before the PrologueEpilogueInserter has placed the CSR spill code, this
782   /// method always returns an empty set.
783   BitVector getPristineRegs(const MachineFunction &MF) const;
784 
785   /// Used by the MachineFunction printer to print information about
786   /// stack objects. Implemented in MachineFunction.cpp.
787   void print(const MachineFunction &MF, raw_ostream &OS) const;
788 
789   /// dump - Print the function to stderr.
790   void dump(const MachineFunction &MF) const;
791 };
792 
793 } // End llvm namespace
794 
795 #endif
796